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Introduction: In India, OVCa is women’s third most common and lethal cancer
type, accounting for 6.7% of observed cancer incidences. The contribution of
somatic mutations, aberrant expression of gene and splice forms in determining
the cell fate, gene networks, tumour-specific variants, and the role of immune
fraction infiltration have been proven essential in understanding tumorigenesis.
However, their interplay in OVCa in a histotype-specific manner remains unclear
in the Indian context. In the present study, we aimed to unravel the Indian
population histotype-specific exome variants, differentially expressed gene
modules, splice events and immune profiles of OVCa samples.

Methods: We analysed 10 tumour samples across 4 ovarian cancer histotypes
along with 2 normal patient samples. This included BCFtool utilities and CNVkit for
exome, WGCNA and DESeq2 for obtaining differential module hub genes and
dysregulated miRNA targets, CIBERSORTx for individual immune profiles and
rMATS for tumour specific splice variants.

Result:We identified population-specific novel mutations in Cancer Gene Census
Tier1 and Tier2 genes. MUC16, MUC4, CIITA, and NCOR2 were among the most
mutated genes, along with TP53. Transcriptome analysis showed significant
overexpression of mutated genes MUC16, MUC4, and CIITA, whereas NCOR2
was downregulated. WGCNA revealed histotype-specific gene hubs and
networks. Among the significant pathways, alteration in the immune system
was one of the pathways, and immune profiling using CIBERSORTx revealed
histotype-specific immune cell fraction. miRNA analysis revealed miR-200 family,
miR-200a and miR-429 were upregulated in HGSOCs.Splice factor abrasion
caused splicing perturbations, with the most abundant alternative splice event
being exon skipping and the most spliced gene, SNHG17. Pathway analysis of
spliced genes revealed translational elongation and Base excision repair as the
pathways altered in OVCa.

Conclusion: Integrated exome, transcriptome, and splicing patterns revealed
different population-specific molecular signatures of ovarian cancer histotypes
in the Indian Cohort.
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1 Introduction

Amongst gynecologic cancers, ovarian cancer has the worst
prognosis, with approximately 3,14,000 new cases and
2,07,000 deaths a year (Cabasag et al., 2022), characterised by
heterogeneity and distinct histotypes, unique molecular features,
clinical features, and prognosis (Soslow, 2008) (Peres et al., 2018).
According to the WHO classification, 90% of ovarian tumours arise
from the epithelium, 3% from germ cells, and 2% from sex-cord stromal
(Hanby and Walker, 2004) (Herrington and Simon Herrington, 2020).
Whereas based on histotype-specific immune profile and molecular
signatures, ovarian cancers are classified as high-grade serous
carcinoma (HGSOC), low-grade serous carcinoma (LGSOC),
endometrioid carcinoma (EC), clear cell carcinoma (CCC), and
mucinous carcinoma (MC) (Kurman and Centre international de
recherche sur le cancer, 2014) (W. H. O. Classification WHO
Classification of Tumours Editorial Board and Who Classification of
Tumours Editorial, 2020). Of all the cases, about 68% of ovarian cancers
are High-grade serous ovarian cancers (Kurman and Shih, 2016),
whereas 5% of them are LGSCs, EC 10%, 6%–10% CCC, and 3%–
4%MC (Prat et al., 2018). Cases are usually diagnosed in the later stages
III and IV, when the tumour has spread beyond the abdomen, the
diagnosismajorly relies on imaging techniques, CA-125 blood tests, and
surgical biopsies, and is associated with poor prognosis (Roett and
Evans, 2009). The 5-year survival of OVCa patients in India is
about 45%.

The advent of Next-Generation Sequencing (NGS) has led to a
better understanding of mechanistic insights driving different
histotypes of ovarian cancer (Network and The Cancer Genome
Atlas Research Network, 2011) (Cheasley et al., 2021). The Multi-
Omics approach, the mutational analysis combined with gene
expression, and regulation of gene expression via DNA
methylation and miRNA have shed light on the key genomic
alterations leading to the acquisition of hallmarks of cancer:
resisting cell death and causing genomic instability, such as 96%
of the cases with TP53 mutation, 22% having BRCA1 and
BRCA2 mutations, CCNE1 amplification, and promoter
methylation of 168 genes in HGSOC (Hanahan and Weinberg,
2011) (Wu et al., 2019). Mutations and epigenetic modifications in
BRCA1 and BRCA2 have been reported in ~50% of HGSOCs
leading to Homologous recombination deficiency (HRD)
(Konecny et al., 2014). In addition, mutations in HR genes ATM,
BARD1, BRIP1, CHEK1, CHEK2, FAM175A, MRE11A, NBN,
PALB2, RAD51C, and RAD51D have also been reported
(Pennington et al., 2014).

Further, HGSOCs have been classified based on gene expression
signatures as “immunoreactive,” “proliferative,” “differentiated,”
and “mesenchymal” (Konecny et al., 2014). Apart from the
TCGA study, genomic studies in LGSOC have identified ovarian
cancers, with 47% of cases with mutations in the oncogenic RAS
gene (KRAS, BRAF, and NRAS) and novel drivers such as USP9X
(27%), MACF1 (11%), ARID1A (9%), NF2 (4%), DOT1L (6%), and
ASH1L (4%) (Cheasley et al., 2021). Endometrioid tumours are
characterised by ß-catenin alterations, microsatellite instability, and
PTEN and POLE mutations. In contrast, ARID1A and PIK3CA
mutations are associated with endometrioid and clear cell
carcinomas. Mucinous carcinomas are uncommon tumours
associated with copy-number loss of CDKN2A and KRAS

alterations (Hollis et al., 2020) (Yamamoto et al., 2011) (Leo
et al., 2021). The histological subtype and its diverse molecular
features can be used for individualised clinical decision-making,
avoiding toxicity due to therapy.

Despite advances in molecular pathology and targeted therapy,
chemoresistance and relapse have led to poor ovarian cancer
survival due to a lack of consideration for population and
individual heterogeneity. In addition, methods of gene regulation
such as alternative splicing and miRNA in ovarian cancer
pathogenesis, have been established. Gene expression is further
diversified by the alternative splicing (AS) of precursor mRNA,
occurring in 95% of human exons. Thus its dysregulation has
strongly implicated in cancer and about 30% more AS events are
observed in malignant tumours than in normal tissues. The main
causes of this dysregulation are splice factor mutations and their
aberrant expression.

The cell surface glycoprotein CD44 isoform CD44v activates cell
signaling pathways that induce Cancer Stem Cell (CSC) state (Zhang
et al., 2019). Amongst several factors, CD44 splicing is regulated by
splice factors, namely, ESRP1 and U2AF2 (Yae et al., 2012; Zhang
et al., 2016). Also, splice factors UBAP2L, which regulates the
expression of TRA2B, and RPS24 of SYNCRIP are associated
with poor survival (Sun and Yang, 2020). Hence studying
alternative splice forms and splicing factors aberrations can be
beneficial as targets for therapeutic interventions (Liu et al., 2021).

Known to regulate gene expression by binding to the 3′UTR of
the genes, (Cannell et al., 2008), miRNAs contribute to EMT in
various types of cancer, including breast cancer, pancreatic cancer,
colorectal cancer, prostate cancer, and ovarian cancer. (Burk et al.,
2008) (Liu et al., 2013) (Sulaiman et al., 2016) (Wang et al., 2014).
The role of upregulated miR-200 has been observed in high-grade
and advanced stages of ovarian cancer (Cao et al., 2014; Choi and
Ng, 2017) (Choi and Ng, 2017).

In India, the estimated incidence of ovarian cancer is the second
highest, next to China, among the world population. India accounts
for 76.5% of incidence and 77.5% of mortality of Ovarian Cancer
patients among the south central Asian countries (globocan 2020, gco/
iarc. fr). The present study aimed to analyse 10 tumour samples in
total, 2 normal ovaries, 3 HGSOCs (High-grade serous
adenocarcinoma), and one of each ECys (Endometrial Cyst), GCT
(Granulosa Cell Tumour), MBOC (Mucinous borderline ovarian
tumour), LGSPC (Low grade serous papillary carcinoma) and
HGSPC (High grade serous papillary carcinoma), at whole-exome,
transcriptome, and miRNA level. (Table 1). We compared genetic
alterations in genes and pathways, copy number variations (CNVs),
and mutational signatures in patients stratified by histotype,
alternative splicing events in different histotypes providing a multi-
omic and integrated approach. The population-specificmutations and
expression profiles can guide therapy in Indian OVCa.

