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Chronic lymphocytic leukemia (CLL) is a clinically and biologically

heterogeneous disease with varying outcomes. In the last decade, the

application of next-generation sequencing technologies has allowed extensive

mapping of disease-specific genomic, epigenomic, immunogenetic, and

transcriptomic signatures linked to CLL pathogenesis. These technologies have

improved our understanding of the impact of tumor heterogeneity and evolution

on disease outcome, although they have mostly been performed on bulk

preparations of nucleic acids. As a further development, new technologies

have emerged in recent years that allow high-resolution mapping at the

single-cell level. These include single-cell RNA sequencing for assessment of

the transcriptome, both of leukemic and non-malignant cells in the tumor

microenvironment; immunogenetic profiling of B and T cell receptor

rearrangements; single-cell sequencing methods for investigation of

methylation and chromatin accessibility across the genome; and targeted

single-cell DNA sequencing for analysis of copy-number alterations and single

nucleotide variants. In addition, concomitant profiling of cellular subpopulations,

based on protein expression, can also be obtained by various antibody-based

approaches. In this review, we discuss different single-cell sequencing

technologies and how they have been applied so far to study CLL onset and

progression, also in response to treatment. This latter aspect is particularly

relevant considering that we are moving away from chemoimmunotherapy to

targeted therapies, with a potentially distinct impact on clonal dynamics. We also

discuss new possibilities, such as integrative multi-omics analysis, as well as

inherent limitations of the different single-cell technologies, from sample

preparation to data interpretation using available bioinformatic pipelines.

Finally, we discuss future directions in this rapidly evolving field.
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1 Introduction

Chronic lymphocytic leukemia (CLL) is characterized by an

expansion of malignant CD5+/CD23+ B cells, often detected in the

peripheral blood of asymptomatic patients (1). The median age at

diagnosis is 72 years and men are afflicted more frequently than

women. The disease course can range from indolent with a nearly

normal life expectancy to aggressive with a poor response to

treatment. Although well-established clinical staging systems (2, 3)

remain instrumental for determining disease burden, they fail to

identify early-stage patients prone to developing aggressive disease.

Instead, molecular biomarkers that provide prognostic and/or

predictive information have successively been identified. These

include i) the immunoglobulin heavy variable (IGHV) gene

somatic hypermutation (SHM) status, which divides patients into a

poor-prognostic group with unmutated IGHV genes (U-CLL) or a

favorable-prognostic group with mutated IGHV genes (M-CLL) (4,

5), and ii) the presence (or absence) of certain genomic lesions, such

as deletions of 13q (35-45%), 11q (10-20%), and 17p (5-7%), and

trisomy 12 (10-15%), as well as TP53 mutations (1, 6, 7). These

molecular tests are performed for all patients prior to the start offirst-

line treatment and at subsequent lines of treatment (except the IGHV

gene SHM status that is stable throughout the disease course) (1, 8).

The easy access to tumor material from peripheral blood allows

for advanced molecular studies of disease progress, from early, pre-

cancerous monoclonal B cell lymphocytosis (MBL), to advanced

stages of CLL, including Richter’s transformation (RT). With the

introduction of next-generation sequencing (NGS) technologies

more than 10 years ago, the genomic landscape of the different

stages of CLL was rapidly uncovered. Today, recurrent genomic

alterations have been described in >2000 genes, of which >200 genes

have been identified as putative ‘drivers’. Of these, >25 genes are

associated with clinically aggressive disease, including ATM, BIRC3,

EGR2, NFKBIE, NOTCH1, SF3B1, and TP53, among others (9–14).

Moreover, CLL is characterized by the expression of almost identical

or ‘stereotyped’ B cell receptor immunoglobulins (BcR IGs) in more

than 40% of patients (15). Notably, patients carrying stereotyped BcR

IGs can be grouped into distinct subsets that display more similar

molecular profiles and clinical outcomes than non-subset CLL

patients (16, 17). For instance, patients in subset #1 (utilize
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IGHV1/5/7 clan I genes, U-CLL) and #2 (IGHV3-21/IGLV3-21,

mixed SHM status) respond poorly to chemoimmunotherapy and

have a dismal outcome, whereas subset #4 patients (IGHV4-34/

IGKV2-30, M-CLL) show indolent disease courses and are rarely in

need of treatment (Figure 1) (17, 18). Intriguingly, there is a striking

enrichment of specific gene alterations in certain stereotyped subsets,

for instance, SF3B1 mutations in subset #2 and TP53/NFKBIE/

NOTCH1 aberrations in subset #1 (19). This biased acquisition of

molecular lesions underscores the importance of both cell-intrinsic

and cell-extrinsic factors in CLL pathobiology. In fact, besides the

gradual accumulation of genomic lesions, the CLL clone is also

dependent on active BcR signaling and interactions with the tumor

microenvironment (TME) to promote clonal expansion. However,

the TME plays a complex role in CLL pathobiology, where its

constituents (including macrophages and their derivatives,

mesenchymal stromal cells, and additional lymphocytes),

participate in tumor-stimulating, reciprocal signaling, but also

suppress anti-tumor immune surveillance mediated primarily by

T cells (20–25).