2 Materials and methods

2.1 Study cohort

Here, we analysed the exome and transcriptome data obtained
from 10 tumour and 2 normal samples of ovarian cancer patients of
Indian origin to understand the underlying molecular mechanism
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involved. The Ovarian cancer patient samples used for the study
were procured from KMIO, Bengaluru, Karnataka, India. The study
was approved by the institutional review board (KMIO ethics/006/
Dec2015) and written informed consent was obtained from all
patients. The tumour tissue and normal samples were collected
in RNA later (Ambion, United States).

2.2 RNA extraction and library preparation

Total RNA was extracted using RNAiso Plus (Takara, Japan)
from tumours and normal samples. Briefly, the tissue was
homogenised in RNAiso Plus and 1/10th volume of 2 M sodium
acetate and chloroform was mixed vigorously and kept on ice for
10 min and the aqueous phase was collected after centrifugation at
12,000 rpm. RNA was precipitated by adding an equal volume of
isopropanol and pelted at 14,000 rpm. The pellet was washed with
80% ethanol and resuspended in DEPC (Sigma-Aldrich,
United States) water. RNA was quantitated using QUBIT, and
the quality was checked using TapeStation.

mRNA libraries were prepared using RNA Library Prep Kit v2
(New England Biolabs, United States). In brief, mRNA was isolated
using oligo-dT beads, followed by fragmentation. Fragmented RNA
was then converted to cDNA, and adaptor ligation was performed. Size
selection was performed on adaptor-ligated libraries using AMPure
beads (Beckman-Coulter, United States). The libraries were amplified
and checked on a tape station to determine the library size. The samples
were sequenced in-house using Illumina HiSeq 2,500 to acquire 100 bp
paired-end reads. Samples had reads >10 million.

2.3 Genomic DNA extraction

After RNA extraction, DNA extraction was done using a Back
Extraction Buffer (BEB) (Extraction of DNA from TRIZOL
preparations). Briefly, BEB was added to RNAiso Plus/TRIzol

tubes containing only the interphase and organic (lower) phase
of samples after RNA extraction. DNA was precipitated using
isopropanol and washed with 70% ethanol. DNA samples were
then dissolved in the TE buffer.

2.4 Whole exome library preparation and
sequencing

To prepare libraries for Whole Exome Sequencing, Agilent
SureSelect V6 +UTR was used. 100 ng–1 µg of genomic DNA
was sheared with the Covaris S220 (Covaris, Woburn, MA,
United States) followed by end-repair, 3′end Adenylation, and
ligation with paired-end adaptors. After ligation, enrichment of
the DNA library was performed (Desai et al., 2021). Final
libraries were checked for quality (fragment size approx.
300–400 bp) and quantity using Agilent Tapestation 2,200 system.

2.5 Whole exome sequence analysis

The quality of sequenced reads was checked using FastQC
(Wingett and Andrews, 2018); exome reads were trimmed using
TrimGalore and aligned to human genome hg38 using Bowtie2
(Langmead and Salzberg, 2012), and variants were called using
BCFtools utilities (Li, 2011). Variants observed in normal ovarian
tissue and 1,000 genomes (The 1000 Genomes Project Consortium
et al., 2015) were subtracted from tumour samples to obtain only
tumour sample-specific variants. These variants were further filtered
for depth and annotated HIGH and MODERATE impact variants
using SnpEff (Reumers et al., 2005) and VEP (McLaren et al., 2016)
were considered. For Copy number alterations, CNVkit (Talevich
et al., 2016) was used to obtain copy number alterations subjected to
filtration of copy number greater or equal to 3 with p-value <0.05.
Graphs were plotted using heatmap and scatter sub-utilities from the
CNVkit tool.

TABLE 1 Patient information.

Sample label Sample ID Age Menarche Histological subtype CA125 (U/ML) Stage Grade

AA 1105/14 47 14 High grade serous adenocarcinoma (HGSOC) 2074 IV III

BB 3891/16 - - Normal - - -

CC 1157/14 34 14 Endometrial Cyst (ECys) - - -

DD 3842/14 45 14 High grade serous adenocarcinoma (HGSOC) 58.6 II III

EE 0083/14 35 12 High grade serous adenocarcinoma (HGSOC) 2010 IV III

FF 5347/14 39 14 Serous Cystadenoma (SC) 212.2 - -

GG 1121/16 - - Normal - - -

HH 1288/14 29 12 Low grade serous papillary carcinoma (LGSPC) 870.8 III I

II 4211/14 54 12 High grade serous papillary carcinoma (HGSPC) 1582.6 IV III

JJ 4822/14 52 12 Mucinous borderline ovarian tumour (MBOC) 171.6 - -

KK 5396/14 57 15 Granulosa cell tumour (GCT) 372.3 - -

LL 8120/14 57 16 High grade serous adenocarcinoma (HGSOC) 949.4 I III
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2.6 Differential gene expression analysis

Transcriptome reads were checked for quality with FASTQc,
adaptors trimmed using TrimGalore, and aligned to
GRCh38 using STAR aligner v2.7.10a (Dobin et al., 2013), a
splice-aware aligner. For differential gene expression, read counts
were obtained using the quant option from STAR and normalised
using the Voom package in R (Law et al., 2014) (Supplementary
Figure S1). DEGs were obtained using DESeq2 (Love et al., 2014)
on tumour samples against normal genes with absolute log2 fold
change value > 1 (for upregulated genes) and <−1 (for
downregulated genes) and adjusted Benjamini Hochberg
p-value <0.1 were considered for further analysis.

2.7 Identifying gene hubs and interactions
using WGCNA and immune profile using
CIBERSORTx

WGCNA (Langfelder and Horvath, 2008) was used to
construct coexpressed gene modules correlating with the
phenotype, and the subtypes of ovarian cancer with the
obtained normalised counts. CIBERSORTx (Newman et al.,
2019) was used to obtain an immune profile of the tumour and
normal samples by comparing them against 22 immune cell
fraction types. Modules with Eigen membership correlation
with Pearson correlation greater than 0.5 and
p-value <0.05 belonging specifically to the particular subtype
were considered.

2.8 miRNA library preparation

Ovarian tumour and normal tissue patient samples were
crushed and homogenised in liquid nitrogen. Using
RNAiso Plus (Takara, Japan), RNA was extracted from the
samples, followed by RNA quality checks; the miRNA
library was prepared using miRNA Library Prep Kit v2 and
sequenced inhouse to obtain 50 bp paired-end reads using
Illumina Hiseq 2,500. Three HGSOC samples (A, E, and L)
were used for miRNA library preparation (Table 4), and
obtained reads were processed downstream for miRNA seq
analysis.

2.9 Differential miRNA analysis

For miRNA, after FastQC quality checks, trimming for
adaptors using TrimGalore was performed, and reads were
aligned using bowtie2 (Langmead and Salzberg, 2012). The
differentially expressed miRNAs were determined using
DESeq2 and gene feature annotation from miRBase
(Kozomara, Birgaoanu, and Griffiths-Jones, 2018). The gene
targets were found using TargetScan (Agarwal et al., 2015), and
the implications such as differential expression of miRNA
targets in TCGA ovarian cancer datasets and the Kaplan
Meier survival plots for these target genes were obtained
from the GEPIA2 database (Tang et al., 2019).

2.10 Alternative splicing analysis

rMATS (Shen et al., 2014) and SUPPA2 (Trincado et al., 2018)
were used to find splicing patterns across subtypes. Alternative splice
events with absolute psi value >20% and FDR <0.05 were considered
for significance. The Uniprot database (The UniProt Consortium,
2018; Trincado et al., 2018) was used to know the effect of protein
domains of the spliced forms. Splice graphs were plotted using the
ggsashimi package (Garrido-Martín et al., 2018) and GENCODE
v41 gene features.

2.11 Pathway analysis

PPI interactions were obtained using STRING v11 (Szklarczyk
et al., 2018), visualised using Cytoscape (Shannon et al., 2003), and
pathway analysis was done using GSEA (Subramanian et al., 2005)
and Reactome (Fabregat et al., 2017). The COSMIC database (Tate
et al., 2018) was used to obtain the CGC (Cancer Gene Census)
gene list.

2.12 TCGA and GEPIA analysis

The cBioportal (http://cbioportal.org) was used to explore and
analyse multidimensional ovarian cancer genomic data from TCGA
(Gao et al., 2013). The frequency of variants and their association
with survival was visualised, and compared with its expression and
the survival data using the GEPIA2 database, (http://gepia.cancer-
pku.cn/), a web based tool. The normal data for expression was
obtained from GTEx (Tang et al., 2019).

2.13 Statistical test

Statistically significant p-val < 0.05 and absolute copy
number≥3 were considered for fold copy number analysis in
CNVkit. In DESeq2 Benjamini–Hochberg p-adj < 0.05 and
absolute Log2foldChange >1 was considered. For WGCNA, we
used module trait relationship correlation greater than 0.5 and
p-val < 0.05. For GSEA pathways with FDR < 0.05 and
Benjamini–Hochberg p adj < 0.05 and NES >0 were
considered. In rMATS, a likelihood-ratio test was used to
obtain the p-value that the difference in the mean
exon junction count values between two sample groups
exceeds a given threshold. Events with FDR< 0.05 and
absolute dpsi (percent splice inclusion change difference) >
0.2 were analysed.

3 Results

3.1 Clinical characteristics of ovarian cancer
patients

A total of 10 ovarian samples in the age range of 29–57 years
representing 4 ovarian cancer histotypes were sequenced. One sample
each for the histotypes; low-grade serous papillary carcinoma (sampleH),

Frontiers in Genetics frontiersin.org04

Mhatre et al. 10.3389/fgene.2023.1102114

http://cbioportal.org
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1102114


high-grade serous papillary adenocarcinoma (sample I),
mucinous borderline ovarian carcinoma (sample J), serous
cystadenoma (sample F), granulosa cell tumour (sample K) and
endometrial cyst (sample C) with CA-125 abnormally high and

4 samples (A, D, E, and L) were HGSOCs (35–57 years). HGSOC
samples were grade III, with stages I to IV represented in individual
samples (Table 1). The study used two normal ovary samples B and G
(ovaries were removed for the presence of benign cysts).

TABLE 2 Exome sample details.

Sample Histological subtype Alignment percentage (%) Number of reads Coverage Mutation Burden

CC Endometrial cyst 99.31 54054738 126.6907922 0.2184412894

FF Serous Cystadenoma 91.73 40978105 96.04243359 0.1917579481

HH Low grade serous papillary carcinoma 93.73 42860141 100.4534555 0.2103541377

II High grade serous papillary carcinoma 98.76 41009263 96.11546016 0.206728449

JJ Mucinous borderline ovarian tumour 97.51 44912839 105.2644664 0.207951465

KK Granulosa cell tumour 85.43 40034358 93.83052656 0.191501643

LL HGSOC 95.67 46441479 108.8472164 0.2210474534

AA HGSOC 99.58 52827386 123.8141859 0.2201298647

DD HGSOC 98.68 45736444 107.1947906 0.1967586286

EE HGSOC 93.58 44306471 103.8432914 0.1688746549

BB Normal 94.66 49248427 115.4260008 0.1835175771

GG Normal 96.62 57882700 135.6625781 0.1908374465

FIGURE 1
Exome analysis of ovarian cancer histotypes in the Indian cohort. (A). Waterfall plot showing mutations in COSMIC driver genes across ovarian
cancer subtypes. (B). Pathways affected by mutations across subtypes. (C). Ovarian cancer samples tumour mutation burden per MB in subtypes.
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3.2 Characterization of exome and CNV in
histotypes of Indian ovarian cancer

Whole exome sequencing was performed to compare and
contrast the mutations driving oncogenesis in ovarian cancer
histotypes. The alignment ranged from 85% to 99% with
coverage of 96 to 135X (Table 2). Thousand genome and normal
sample variants were subtracted to obtain tumour-specific variants.
The tumour mutation burden (TMB) was calculated to check if
different histotypes of ovarian cancer have differences in the number
of mutations that drive oncogenesis (TMB). A very narrow range
was observed across all the histotypes. HGSOCs showed maximum
tumour burden (Figure 1C) ranging from 0.22 to 0.175 mutations/
Mb, which correlated with age of onset of 45–57 years (samples A
and L) vs. 35 years (sample E).

To identify tumour-specific variants, bcftools utilities were used,
and 253,158 mutations from the ovarian tumour samples were
obtained. A total of 150,448 were coding variants across tumours,
of which 45% were missense, 24% synonymous, 16% frameshift, 7%
inframe insertions, 5% stop gains, and 1% inframe deletions. Of 45%
of missense variants, 3.7% were damaging variants. Among the
variants obtained, 6,764 variants have been reported in the COSMIC
database. 1,588 high-impact variants in genes classified as probably
damaging and deleterious to variants of unknown significance
(VUS) were observed, from which some are population specific
detailed in (Supplementary Table S1).

Granulosa cell tumour sample (GCT) (sample K) in the Indian
cohort harboured high-impact frameshift variants in the
transcription factor family of FOX genes, namely, FOXG1 and
FOXC2. FOXL2 c.402C>G somatic mutations were absent in the
Indian cohort, observed in ~95% caucasian granulosa tumours
(Shah et al., 2009) (Nolan et al., 2017) (Roze et al., 2020). High
TMB in HGSOC (sample D) and GCT (sample K) harboured the
POLE mutation in the Indian cohort, similar to previous reports
(Wang et al., 2018).

Further analysis of the variants in cancer census genes,
oncogenes, and tumour suppressors across histotypes led to
identifying common and unique variants. The most mutated
COSMIC genes across all samples were MUC4 (9/10), NCOR2
(8/10), MUC16 (8/10), and CIITA (8/10) (Figure 1A). Novel
mutations in these genes were recorded. Other than the ones
mentioned above, most mutated oncogenes across samples were
ALK (7/10), UBR5 (5/10), and tumour suppressors, PTPRB (6/10),
and SIRPA (5/10), respectively. (Supplementary Table S1).

Ovarian cancer is known to harbour aberrations in DNA
damage response genes (Tomasova et al., 2020), especially
homologous recombination genes, resulting in HRD
(Homologous recombination deficiency). We observed mutations
in BRCA1, BRCA2, RAD51D, PRKDC (2/10 samples), TP53, APLF,
CHEK2 (3/10), and PMS1 was the most mutated (4/10). Likely
pathogenic mutations in RAD51B, a member of the RAD51-XRCC2
(BCDX2) complex in HR, were observed in the serous cystadenoma
sample. The high-impact novel population-specific mutations in
TP53: The guardian of the genome, were observed at high frequency
(6/10) samples. Other high-impact mutations were observed in
POLQ (3/10) and ATM (4/10) (Supplementary Table S1). Apart
from the genes involved in HR, mutations in mismatch repair,
nucleotide excision repair, and Base excision repair (BER) were

observed. These mutations in DNA damage repair and response
genes may further cause genomic instability.

Cataloguing of moderate and high impact mutations in
individual samples showed the most number of variants (106) in
granulosa cell tumour (sample K), 49 variants in serous
cystadenomas (sample F), and 48 in HGSOC (D). In contrast,
HGSOC A, E, and L samples showed 21, 23, and 31 variants,
respectively. Granulosa tumours are rare (Roze et al., 2020) and
harboured low-impact mutations in AR and ESR1, the genes for
steroid hormone receptors in the Indian Cohort, and had the largest
number of variants (Figure 1A), contrastingly MBOC and GCT did
not show any pathogenic variants.

The histotype-specific mutational signatures were recorded, and
we classified SNVs of moderate and high impact based on SNPEff
and VEP annotations, and further into oncogenes (ONC) and
tumour suppressors (TSGs). The highest number of TSGs (21)
and oncogenes (12) were altered in the granulosa cell tumour
(sample K), followed by serous cystadenoma (sample F) with
TSG and oncogenes (14 and 9), respectively. In HGSOCs,
mutations in TSG (8–16) and oncogenes (2–9) were observed
across samples. The least number of TSGs (8) and oncogene (4)
was observed in the endometrioid cyst (sample C). From the analysis
of variants, heterogeneity was highlighted within and between
ovarian cancer histotypes (Supplementary Table S1).