Inhibition of BcR signaling or intrinsic apoptotic pathways by

contemporary targeted therapies has shown significant clinical

efficacy and prolonged progression-free and overall survival in

poor-risk patients with CLL carrying TP53 aberrations or

unmutated IGHV genes (26–29). Nevertheless, the evolution and

selection of therapy-resistant subclones may occur during and/or

after targeted treatment and lead to disease relapse (Figure 2) (30).

Notably, even minor alterations at the subclonal level (e.g., BTK and

PLCG2 mutations) are sufficient to drive treatment resistance

(Figure 2) (31, 32). Deciphering the clonal evolution of CLL cells

under treatment-induced selection pressure is thus critical for a

better understanding of resistance mechanisms and the

identification of additional predictive biomarkers.

The advent of single-cell sequencing technologies has enabled

unprecedented dissection of the intraclonal molecular landscape,

further linking genotypes and phenotypes to specific CLL cell

subpopulations. In this review, we outline how various single-cell

sequencing approaches can be used to unravel intratumoral

heterogeneity and track clonal evolution in distinct phases of the

disease (Figure 2), but also the contribution of the TME. We

highlight the limitations of single-cell technologies and discuss
FIGURE 1

Clinicobiological profiles of major CLL subsets #1, #2, and #4. BcR IG, B cell receptor immunoglobulin; U-CLL, CLL with unmutated IGHV genes;
M-CLL, CLL with mutated IGHV genes.
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new directions, such as spatial omics and integrated, multi-omics

single-cell analysis.
2 Deciphering clonal heterogeneity
and evolution in CLL

As mentioned, CLL is notable for significant genetic

diversification and clonal evolution, both during disease

progression and upon therapeutic interventions (10, 33, 34). The

occurrence of clonal heterogeneity became evident in the 1980-90s,

initially by applying traditional cytogenetic techniques, such as

chromosome banding analysis and fluorescence in situ

hybridization (FISH) (35–37). With the development of new

technologies, including array- and NGS-based approaches (38,

39), the resolution of detection has increased continuously,

enabling to follow clonal dynamics albeit still at a ‘bulk’ level

(40). Frequently used NGS methods include whole-genome

sequencing (WGS), whole-exome sequencing (WES), RNA-
Frontiers in Oncology 03
sequencing (RNA-seq), and analyses of the epigenome, such as

methylation profiling and assay for transposase-accessible

chromatin with sequencing (ATAC-seq). Using high-resolution

genomic technologies, it has been possible to discern early versus

late molecular events during CLL pathogenesis (Figure 2).

Consequently, we now know that a few genomic aberrations

represent early clonal events (e.g., trisomy 12, MYD88 mutations,

and del(13q)), whereas most alterations are present at the subclonal

level (10, 12, 41). These technologies have been instrumental in

identifying important CLL-specific genomic, epigenomic, and

transcriptomic features linked to key dysregulated signaling

pathways and cellular processes and have also enabled a multi-

layered integrative portrayal of CLL and the discovery of novel

subgroups. For instance, in three recent studies, novel patient

clusters with distinct clinicobiological features and outcomes were

identified using multi-omics approaches, including proteogenomics

(12, 14, 42). Additionally, targeted deep-sequencing has become a

powerful tool for further in-depth molecular characterization of

CLL, allowing for the discovery of previously undetected, smaller-
A

B

C

FIGURE 2

Single-cell sequencing deciphers cellular heterogeneity. (A) Schematic presentation of the different stages for a typical CLL patient, from the
precursor condition monoclonal B cell lymphocytosis (MBL) to relapsed/refractory CLL, and in some cases Richter’s transformation. (B) The fish plot
depicts tumor evolution in which multiple subclones exist within a leukemic cell population. While some clones are eradicated by therapy, others
accumulate mutations that confer a clonal advantage. (C) The depth of bulk sequencing primarily allows detection of dominant subclones only,
whereas single-cell analyses have the potential to detect all subclones, including minor ones as soon as they arise. WBC, white blood count; MBL,
monoclonal B cell lymphocytosis; SNV, single nucleotide variant; CNV, copy-number variant.
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sized lesions that occur at low frequencies. As a concrete example,