Unlike the TCGA (Network and The Cancer Genome Atlas
Research Network, 2011) cohort, where 96% of the ovarian cancer
samples showed TP53 mutation, TP53 mutation was observed only
in 50% of HGSOC (2/4) samples in the Indian Cohort.

To check whether histotype-specific variants in the oncogenes
and TSGs correlated with unique altered pathways, which can
provide mechanistic insights, pathway analysis using PPI
(protein-protein interactions) was performed using the STRING
v11 database (Figure 1B).

In HGSOCs, negative regulation of mitophagy, alternative
promoter usage, and signal transduction involved in G2/M DNA
damage response was enriched. In granulosa cell tumours, the
altered pathway was chromatin regulation and Histone
H3K4 demethylation. In high and low-grade papillary
adenocarcinoma, the regulation of immune response and
mismatch repair pathways were altered (Figure 1B). Maintenance
of DNA repeat elements and chromosomes was the significantly
altered pathway in mucinous borderline cancer (Figure 1B).

Copy number variant (CNV) analysis (Figures 2D–G) revealed
significant events to be copy number gains, with most in HGSOC
(265, 206, 96, 77) in samples (I, E, L, A), respectively. No significant
CNV was observed in endometrioid cyst (sample C), serous
cystadenoma (sample F), and mucinous borderline (sample J)
samples. Although granulosa cell tumours showed most SNVs,
CNVs were limited. A similar observation was made by Roze
et al. in the largest cohort of GCT studied to date (Roze et al.,
2020). Interestingly, no mutation was observed in BRCA1 and
BRCA2, coinciding with a lack of structural variants.

3.2.1 Mutation and copy number variations in
CIITA, MUC16, and MUC4 drive oncogenesis in
histotypes of Indian ovarian cancer

In most HGSOCs reported, TP53 is the most mutated, which
was not observed in the Indian Ovarian Cancer cohort. On the other
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hand, homologous recombination deficiency (HRD) in HGSOCs
was observed in the Indian and TCGA cohorts (The Cancer Genome
Atlas Program, 2018). The Indian Cohort showed MUC16, MUC4,
and CIITA to be most mutated and carry CNV in the same genes
apart fromMYC (Figures 2D–G), which is known to be amplified in
most cancers, including ovarian cancer (Zhou et al., 1988). To
understand if these genes could be drivers of oncogenesis in
ovarian cancer histotypes, we checked if the genes carried
hotspots for mutation or were dispersed across the entire gene.
MUC4 mutations clustered near its NIDO domain, CIITA
mutations in the LRR domain, and the NACHT domain, whereas
MUC16 mutations were observed in clusters distributed across its
length. Population-specific novel mutations in CIITA at c.1162T>A
(p.Trp388Arg) and in MUC16 c.3059_3060insGATAGA
(p.Thr1020_Ile1021insIleAsp) and c.28678_28679insTTA
(p.Val9560_Ser9561insIle) were found. Mucins are cell surface
receptors with cytoplasmic adaptor proteins to help them
participate in signal transduction. With cancer cells known to
express aberrant forms and amounts of mucins, mutations in
these might provide tumorigenic advantage and help them
proliferate. (Hollingsworth and Swanson, 2004). Whereas, CIITA
being an MHC II transactivator, mutations might cause hindrance
in MHC II expression and cancer immunity (Son et al., 2020).

Figure 2 shows the mutation distribution in all three genes.
Notably, in CIITA, the same mutation was observed in 6/10 (60%)
samples in the NACHT protein domain. The consequences of a

single mutation in the NACHT domain indicate the selection for
survival of the cells and as a potential driver (Kandoth et al., 2013).
In contrast, 7.81% of the samples show amutation in the CIITA gene
in the TCGA cohort, the high incidence in the Indian cohort can be
attributed to low sample numbers but the presence is not restricted
to HGSOC, which is the most studied in other populations, making
CIITA as driver irrespective of the histotype. Further CNV analysis
indicated CIITA copy number gain in 2/10 Indian cohort samples.
In contrast, NCOR2, a nuclear receptor corepressor involved in
transcriptional silencing, was mutated in 8/10 (80%) samples
irrespective of the histotype in the Indian Cohort and 14.06% in
the TCGA cohort.

About 73.44% of the samples showed mutations in MUC16 and
15.63% in MUC4 in the TCGA cohort. Contrastingly, 90% of the
samples showed a mutation in MUC16 and 80% in MUC4 in the
Indian Cohort. Signs of selection were also evident in the
MUC16 genes, where 6/10 individuals showed mutation at the
same position in the gene and consequent amino acid. Several
mutation clusters of selection were observed in the MUC16 gene.
A similar analysis withMUC4 showed a very distinct cluster in the N
terminal region close to the NIDO domain, which is known to play a
role in tumorigenesis (Xia et al., 2017).

Interestingly, one of the HGSOC samples, sample E showed
amplification in MUC4, CIITA, and MYC but not MUC16 (Figures
2D–G), knowing that gene amplification might indicate an increase
in the amount of RNA or protein of the gene, it would be interesting

FIGURE 2
Copy number variants and affected protein domains of impacted genes. (A–C) Lollipop plot showingmutations affecting protein domains (in blocks)
and their frequency in CIITA, MUC4, and MUC16, respectively, novel mutations indicated in red arrows. (D–G) Copy number alteration in MYC, CIITA,
MUC4, and MUC16 across ovarian cancer subtypes (Red showing copy number gain and blue signifying copy number loss). Sample E showingmost copy
number gains in the given genes.
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to know its transcriptome profile. In contrast to the above, the
granulosa cell tumour (sample K) showed no amplification in MYC
and CIITA, with subtle amplification in MUC16 and MUC4. We
also checked for MYC amplification in the samples and found MYC
to be amplified in high grade samples. From the above, MUC4 is
known to be an active player in breast cancer metastasis and its
deregulation has been implicated in gastric adenocarcinomas
through the activation of ERBB2/HER2 and ERBB3/
HER3 receptor kinases (Dreyer et al., 2021) (Funes et al., 2006)
(Senapati et al., 2008).

Hence, the frequency and hotspot mutations in the genes
NCOR2, CIITA, MUC4, and MUC16 point towards their role in
driving oncogenesis in all ovarian cancer histotypes. Patient and
histotype-specific mutation signatures were observed in the Indian
Cohort (Figures 2A–C), which requires validation in a large cohort.
The mutation analysis across the histotypes and patients revealed
heterogeneity of the tumour samples.

3.3 WGCNA of the Indian ovarian cancer
revealed pathways unique to histotypes

A whole transcriptome analysis evaluated the patient and
histotype-specific gene expression signatures. 96%–98% alignment
was observed across samples (Tumour and Normal) except in low-
grade papillary carcinoma, which was 63% with coverage of ~×100
(Table 3). A volcano plot depicting differentially expressed genes
across samples showed roughly equal numbers of significantly up
and downregulated genes in ovarian cancer histotypes (Figure 3B).
A MAplot has been plotted for the same (Supplementary Figure S3).
Further, a cutoff of LFC (log2 fold) >5 and padj<0.01 highlighted
sample-specific changes in gene expression to get a view of
alterations in individual samples. (Table 4). In HGSOCs, more
genes were upregulated than down. However, each of the
samples varied in the number of genes indicative of sample-
specific changes, which did not have much correlation with the
grade, but with stage, where stage IV showed a more considerable
change in significantly regulated genes vs. stage I (~1,200 vs. 595 DE

genes), respectively. High-grade serous papillary and borderline
mucinous carcinoma showed the opposite trend, where more
genes were downregulated than upregulated (Table 4). The least
Differentially expressed (DE) genes were observed in endometrioid
cysts, followed by mucinous borderline carcinoma (sample J).

To understand more about DE genes in the tumourigenic
context, we used literature and COSMIC-curated TSGs and
Oncogenes. We identified the most downregulated TSGs with
significant changes in gene expression (Figure 3K). We
intersected upregulated oncogenes and downregulated TSGs,
respectively across samples (Figures 3J, K) to find commonly
dysregulated oncogenes and TSGs. Larger intersections were
observed in downregulated TSGs, indicating similar
downregulated gene strategies and distinct oncogene activation
amongst tumours and subtype samples. Low-grade papillary
carcinoma (sample H) showed most TSGs downregulated and
the least in endometrioid cysts (sample C). Similarly, upregulated
oncogenes were higher in HGSOCs than low-grade papillary and
granulosa cell tumours (Figure 3J). The common downregulated
TSGs in all samples except endometrioid cysts are PER1 and
ZNF331 (9/10). Period circadian protein homolog 1 (PER1) is an
important component of the circadian clock and regulates
carcinogenesis. OVCa patients with low PER1 expression had a
reduced overall survival rate and poor prognosis (Chen et al., 2021).
PER1 is also known to modulate anticancer drug response (Bellet
et al., 2021). PTPRD (7/9 samples) and CD11 (6/9 samples) were
downregulated (Supplementary Table S1). CD11 is known to
regulate cell adhesion, downregulation might lead to enhanced
migration (Wang et al., 2015). Among common oncogenes,
ERBB3, ERBB4, ETV4, and SYK were upregulated in 6/9 samples
(Supplementary Table S1). Breast cancer cells that make too much
HER2/ERBB2 spread faster but are also more likely to respond to
HER-specific chemo and immunotherapy, with mutations in
MUC4 known to associate with upregulated ERBB proteins,
observed in the Indian cohort (Mill et al., 2011). ERBB3 and
ERBB4 have been shown to be upregulated in chemoresistant
ovarian cancer and upregulation was observed in Indian ovarian
cancer, which might serve as a potential therapeutic target.

TABLE 3 Transcriptome sample details.

Sample Histological subtype Alignment percentage (%) Number of reads Coverage

CC Endometrial cyst 96.55 83482473 195.6620461

FF Serous Cystadenoma 98.38 96633956 226.4858344

HH Low grade serous papillary carcinoma 63.14 106366467 249.296407

II High grade serous papillary carcinoma 96.37 12076661 28.30467422

JJ Mucinous borderline ovarian tumour 98.02 111522756 261.3814594

KK Granulosa cell tumour 98.53 74894026 175.5328734

AA HGSOC 97.84 72431084 169.7603531

DD HGSOC 97.84 84552927 198.1709227

EE HGSOC 98.73 91884592 215.3545125

BB Normal 98.82 102375941 239.9436117

GG Normal 98.49 169076029 396.271943
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We performed weighted gene co-expression network analysis
(WGCNA) and identified significant modules, indicating sample
and histotype-specific gene co-expression. The modules were
selected with p-value significance (p < 0.05) and their highest
module-trait relationship unique to the histotype sample, ranging
from 0.7 to 0.98, and gene significance module membership with R >

0.55 (Figure 3A). To Identify interacting genes in coexpressing
modules, pathway analysis was performed using Reactome
(Figures 3C–I) (Table 5).

Collagen receptor signaling and steroidogenesis were enriched in
Serous Cystadenoma. Differences amongst histotypes in the
distribution of collagen I was also observed in cystadenomas,
borderline tumours, and different grades of OVCa (Davidson et al.,
2014) (Zhu et al., 1995). Known to promote the maintenance of cancer
stem cells via EMT, upregulation of Wnt signaling was observed in
Endometrial cyst samples. Whereas, Granulosa cell tumours showed
enrichment of antagonism of Activin and Follistatin in the Indian
Cohort. Follistatin antagonises activin, which is overexpressed inOVCa,
with its levels in turn regulated by BRCA1 (Karve et al., 2012). Activin
inhibitor STM 434 is in Phase I clinical trial for granulosa cell tumour
(Tao et al., 2019).

In HGSOCs, immune-related TYROBP and SIRPG signaling and
Chemokine receptor signaling pathways were enriched. In TME
(Tumour Micro Environment), the role of TYROBP and SIRPG in
regulatingNK cells, leukocyte adhesion, andmodulating immune cells
is well established. (Yu et al., 2021). Mucinous Borderline ovarian
cancer showed enrichment in the complement system pathway.
Complement-associated proteins can act as antagonists and
increase tumour cell proliferation, migration, and invasion and
induce angiogenesis, as observed with antagonists of C5aR1 and

FIGURE 3
Transcriptome analysis of ovarian cancer histotypes. (A). WGCNA module trait relationship between modules and subtypes (red showing positive
correlation with the trait, i.e., the subtype and green showing negative correlation for the same) (B). Volcano plot showing expression distribution along
with significance for the samples. (C–I) Scatter plot of module trait relationship corelation and its affected pathways for HGSOC, MBOC, ECys, GCT,
LGPSC, HGPSC, and SC, respectively. (J). Upregulated oncogenes (ONC) across subtype samples. (Each dot indicates the intersecting set and y-axis
bar indicating intersection size) (K). Downregulated tumour suppressors (TSG) across subtype samples. (Each dot indicates the intersecting set and y-axis
bar indicating intersection size) (L). CIBERSORTx immune profile of OVCa samples across 22 immune cell subtypes.

TABLE 4 Differentially expressed genes amongst the OVCa samples.

Sample Upregulated genes
(LFC > 5, padj < 0.01)

Downregulated genes
(LFC > 5, padj < 0.01)

AA 778 477

CC 3 3

DD 490 105

EE 660 564

FF 101 17

HH 667 219

II 242 316

JJ 11 27

KK 402 249
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C3aR (Cho et al., 2014). In such cases, anti-VEGF therapy has shown
tumour reduction in patients and animals. EJC-mediated NMD was
the pathway specific to the LGSPC sample. The EJC (Exon Junction
Complex) mediated NMD (Non-sense-mediated decay) is involved in
alternative Splicing, mRNA processing, and decay. Tumours exploit
the mRNA processing with aberrant expression and mutations in key
regulators, this helps them adapt to their microenvironment, to
cause the destruction of key tumor suppressor mRNAs and
promote the transcription of erroneous ones (Popp and
Maquat, 2018). Whereas FOXP3 and RUNX1 control of T regs
was observed in HGSPC. In OVCa, CD8+ve T cells are indicators
of a good prognosis vs. Tregs as a bad prognosis (Curiel et al.,
2004). Hence it would be interesting to understand the immune
profile of samples to check for implicated immune pathways from
above.

3.3.1 Immune profiling of ovarian cancer reveals
histotype-specific immune cell enrichment

We observed that in the modules obtained from WGCNA,
immune pathways were enriched in HGSOC, MBOC, and
HGSPC; we performed CIBERSORTx to classify histotypes based
on immune profiling. We profiled 22 immune cell fractions using
gene expression data of normal and tumor samples. HGSOCs
(sample A, D and E) showed a relatively lower fraction of naive
B cells than normal and lower than that observed in high-grade
serous papillary carcinoma. Sample and histotype-specific changes
in immune cell fraction were observed (Figure 3L). Across

histotypes, HGSOC, LGSPC, and GCT showed significantly high
M0 macrophage. Tregs were high in HGSOC and HGSPC samples.
Resting memory T cells were enriched in LGSPC. In OVCa CD8+ve
T cells are indicators of a good prognosis vs. Tregs as a bad
prognosis (Curiel et al., 2004), hence knowing about T cell
fraction may help prognostically and well as designing
therapeutic strategy. NK cells resting were observed in MBOC
and GCT. Neutrophils were high in ECys, and eosinophils in SC.
Mast cells were high in HGSOC (sample D), and M1 macrophage in
HGSOC (sample E). Among the HGSOCs, the immune profile
varied across the samples. Interestingly normal ovarian samples
showed enrichment of M2 macrophage, which has been
documented (Ardighieri et al., 2014; Zhang et al., 2020). Among
the samples from transcriptome analysis, PER1 was the most
downregulated TSG in the Indian cohort except for serous
cystadenoma and from literature, its levels correlate with
infiltrating neutrophils, regulatory T cells, and M2 macrophages
(Chen et al., 2021), which was evident in the Indian cohort
(Figure 3L). Overall, each sample had a unique immune profile
indicating the need to administer immunotherapy based on the
immune cell expression and infiltration. We also checked for the
expression of immune checkpoint markers, namely, PD-1
(PDCD1), PD-L1 (CD247), and CTLA4. PD-1 was upregulated
in HGSOC (sample E) and CTLA4 and PD-L1 were downregulated
in HGSOC (samples A, D), and SC (sample F). Since the sample
number of different histotypes of OVCa was a limiting factor, we
performed further analysis on HGSOCs.