minor TP53-mutated subclones, undetected by Sanger sequencing

but identified by ultra-deep NGS, have been shown to influence

clinical outcomes negatively, at least in patients treated with

chemoimmunotherapy (43, 44). Furthermore, emerging treatment

resistance related to targeted therapy, such as BTK, PLCG2, and

BCL2 mutations, can be detected by deep-sequencing or droplet

digital PCR (ddPCR) of hotspot positions (45–47).

While these new technologies have advanced the field in terms

of deciphering clonal dynamics and treatment resistance in CLL,

there are evident limitations when analyzing bulk nucleic acids and

proteins from a heterogeneous leukemic sample. Instead, single-cell

technologies have opened new possibilities for in-depth studies of

clonal diversity in malignant diseases, including CLL.
2.1 Single-cell sequencing technologies

Single-cell sequencing (SCS) technologies, particularly when

employed in combination and on longitudinal sets of samples,

enable the dissection of subclonal composition and evolutionary

dynamics, both in the context of disease progression and response

to treatment (48). Moreover, they hold the potential to reveal

druggable signaling pathways and mechanisms contributing to

treatment resistance. In the following sections, we introduce

various SCS technologies and their utility across different

modalities (the latter summarized in Figure 3) and discuss their

contribution to the understanding of CLL pathogenesis and

potential clinical implications. We also provide a timeline of SCS

from a technology development aspect, which includes milestones

of CLL single-cell research (Figure 4).

2.1.1 Single-cell transcriptomics
One of the first SCS applications was single-cell RNA sequencing

(scRNA-seq), which, owing to its ability to assess transcriptomes of

individual cells, marked a paradigm shift in cancer research (49–51).

The initial scRNA-seq methods, such as Smart-Seq, were low-

throughput and relied on sorting single cells into multi-well plates

and sequencing of full-length cDNA libraries obtained through
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whole-transcriptome amplification (WTA) with oligo(dT) priming

and template switching (Figure 4) (52, 53). The introduction of

unique molecular identifiers (UMIs) facilitated more reliable and

absolute quantitation of mRNA molecules with nearly eliminated

amplification bias (54). Later, several microwell- and droplet-based

scRNA-seq methods based on 3´ cDNA libraries (and less often 5´

cDNA libraries, which are designed to be combined with profiling of

cell surface proteins and/or immune repertoire) were developed, such

as Seq-Well (55), Drop-seq (56), inDrop (57), and Chromium

(Figure 4) (58). These platforms overcame previous limitations of

only sequencing tens to hundreds of cells by enabling sequencing of

thousands of cells at a time as well as unlocking the potential to

capture transcriptomes from heterogeneous cell populations more

accurately, but at less comprehensive coverage. For a more detailed

overview of scRNA-seq methods, we refer to several extensive review

articles (49–51, 59).

In CLL, scRNA-seq has helped to resolve the transcriptomic

changes and alternative splicing effects of SF3B1 mutations, a

common subclonal event associated with clinically aggressive

disease (Figure 4) (41). In a study by Wang et al., single cells

carrying an SF3B1 mutation possessed significant changes

associated with multiple cellular functions, including apoptosis

(upregulation of BIRC3, BCL2, and KLH21), DNA damage and

cell cycle (increase of KLF8, ATM, CDKN2A, and CCND1),

telomere maintenance (upregulation of TERC and TERT), and

NOTCH signaling (downregulation of DTX1 and altered splicing

ofDVL2) (60). Through this study, scRNA-seq was demonstrated to

be applicable for in-depth investigation of subclonal events, whose

effects could be missed when assessed by ‘bulk’ sequencing

approaches. In a previous study, we used MASC-seq, a method

based on single-cell microarray capture of mRNA, to show

differences in transcriptional expression patterns among CLL cells

from patients classified into distinct stereotyped subsets (i.e., subsets

#1, #2, and #4) (Figure 4). Using this approach, we observed major

andminor clusters of CLL cells with unique expression signatures in

each case (61). Another comprehensive and high-resolution single-

cell multi-omics study, in which combined scRNA-seq and ‘bulk’