3.3.2 Upregulated miR-200 family and miR-1269
mark HGSOCs

We also profiled miRNAs in HGSOC and normal ovarian
tissue samples to check for differential miRNA expression
contribution to gene regulation leading to carcinogenesis. The
miRNA seq of 3 HGSOC (sample A, E and L) and 2 normal
samples (sample B and G) was performed, where the alignment
ranged from 93% to 98%, and at least 40 million mapped reads
(Table 6). We obtained 700 differentially expressed miRNAs, of
which only 28 miRNA met the criteria of the adjusted p-value of
(padj ≤ 0.1) (Table 7). Only 4 upregulated miRNA were obtained
when (padj<0.01) and no downregulated miRNA were observed
that met the criteria. We extracted genes targeted by miRs using
Targetscan and found 6 genes (DZIP1, PTPN21, SLC18A2,
ZCCHC24, LMO3, KCTD8) whose expression correlated with
upregulation of miR-200a-3p and 2 genes (IGFBP5 and DLK1)
which correlated with upregulation of miR-1269 (Figures 4A, B)
in the Indian cohort. Expression of the mir200 family has been

TABLE 5 WGCNA curated module pathways for the sample histotypes.

Sample histotypes Pathways

Serous Cystadenoma Ovarian steroidogenesis and Collagen receptor
signalling

Endometrial cyst Upregulation of Wnt signalling

Granulosa cell tumour Antagonism of follistatin and activin

HGSOC TYROBP and SIRPG signalling, Regulation and
Chemokine receptor signalling (CXCL3 and
CXCL1)

Mucinous borderline ovarian
tumour

Antibody mediated complement system

Low Grade Papillary Serous
Papillary carcinoma

NMD exon Junction complex

High Grade Serous Papillary
carcinoma

RUNX1 and FOXP3 control in development of
Tregs

TABLE 6 miRNA sample details.

Sample Histological subtype Number of mapped reads Alignment percentage

AA HGSOC 13885291 96.49%

LL HGSOC 4118074 93.44%

EE HGSOC 15474531 98.37%

BB Normal 19701544 96.70%

GG Normal 15060887 95.99%
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reported in a study to be high as compared to benign (Savolainen
et al., 2020).

Additionally, we checked for the expression of these targeted
genes in the TCGA cohort using GEPIA (Figure 4C). We were
surprised to see a similar pattern in the Indian Cohort. The
tumour samples had lower expression of all the genes than

normal, indicating tumour suppressor roles of the genes and
the oncogenic role of miRs. We further checked if any of the
genes could be used to predict survival in the TCGA cohort.
ZCCHC24 is a gene known to bind to RNA and regulate RNA
splicing (Wang et al., 2021), also correlated with immune cell
infiltration in lung and stomach cancer (Huang et al., 2021),
whose expression levels significantly correlated with poor
survival (Figure 4D).

3.4 Integrated mutation and expression
analysis of HGSOC revealed upregulation of
mutated oncogene and downregulation of
mutated TSGs

It is known that a gain of function mutation in proto-oncogene
and loss of function in TSG drives cancer. To check whether
mutated oncogene and TSGs (drivers of oncogenesis) correlated
with expression, we performed an integrated analysis of exome and
transcriptome in HGSOCs. Independent mutation or expression
studies fail to provide a complete insight into cancer development
and resistance, hence we focused on the known mutated TSG and
oncogenes in the Indian cohort which were differentially expressed
(log2FC > 1.5, padj<0.05).

In HGSOC samples (samples A, D, E and L), 7% (567) of the
genes were mutated, whereas 39% (3,051) of the genes were

TABLE 7 Differentially expressed miRNAs in HGSOCs.

Downregulated miRs Upregulated miRs

hsa-miR-100-5p hsa-miR-335-3p

hsa-miR-195-3p hsa-miR-96-5p

hsa-miR-125b-5p hsa-miR-375-3p

hsa-miR-195-5p hsa-miR-615-3p

hsa-miR-582-3p

hsa-miR-200c-3p

hsa-miR-7974

hsa-miR-1269a

hsa-miR-429

hsa-miR-200a-3p

hsa-miR-449b-5p

FIGURE 4
miRNA analysis of HGOSC samples in the cohort. (A). UpregulatedmiRNAs and their targets in OVCa HGSOC samples. (B). Gene interaction network
of miRNAs and their target genes. (C). Expression of miRNA targets in the OVCa TCGA data show similar pattern as observed in our samples. (D). Kaplan
Meier plot of ZCCHC24 (miR-200 target), signifying survival probability between high vs. low expressed groups from GEPIA.
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downregulated. Only 1% of the mutated genes (56) were
downregulated. 52% (4,117) of the genes were upregulated,
of which only 1% was mutated (66) (Figure 5C). There were
19 TSGs, and 31 oncogenes downregulated and upregulated,
respectively, in HGSOC samples (Figure 5E). It is evident from
the volcano plot (Figure 5A) that highly mutated genes MUC4,
MUC16, CIITA, and ALK are mutated and overexpressed, of
which ALK and CIITA are cancer census genes, whereas
NCOR2 a transcriptional corepressor was mutated and
downregulated (Figure 5A). CDKN2A, a tumour suppressor,
is mutated and upregulated. Similarly, drivers of oncogenesis in
breast cancer and AML, IRS4, and MN1 are mutated and
downregulated. (Figure 5D) (Ikink and Hilkens, 2017)
(Heuser et al., 2007). Since a number of genes were mutated
and differentially expressed, we checked whether it correlated
with survival using the TCGA cohort. From this, we found that
high expression of MUC4 and NCOR2 correlated with low
survival (p = 0.0094 and p = 0.012), respectively (Figures 5F, G).

In the Indian Cohort, NCOR2 was mutated and expressed at lower
levels in HGSOCs, indicating population-specific variation. We
observed that typical cancer drivers such as BRCA1, BRCA2, and
TP53 did not reveal significant differential expression; therefore, we
checked for their expression in the non-significant list and BRCA1 and
TP53 were upregulated with log2FC of 0.4 and 0.8, respectively with
padj<0.05, and BRCA2 although non-significant (padj>0.05) showed
log2FC = 2. Whereas non-significant downregulation of BRD4 and
ATMwas observed inHGSOCs. HGSOCs are deficient in Homologous

recombination and mutation of the HR genes (Creeden et al.,
2021) (da Cunha Colombo Bonadio et al., 2018), along with
expression confirmed the same in the Indian Cohort. Aberrantly
expressed genes among HGSOCs showed the indicated
transcriptional regulation of pluripotency (POU5F1, MYCL,
MYB, TERT) along with upregulated and downregulation of
senescence-associated heterochromatin (PEG3, DIRAS3,
DLK1), to be impacted. The GSEA analysis of HGSOCs
revealed enrichment in the JAK-STAT pathway (Figure 5B),
further highlighting its role in immune signaling. On
integration, genes returned upregulated pluripotency and
downregulated senescence-associated chromatin organization as
the hallmark drivers of HGSOCs in the Indian Cohort, as a strategy
of tumour cells in supporting their survival. We obtained similar
pathways from the mutation analysis. However, most of the genes
associated with mutations were not differentially expressed and the
DE genes were not much mutated. Therefore understanding both
mutation and expression is necessary to identify the control
mechanisms of cancer.

3.5 Profiling alternative splicing in ovarian
cancer histotypes

From pathway analysis of the mutated genes and miRNA-
regulated genes, we observed that RNA splicing and metabolism
were altered in the Indian cohort. Hence, we performed alternative

FIGURE 5
Integrated exome and transcriptome analysis of HGSOCs. (A). Gene expression volcano plot for HGSOCs and highlighted genes represent mutated
and significantly differentially expressed ones. (B). JAK-STAT pathway enrichment in HGSOCswith pval 0.00271 and FDR 0.01. (C). Venn diagram showing
number of upregulated, downregulated and mutated genes and their respective intersections. (D). Heatmap of common downregulated TSGs and
upregulated ONCs. (Red showing upregulation and green indicating downregulation) (E). Venn diagram of differentially expressed genes being
ONCs and TSGs in HGSOC. (F, G) Kaplan Meier plots of MUC4 and NCOR2 signifying survival probability between high vs. low expressed groups from
GEPIA database.
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splicing analysis to identify changes in the spliceosomal genes and
aberrant splicing in histotypes of ovarian cancer.