ATAC-seq were performed to address ibrutinib treatment response,

discovered a tightly regulated ibrutinib-induced signaling program
FIGURE 3

Multi-modal profiling. SCS methods can detect alterations across multiple modalities, including genome, epigenome, transcriptome, immunome,
and proteome. SNV, single nucleotide variant; CNV, copy-number variant; TF, transcription factor; BcR IG, B cell receptor immunoglobulin; TR,
T cell receptor.
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of CLL cells (Figure 4). Initially, reduced expression of BTK, CD52

(a CLL disease activity marker), and CD27 (a memory B cell

marker) and diminished chromatin accessibility at NF-kB binding

sites were observed, followed by a rapid decrease in the activity of B

cell lineage-defining transcription factors (EBF1, FOXM1, IRF4,

PAX5, and PU.1), loss of CLL cell identity, and acquisition of a

quiescent-like gene signature (upregulation of CXCR4, ZFP36L2,

and HMGB2) (62).

2.1.2 Single-cell genomics
In contrast to scRNA-seq approaches, the development of

single-cell DNA sequencing (scDNA-seq) methods has proven to

be more difficult since a single cell contains only two copies of

genomic DNA. Multiple methods for uniform whole-genome

amplification (WGA), such as multiple annealing and looping-

based amplification cycles (MALBAC), have been developed and

enabled single-cell WGS (scWGS) although at a modest throughput

(63) (Figure 4). To facilitate charting of the most prevalent gene

mutations during clonal evolution, also in the context of CLL (64),

high-throughput targeted DNA sequencing using disease-specific

gene panels has become available for single-cell analysis.

Furthermore, several approaches have been developed for

performing simultaneous scRNA-seq and scDNA-seq on the

same cell, such as DR-Seq (65) and G&T-seq (66), both of which

are based on whole cell lysis and subsequent separation of poly-

adenylated RNA from genomic DNA, and direct nuclear

tagmentation and RNA-seq (DNTR-seq) (67), in which nucleus

and cytosol are physically separated beforehand (Figure 4).

Early efforts to use scDNA-seq in CLL research focused on

evaluating SF3B1 mutations, which had long been assumed to be

heterozygous in CLL (68), owing to their typical allelic burden of

<50% (Figure 4). Using targeted scDNA-seq, single CLL cells indeed

demonstrated heterozygous genotypes, however, a novel subpopulation
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with homozygous SF3B1 mutant genotype was discovered, supporting

a subclonal evolutionary pathway of SF3B1mutations in CLL (69). This

study illustrates the applicability of scDNA-seq in detecting subclonal

populations not possible to unmask by ‘bulk’ approaches. Another

study, in which scWGS was combined with scRNA-seq and performed

on a longitudinal set of samples collected from one patient over a 29-

year disease course, demonstrated the power of single-cell approaches

for reconstructing cancer evolution based on CNVs and changes in

gene expression (Figure 4). Clonal selection in response to treatment

was manifested by the disappearance of certain populations and the

emergence of a clone with novel CNVs, whereas disease progression

was reflected by dynamic transcriptome changes, including

upregulation of transcription factors involved in stem cell and cell

cycle regulation (KLF4, KLF6, and CDKN1A), MYD88 signaling (FOS,

JUN, and NFKBIA) and downstream of BcR signaling (REL, CDKN1A,

and NFKBIA) (70). In a recent study, scDNA-seq of 32 genes, scRNA-

seq, and high-throughput immunogenetic analysis were performed on

longitudinal samples in patients developing RT, revealing that micro

subclones could be identified already at CLL diagnosis up to 19 years

before transformation (Figure 4) (64).

2.1.3 Single-cell epigenomics
With the advent of scDNA-seq, SCS approaches for capturing

epigenomic alterations have flourished as well and today allow the

assessment of methylation dynamics and programs for

transcriptional regulation. These technologies were adapted from

methods originally applied on bulk nucleic acids and vary based on

the epigenomic modality being assayed. Frequently used methods

include i) investigation of methylome by single-cell DNA

methylation sequencing (scDNAme-seq) approaches that entail

bisulfite conversion of genomic DNA, such as scRRBS (71) and

scBS-seq (72), ii) analysis of chromatin accessibility by single-cell

ATAC-seq (scATAC-seq) (73), single-cell DNase sequencing
FIGURE 4

The advent of SCS technologies with selected examples of CLL studies. The respective panels above and below the timeline showcase various
single-omics and multi-omics technologies that have been developed over the last decade. Selected CLL studies where SCS was employed are
exemplified in the lower part of the figure.
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(scDNase-seq) (74), and single-cell micrococcal nuclease

sequencing (scMNase-seq) (75), iii) exploration of the spatial

genome organization and chromatin interactions using

chromosome conformation capture, such as single-cell Hi-C (76),

and iv) interrogation of histone modifications and transcription

factor binding by single-cell chromatin immunoprecipitation

followed by sequencing (scChIP-seq), such as Drop-ChIP (77),

and single-cell cleavage under targets and tagmentation

(scCUT&Tag) (Figure 4) (78–80). Furthermore, multi-omics

approaches have been developed for combined capturing of

methylome and transcriptome, such as scM&T-seq (81),

chromatin accessibility and transcriptome, such as SNARE-seq

(82) and SHARE-seq (83), and even combinations of the

methylome, genome, and transcriptome, such as scTrio-seq

(Figure 4) (84).

While epigenetic studies on bulk material have provided

important clues as to the cellular origin of CLL and also

identified subtypes with distinct DNA methylation profiles and

outcome (85, 86), single-cell epigenomics paves the way for

investigation of epigenetic programming and transcriptional

regulatory networks in evolving clones. A recent study, in which

scDNAme-seq was combined with scRNA-seq, showed that an

increased proliferative capacity of CLL cells was reflected in

consistently increased epimutation rates with minimal cell-to-cell

variability in contrast to healthy B cells (Figure 4) (87).

Furthermore, the authors demonstrated that mapping of

epimutations can be used as a means for subclone lineage

reconstruction and tracing, consistent with previous reports (85,

86). CLL cells with elevated epimutation rates exhibited higher gene

expression heterogeneity (also known as transcriptional entropy),

consistent with transcriptional dysregulation. Additionally, the

investigators demonstrated the enrichment of low epimutation

rates in gene promoters for binding motifs of transcription

factors with established roles in CLL progression (NFKB1 and

MYBL1), and enhancers in proximity to genes implicated in

lymphoproliferation (NOTCH1, NFATC1, and FOXC1) and key

CLL signaling pathways (e.g, Wnt and MAPK) (87). Another study

addressing temporal clonal dynamics employed mitochondrial

scATAC-seq and scRNA-seq and revealed that naturally

occurring mutations in mitochondrial DNA (mtDNA) could be

utilized as biomarkers to distinguish between CLL cell

subpopulations with distinct functional states (Figure 4) (88). The

presence of mtDNA mutations closely mirrored the disease history

and reflected the acquisition of CNVs as well as changes in

chromatin accessibility and gene expression, allowing for tracking

of existing clones and assessing the emergence of divergent

subclones with varying fitness over time, particularly in response

to therapy (88).

2.1.4 Single-cell proteomics
The advancement of proteogenomics has allowed for the study

of relationships between genetic/transcriptional features and

protein expression at ‘bulk’ level, also in CLL (42, 89, 90). While

various single-cell platforms are now commercially available for

sequencing nucleic acids, whole-proteome analysis at the single-cell
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level is still under development. Protein-related difficulties include

the wide range of post-translational modifications and the inability

of peptides to be amplified. As a result, current efforts are primarily

focused on increasingg the signal-to-noise ratio by reducing sample

processing volumes and ion contamination (91). Until standardized

mass spectrometry-based single-cell proteomics is available, the

field is dominated by other techniques. Cellular indexing of

transcriptomes and epitopes by sequencing (CITE-seq) (92),

which uses an antibody-oligonucleotide conjugate-based

approach, enables multiplex quantitative profiling of cell surface

proteins and has recently been applied in phenotyping of CLL cells

for investigating mechanisms of venetoclax resistance, based on

short- and long-read scRNA-seq (Figure 4). This study

demonstrated a high plasticity of CLL cells in their ability to

evade apoptosis upon venetoclax treatment, likely through NF-

kB-induced upregulation of the pro-survival protein MCL1 (93).

2.1.5 Single-cell immunomics
Alterations of immunogenetic features constitute a central

aspect of clonal evolution in CLL. Using low-throughput

sequencing approaches, we have previously demonstrated the

occurrence of intraclonal diversification based on SHM patterns

of the clonotypic IGH/IGK/IGL gene rearrangements, particularly

in subset #4 patients (94, 95). Today, standardized protocols for

NGS-based IGH/IGK/IGL sequencing have been developed and

enable an in-depth analysis of the clonal composition and dynamics

over time (96, 97). In fact, a recent study focusing on stereotyped

subset #2 and #169 (a satellite subset to subset #2) demonstrated

shared SHM patterns in both subsets at either clonal or subclonal

level, reflecting ongoing intraclonal diversification compatible with

a branched evolution (98). The recently developed strategy to

combine immunomics (99) with global transcriptomics in

individual cells, allows for B cell and/or T cell clonotypes to be

linked to gene expression signatures (100). Collectively, these

technologies facilitate in-depth analysis of immunogenetic

features (e.g., ongoing SHM and class-switching) at single-cell

level and the discovery of clone-specific phenotypes, which may

in turn expedite the identification of therapeutic targets and

resistance markers.
2.2 The role of the microenvironment

Major sites for CLL cell propagation are the primary and

secondary lymphoid tissues, such as bone marrow (BM) and

lymph nodes (LN). The TME, populated also by non-tumor

leukocytes and mesenchymal stromal cells, provides stimulatory

and anti-apoptotic signals to the malignant clones (21, 101–103)