All the alternative splice events were analysed to check whether
the type of alternative splicing events was histotype specific and
whether the splice event was differential across samples. We used
rMATS and kallisto for studying the splicing profile across samples.
From the analysis, the most abundant alternative splicing event was
Exon skipping in HGSOC, HGSPC, ECys, and MBOC (Table 8). In
contrast, in LGSPC and GCT histotypes, alternative mixed exon
exclusion was the most prevalent type (Figure 6C). HGSOC showed
the most splice events individually, with sample A, D and E showing
10,443, 90,223, and 11,677 significant alternatively spliced events.
The least splice events were in high-grade papillary carcinoma, with
1,264 events and LGSPCs. From the observed splice events, more
than 70% of splice events were as in genes reported by the Spladder
project in SpliceSeq (Ryan et al., 2016).

To understand if the number of splicing events correlated with
mutations or the expression of splicing proteins, we plotted the
expression of spliceosome proteins with splicing events. We
observed a significant correlation of 0.75 and p-value = 0.031
(Figures 6A, B) indicating a strong correlation between the
upregulation of splice factor genes and observed splice forms.
When checked for correlation of splice events solely with splice
factor mutations, no correlation was observed. Studies have shown
that SF3B1, SF3B2, and SF3B3 can regulate target gene expression by
alternative splicing to promote cancer progression (Chen et al.,
2017), also SF3B3 controls AS in renal cancer and SF3B4 in ovarian
cancer by regulating AS of RAD52 (Diao et al., 2022). Mutations in
these spliceosome complexes were observed in the Indian cohort,
with SF3B3, PLRG1, and AQR being the most mutated splice factors
(Table 8) across the samples (2/10) and the spliceosome complexes.
Genes LSM4 and SF3B5 were the most upregulated across (7/10),
whereas LSM14B, PRPF8, SRRM, and U2AF2 were the most
downregulated in (4/10) samples (Figure 6A) in splice factor-
specific context. We checked for the most spliced gene across

subtypes and identified lncRNA GAS5 (SNHG2) and SNHG17,
metalloprotease ADAM15, and core mRNA processing proteins
RPS24 and UBA52 to be the most spliced.
SNHG17 showed >27 alternatively spliced exons, particularly in
high-grade samples, which was an exciting finding considering its
non-coding function. In tumour samples, metalloprotease ADAM
15 showed exon usage, harbouring disordered regions with sites for
Y715 and Y735 of the cytoplasmic tail that influence its association
with its interacting partners in cellular signaling (Poghosyan et al.,
2002). Further, we performed TSG and ONC analysis on the
transcripts alternatively spliced (Supplementary Table S1) to find
TSGs, PER1, and FAS and ONCs, BCL2L12, and MP2K2 were most
alternatively spliced, might contribute to tumorigenesis.

We performed functional analysis to understand the consequences of
alternative splicing events affecting domains, disordered regions, post-
translational modifications (PTM), and active sites of proteins
(Figure 6D). From earlier transcriptome analysis, the JAK-STAT
pathway was enriched in the high-grade samples (Figure 5B); hence
we wanted to check the alternatively spliced gene events associated with
JAK-STAT signaling. We found alternative splice events related to the
JAK-STAT pathway, particularly CD44 (Figure 6F), STAT1, FAS, and
IRF1. There was an increase in differential exon usage of the variable
region ex5-ex14 of the CD44 stems region, leading to its possible
tumorigenic isoforms. Also, STAT1 and FAS harboured splice events
that retained serine residues S701 and E705 (Figure 6G) in tumour
samples with a dpsi value of −0.429 and p-value 3.617e-05 and S209 and
T214 residues with dpsi value −0.727 with p-value 8.3539e-06,
respectively, suggesting alterations in the post-translational event,
phosphorylation, and change in the function of protein leading to loss
of cell death activity. IRF1 showed a loss of DNA binding region, which
might contribute to the dysregulated immune system and cell
proliferation in Indian HGSOC. We found domains and PTM
regions most affected in all samples and histotypes (Figure 6D).
Among the genes affected at active sites by splice events were
MUTYH, POLL, and UNG, particularly in POLL at K220, the site

TABLE 8 Number of splicing events and mutated splice factors per sample.

Samples Skipped
exon
event (SE)

Alternative 5’
splice site event
(A5SS)

Alternative 3’
splice site event
(A3SS)

Mutually
exclusive exons
event (MXE)

Intron
retention
event (RI)

Mutated splice factors

AA 5174 1092 1075 1873 1229 -

CC 3373 996 1008 1458 951 -

DD 3816 882 916 1903 1506 EFTUD2, FRA10AC1, RBM25

EE 6651 1265 1124 1385 1252 CWC27, PLRG1, LSM12, PPWD1,
RBM17, SF3B2

FF 3,194 850 873 1,109 1,099 PLRG1, AQR, EFTUD2, NOSIP

HH 1,009 364 372 1,400 783 EFTUD2, PRCC, SF3B3, SPPL2B

II 168 57 73 683 283 EFTUD2, HYPK

JJ 2,976 834 897 1862 1,012 CWC22, NAA38, BUD13, CDC40,
CTNNBL1, SF3A3

KK 865 274 280 1856 890 AQR, CDC5L, ORC1, SF3B1,
SNRNP200, CWC15, DDX46,
EFTUD2, SF1, SF3B3, SMU1,
SPPL2B, SRRM2, U2SURP

Frontiers in Genetics frontiersin.org13

Mhatre et al. 10.3389/fgene.2023.1102114

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1102114


responsible for forming Schiff-base intermediate with DNA and UNG at
D145, the proton acceptor site, indicative of the BER pathway being not
functional to its full extent and with mutations harboured in the HR
genes, seems fatal (Figure 6E).

Further, we performed pathway analysis (Table 9) of the AS
events and found translation elongation common in all histotypes.
On further analysis, genes revealed enrichment of ribosomal
proteins involved in translational elongation. Out of 80 core
ribosomal proteins, more than 50% were alternatively spliced
across the samples. To check pathways altered other than those
enriched by ribosomal proteins, we performed pathway analysis
with alternatively spliced genes with absolute dpsi >0.2 and
FDR <0.05 without ribosomal proteins to obtain pathways
specific to the OVCa histotype.

The post-modifications were most affected by ASE events
among OVCa histotypes. The BER pathway, POLL, and UNG in
HGSOCs showed a loss of active sites essential for their repair
function. Mutations in DDR and loss of BER functional genes may
cause further genomic instability and result in a tumorigenic
advantage.

Altered pathways, including Splicing, organelle biogenesis,
energy metabolism, and Base excision repair, were explicitly in
ASE events and not in the raw transcriptome.

To conclude, we plotted the number of genes impacted by
mutation and splicing to find that significantly more genes are

influenced by splicing than mutations (Figure 6H). This further
highlights the importance of applying an integrated approach to
omics studies.

4 Discussion

We have sequenced exome, transcriptome, and miRNA from
4 histotypes of ovarian cancer (12 samples; 10 tumours and
2 Normal) and analysed mutation, expression of genes, and its
alternate spliced forms to obtain histotype and sample-specific
alterations in pathways to unravel the mechanism of oncogenesis
in Indian Cohort.