and interplay with tumor cell-intrinsic factors to promote resistance

(104). Within the TME, the T cell population is of particular

interest, due to its tumor-restricting abilities. In parallel to the

biased IG gene repertoire in CLL in general and in patients with

stereotyped BcR IGs in particular, the T cell receptor (TR)

repertoire is oligoclonal and skewed in terms of the TR beta

(TRBV) gene usage, as previously demonstrated by both low-
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throughput sequencing analysis and NGS (105–107). Furthermore,

similar to other malignancies, T cell exhaustion sustained by

continuous antigen exposure and manifested as altered

chemokine secretion, reversed ratios of CD4+/CD8+ cells, altered

CD4+ cell helper function, and diminished CD8+ cell cytotoxicity is

a common feature of CLL (22, 23, 108, 109).

Concurrent single-cell profiling of TR gene rearrangements and

global transcriptomes aids in the investigation of T cell clonality while

also elucidating phenotypes and immuno-responsiveness (99, 110). To

map transcriptional profiles of T cells in patients with CLL, scRNA-seq

was applied on pre-sorted T cells with or without BCL2 expression.

Increased BCL2 levels were suggested to be a marker of T cell

dysfunction, and treatment with venetoclax, a BCL2 inhibitor, was

able to restore functional T cell immunity by removing BCL2-positive

T cells (111). In another study addressing the role of IL-10 receptor

signaling in CD8+ T cell exhaustion based on the Em-TCL1 mice

model, scRNA-seq aided in identifying transcriptional profiles of CD8+

T cells associated with different surface levels of PD1, indicative of an

exhausted versus immuno-responsive phenotype (112).

While the abundance of CLL cells in the peripheral blood allows

for easy access to tumor material, peripheral blood mononuclear cells

(PBMCs) do not represent the active, proliferating tumor population to

a large extent. By performing ‘bulk’ and scRNA-seq on CLL cells

isolated from LNs as well as peripheral blood, Sun et al. determined the

fraction of activated cells in the LNs to a few percent of the total CLL

cell count in the LN compartment. This corroborates previous

estimations from in vivo labeling of CLL cells using deuterated water

(113). A portion of the proliferating cells was also shown to proceed in

a unidirectional fashion with mitosis followed by activation and

subsequently by quiescence (114). Another study utilizing scRNA-

seq on spleen- and LN-derived CLL cells from Em-TCL1Akt-C mice in a

model of RT pointed to the importance of sustained Akt signaling for

maintaining a pro-proliferative and anti-apoptotic microenvironment

through aberrant NOTCH1 activation (115). scRNA-seq was also

instrumental in identifying the epigenetic modifier PRMT5 as a

potential mediator of RT, in patient tissues as well as in an

experimental model employing Em-PRMT5/TCL1 mice (116).

While SCS on extracted cells give valuable insight regarding the

different disease-driving compartments, attaining information

based on spatial context necessitates a preserved histological

architecture. The critical role of the stroma and the geographic

location of different stromal cell populations in relation to tumor

cells (i.e., tumor/stroma boundaries) have been illustrated by spatial

multi-omics in solid tumors (117). This pertains not only to direct

cell/cell communication but also the composition dynamics of the

extracellular matrix and the complex interplay with its producers.

Over the last years, the technology has shifted from an initial

oligo(dT)-based strategy relying on high-quality, fresh-frozen

tissue (118), to gene-specific capture probes with rapidly

increasing transcriptome coverage, which makes the currently

available platforms for spatial transcriptomics and proteomics

suitable for utilization of archival, paraffin-embedded and

cryopreserved material containing RNA of compromised integrity

(119, 120). In the case of CLL, increased access to detailed

information about properties of rapidly dividing tumor cells and

accessory cells within the TME will be instrumental to develop new
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strategies to effectively target the site of birth for CLL cells.

Additionally, it will allow for a more meticulous exploration of

mechanisms leading to loss of homing and lymphocytosis upon

treatment with BTK inhibitors.
3 Discussion

So far, SCS technologies have provided a wide range of options

for identifying molecular features at the transcriptomic, genomic,

and epigenomic level. In the case of CLL, these methods facilitate

the construction of a comprehensive and detailed map of clonal

heterogeneity and evolution over time and in response to, above all,

targeted treatment (Figure 5). An illustrative example presented

above is the ability to identify subclones implicated in RT, which

may be present at the time of CLL diagnosis and for up to two

decades before clinical manifestation (64). Other important

contributions empowered by SCS and which will be valuable for

elucidating additional mechanisms behind drug resistance and

therapy-induced biological adaptation to BTK and BCL2

inhibitors, include lineage tree reconstruction and identification

of key signaling pathways and early markers of progression. Using

approaches like this, SCS will help us to better understand which

patients are more likely to experience an aggressive disease course,

regardless of disease burden at the time of diagnosis. It will also

allow us to decipher the subclonal composition of less well studied

subgroups of CLL, such as subsets expressing stereotyped BcR IGs,

associated with distinct outcomes (Figure 1) (17). Here, an

advantage pertains to the ability to perform concomitant single-

cell analysis of the transcriptome and expressed IG genes.

Additionally, scRNA-seq enables the generation of transcriptional

profiles from other accessory cells obtained from PBMCs and

lymphoid tissues without the bias implied by prior selection/

sorting. Combined with high-resolution spatial omics

technologies, this allows for a detailed characterization of the

TME with emphasis on pro-proliferative and immunoregulatory

properties, and will further aid to identify mechanisms of resistance

to contemporary therapies. Some limitations and challenges should

be considered when designing studies, preparing samples, and

analyzing and interpreting data.

Theoretically, SCS has the potential to detect and in detail

investigate minor clones and accessory cells with rare genotypes

and/or phenotypes. This, however, necessitates the sequencing of a

considerable number of cells, using a sufficient sequencing depth.

Therefore, under current circumstances, SCS is less suitable for

finding very small subclones or for detection of measurable residual

disease due to the current high costs of performing these assays as

well as the high resolution and robust output obtained with other

established and clinically validated protocols (ddPCR and ultra-

deep NGS) on bulk nucleic acids (121–123). Nonetheless, with the

anticipated decrease in the cost of sequencing in the coming years,

this will enable analyses of a greater number of cells.

Reduced sample viability of cryopreserved cells, due to

biological variation or extrinsic factors, may also present a

problem as it impacts data quality and reproducibility. A recent

study by Massoni-Badosa et al. found that extended storage of
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PBMCs prior to sample preparation and scRNA-seq had a

significant impact on gene expression profiles of PBMCs from

healthy subjects and CLL patients, even though RNA integrity

was preserved during longer storage times. The effect was most

noticeable in global gene expression and, to a lesser extent, open

chromatin patterns, as measured by scATAC-seq (124). Because

simultaneous sampling and the use of freshly harvested samples are

generally not possible, the importance of standardized protocols

across studies and collaborating centers cannot be overstated (125).

Although the issue of initial PBMC storage and processing remains,

the recently emerging possibility of using paraformaldehyde-fixed

cells for scRNA-seq avoids the challenge of maintaining high cell

viability through cryopreservation and transportation (126, 127).

Furthermore, if multi-omics is used, different applications may
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necessitate different sample preparation methods, which in turn

requires careful coordination.

SCS technologies have led to a data revolution in CLL research,

which inevitably brings challenges also when analyzing and

interpreting such data. A major issue usually concerns the lack of

appropriate references for the identification of different cell types

from heterogeneous samples, although this is not aggravated in CLL

where the majority of cells in PBMC samples are leukemic. While

several annotation tools based on the expression of cell-type-

specific markers have been developed for scRNA-seq, these may

not be reliable for the discovery of rare, uncharacterized cell

populations or small leukemic subpopulations in heterogeneous

samples (128–130). Since such tools are not yet available for most

other SCS platforms, cell type assignment is often performed
FIGURE 5

Research and clinical implications of SCS in CLL. Research implications of SCS include studies of cellular heterogeneity, identification of potential
therapeutic targets, investigation of the TME, and analyses of clonal evolution and dynamics, among others. Clinical implications of SCS are still
remote, but could include the prediction of therapeutic intervention, prognostication of clinical outcome, and therapy monitoring.
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manually using clustering and dimensionality reduction methods,