Mutation analysis showed HRD deficiency and samples with
BRCA1 and BRCA2 mutations in 2/4 HGSOC samples and
TP53 pathogenic mutations were reported (Supplementary Table
S1). TP53 mutations were observed in 50% of the HGSOC samples
unlike in the TCGA cohort where 96% of ovarian cancers were
TP53 mutated (Network and The Cancer Genome Atlas Research
Network, 2011). Likely pathogenic mutations were observed in
RAD51B, the sensor and modulator of DNA damage, in serous
cystadenoma. The highest tumour mutation burden was observed in
HGSOC, followed by Granulosa cell tumour (GCT) with abundant
MODERATE and HIGH impact variants. The samples with the
highest mutation burden correlated with mutations in POLE in the

FIGURE 6
Splicing analysis of OVCa histotypes. (A). Waterfall plot showing mutations in splice factors in patient samples. (B). Corelation plot of upregulated
splice factors and number of alternatively spliced events. (C). Significant alternatively spliced events and their abundance in types across samples. (D).
Splice events affected protein domains and modifications mapped from Uniprot in OVCa subtypes. (E). Active site spice events affecting Base excision
repair pathway. (F). CD44 ex5-ex14 variable region usage in normal and HGSOC samples. Normal samples skip these exons while HGSOCs show
variable inclusion events to give rise to oncogenic forms of CD44. Regions indicated in dashed boxes. (G). STAT1 alternative 3′ splice event of a exon in
HGSOC harbouring phosphorylated residues involved in signalling. (H). Number of genes altered by mutation and splicing across samples.
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Indian cohort as has been reported in other cohorts (Wang et al.,
2018). Apart from the ones mentioned above, the most mutated
cancer-implicated genes were ALK (7/10), PMS1 (4/10), and
PTPRB (6/10).

Mucins MUC4 and MUC16 (CA125), MHC II transactivator
CIITA along with transcriptional corepressor NCOR2 were the most
mutated genes in about more than 8/10 samples in the Indian cohort.
MUC4mutation frequency observed in the Indian cohort was the same
as seen in the TCGA cohort ~80%. Mucins are over-expressed in
multiple cancers and also modulate immune behavior, therefore can be
targeted for therapy and not just prognosis as in the case of
CA125 testing. Apart from downregulated NCOR2, MUC4,
MUC16, and CIITA were overexpressed in HGSOC samples. Novel
tumour-associated mutations in CIITA and MUC16 were recorded in
the Indian cohort. Characterising thesemutations leading to loss or gain
of function might help understand the role of specific mutations in the
IndianCohort. In larger cohort studies of ovarian cancer transcriptomes
showedNCOR2 as a biomarker for resistance (Fekete et al., 2020); lower
expression observed in the Indian Cohort might be a good predictor of
chemotherapy response.

Since the data on survival and remission after the treatment was
lacking, conclusion could not be drawn.

WGCNA analysis identified modules and hub-specific genes
specific to histotype samples. Serous cystadenoma showed
module genes enriched in the collagen receptor signaling
pathway. Previous studies have shown differential
Procollagen I mRNA and protein detection in OVCa cells.
The difference among the histotypes in the distribution of
collagen I was also observed in cystadenomas, borderline
tumours, and different grades of OVCa (Davidson, Trope,
and Reich, 2014) (Zhu et al., 1995). Discoid Domain
Receptor, DDR1 is expressed at high levels in OVCa and
ST09, a curcumin derivative that blocks collagen receptor
signaling (Ravindran et al., 2021), and can be used as a
potential drug for HGSOCs. Similarly, in the endometrioid
cyst, upregulation of Wnt signaling was observed and
Granulosa cell tumours showed enrichment of antagonism of
Activin and Follistatin in the Indian Cohort, of which a Phase I
trial is carried out in Granulosa Cell Ovarian Cancer patients
using an Activin inhibitor STM 434. In HGSOCs, TYROBP and
SIRPG signaling was enriched, known to regulate NK cells and
leukocyte adhesion, modulate immune cells, and play a role in

TME. Whereas in the case of LGSPC, mRNA processing
pathways were enriched to provide a selective advantage by
promoting the transcription of erroneous mRNAs. HGSPC
showed FOXP3 and RUNX1 mediated Treg signaling which
was further seen in the immune profile plot as a high Treg
fraction. The most downregulated TSG was PER1, in studies,
PER1 expression levels correlated with infiltration neutrophils,
regulatory T cells, and M2 macrophages (Chen et al., 2021).
Immune infiltration was observed and was unique to each
subtype and sample. Upregulated genes ERBB3 (HER3) and
ERBB4 (HER) belong to the HER family of receptors and are
implicated in breast cancer. Mucins are known to modulate the
activity of ERRB. In the Indian cohort, along with the
upregulation of ERBB3 and ERBB4, MUC4 was mutated
across the samples.

FrommiRNA seq, miR-200 and miR-1269a families were highly
expressed in HGSOC samples in the Indian cohort. Out of the six
target genes regulated by miR-200 that matched TCGA OVCa
expression, ZCCH24 expression correlated significantly with
survival (Figure 4D). ZCCH24 is an RNA-binding protein that
regulates mRNA splicing and has been implicated in immune cell
infiltration in several cancers. The multidimensional analysis
revealed the coordinated effect on the immune system and
reasons for chemoresistance/sensitivity in the Indian cohort.
Targeting singular targets might lead to cross-talks, causing
resistance. Therefore combination therapy aiming different
pathways might lead to better outcomes.

Mutations in splicing complexes were observed, namely, in
SF3B3, PLRG1, and AQR. SF3B is a component of the U2 small
nuclear ribonucleoprotein (snRNP), known to control AS in renal
cancer and SF3B4 in ovarian cancer by regulating AS of RAD52
(Diao et al., 2022). On performing correlation studies, the number of
splice events observed correlated with the upregulation of splice
factors with R = 0.75 and pval = 0.031. In the splice events observed,
most spliced genes were lncRNAs SNHG2 (GAS5) and SNHG17,
considering its non-coding function was an interesting finding.
Splice forms alter the oncogenic and tumour role of GAS5 in
malignant tumours (Lin et al., 2022), and the role of non-coding
RNA, SNHG17 in ovarian cancer needs to be investigated.
ADAM15 splice events showed retention of residues Y715 and
Y735 of the cytoplasmic tail, to facilitate motility and in turn
proliferation. With consequential analysis to know impacted
pathways and functional regions, translational elongation was
most enriched across histotypes due to the presence of ribosomal
proteins. Ribosomal proteins possess extra ribosomal functions to
regulate cell growth, differentiation, immune signaling, DNA repair,
and apoptosis apart from strongly. Intrinsically disordered regions
(IDR) facilitate these interactions; hence ASE in core ribosomal
proteins might impact their moonlighting role in the cellular
environment. (Kang et al., 2021).

Apart from the mutation of JAK1, GSEA analysis revealed
enrichment of JAK-STAT in HGSOC samples. Alternative splice
events associated with the JAK-STAT pathway signify different
players, particularly CD44, STAT1, FAS, and IRF1. CD44 showed
an increase in exon usage to result in tumour associated forms and
IRF1 with loss of DNA binding region. Whereas STAT1 and FAS
showed retention of phosphorylated residue regions, this could cause a
delay in cell death and prove beneficial for the tumour.

TABLE 9 Enriched pathways in alternative splice events.

Sample histotype Alternative splicing enriched pathways

ECys Organelle Biogenesis and BER

SC BER and Electron transport chain

LGSPC mRNA splicing and Electron transport chain

HGSPC Electron transport chain and TCA

MBOC ETC, Organelle Biogenesis and DDR, Negative
Regulators Of DDX58/IFIH1 Signalling

GCT TCA and Glycosylation

HGSOC Chromatin Modifying enzymes, Organelle biogenesis,
TCA, ETC and mRNA splicing
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The post-modifications were most affected by ASE events among
OVCa histotypes. The BER pathway, POLL, and UNG in HGSOCs
showed a loss of active sites essential for their repair function.Mutations
in DDR and loss of BER functional genes may cause further genomic
instability and result in a tumorigenic advantage.

To conclude, the current study found population-specific and
novel variants in tumour-specific contexts. Integrated exome and
transcriptome revealed CIITA, MUC4, and MUC16 as possible
drivers due to elevated expression and mutational hits in the
Indian Cohort. From miRNAs, miR-200 was highly upregulated
with its targets down in tumour samples, namely, ZCCHC24 with
survival significance found. The most spliced gene was
SNHG17 with >25 splice forms and tumour associated splice
events of CD44, STAT1, FAS, and IRF1 further confirming the
JAK-STAT pathway enrichment from GSEA. The limitation of
the study is the sample number which requires further validation
in a larger cohort. Finally, to summarise, integrated exome,
transcriptome, and splicing patterns revealed different
molecular signatures in the ovarian cancer histotypes of the
Indian Cohort, implying the need for a multi-omics approach
for prognostic and diagnostic purposes.
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