which limits the reproducibility of the results. False cell type

assignment can thus have an impact on downstream analyses

such as differential gene expression and lineage tree

reconstruction. Although potentially challenging, validation by

independent methodologies, such as PCR-based methods,

perturbation experiments and flow cytometry, is therefore

necessary to ascertain the accuracy and reliability of obtained

results. Sparse transcriptomic profiles present another frequent

challenge when analyzing scRNA-seq data, and depends not only

on the initial relative mRNA abundance but also on technical

constraints related to amplification bias, libraries with uneven

coverage, and sequencing depth (130–132). Therefore, cell-to-cell

variability within the same population must be considered, and

absent gene expression should be interpreted cautiously. As there is

evidence of aberrant RNA splicing induced by SF3B1 mutations, as

well as an increasing indication of the involvement of long non-

coding RNAs and microRNAs in the CLL pathogenesis (13, 133–

135), investigating these effects at single-cell resolution has become

of considerable interest. However, such analyses of alternative

splicing and non-coding RNAs are limited because most scRNA-

seq platforms rely on 3’ and 5’ libraries, which represent merely 3´or

5´parts of transcripts. Despite this, 3´and 5´-based scRNA-seq is

advantageous due to a reduced technical noise compared to WTA,

and to cost-effectiveness as it requires less sequencing depth to

obtain sufficient coverage of gene expression. Nonetheless, for the

aforementioned analyses single-cell long-read RNA-seq approaches

are gaining momentum and have already demonstrated higher

proportions of novel transcripts in CLL (136).

The primary difficulty of scDNA-seq concerns WGA, which can

introduce amplification errors and bias towards imbalanced

proportions of alleles or even drop out of variant alleles, resulting

in unreliable variant detection that consequently hinders

characterization of intertumoral heterogeneity and reconstruction

of evolutionary history (130). To address uneven genome coverage

and challenging variant calling, targeted scDNA-seq, in which only

regions of interest are selectively amplified, is gaining popularity

and is now commercially available also for many hematological

malignancies, including CLL (137, 138). Similarly, analyses of other

SCS data may be biased due to inadequate sequencing coverage

and depth.

To allow for more systematic and comprehensive studies of CLL

pathobiology, in particular clinically aggressive subgroups,

integration of various omics is necessary. A new subgroup of

patients with aggressive disease (20% of patients) was recently

identified by using proteogenomics at ‘bulk’ level, which could

not be identified by genomic analyses alone, emphasizing the value

of superimposing and integrating different layers of information

(42). Additionally, extended proteomics that accommodates

analyses of diverse post-translational modifications, such as

phosphorylation and glycosylation, will likely contribute to

refining signatures of aggressive and/or therapy-resistant clones,

when performed at the single-cell level.

Despite the recent development of rigorous statistical and

computational frameworks, such as multi-omics factor analysis

(MOFA) (139, 140), omics integration remains a challenge (128,
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141). As multi-omics approaches that allow for simultaneous

capture of different omics in the same cells are on the rise, data

integration may become easier, however, other challenges, such as

accounting for dependencies among the measurement types, may

emerge. A related data analysis issue concerns comparisons across

samples and multiple batches, for which multiple bioinformatics

tools have been developed as well (142–144).

Since SCS is still a rapidly evolving field, no methods and

bioinformatics pipelines regarded as ‘gold standard’ currently exist

for data analysis, leaving researchers to rely on various options, and

base their selection on availability, price, labor intensity, method

complexity, and expertise in bioinformatics. Considering that each

method has its advantages and disadvantages, the ‘right’ approach

should be carefully selected based on the desired application.
4 Conclusions

The SCS methods described above have extended the range of

possibilities for identifying novel signatures and recurrent markers of

clonal evolution and treatment resistance in CLL and have also

enabled a detailed deciphering of molecular events in anatomical

sites that constitute the epicenters of disease progression, more

particularly the LNs (Figure 5). While the technologies are under

constant development, the current clinical utility of SCS methods per

se is still in its infancy. Potential future clinical applications include

assessment of clonal and microenvironmental composition prior to

and during targeted therapy as well as monitoring of treatment

response (Figure 5). Nonetheless, through the possibility to capture

the genome, epigenome, transcriptome, immunome, and to a limited

extent also the proteome in individual cells, SCS signifies a paradigm

shift in CLL research. This detailed dissection of the disease at the

cellular level will have implications for patient stratification and

management in terms of diagnostics, prognostics and tailoring of

treatment. As discussed here, SCS poses several challenges; thus, the

different aspects of a study, including study design, sample

preparation, data analysis, and interpretation should be considered

using an integrated approach.
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