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Introduction: Physical exercise has beneficial effects by providing neuroprotective 
and anti-inflammatory responses to AD. Most studies, however, have been conducted 
with aerobic exercises, and few have investigated the effects of other modalities that 
also show positive effects on AD, such as resistance exercise (RE). In addition to its 
benefits in developing muscle strength, balance and muscular endurance favoring 
improvements in the quality of life of the elderly, RE reduces amyloid load and local 
inflammation, promotes memory and cognitive improvements, and protects the 
cortex and hippocampus from the degeneration that occurs in AD. Similar to AD 
patients, double-transgenic APPswe/PS1dE9 (APP/PS1) mice exhibit Αβ plaques in 
the cortex and hippocampus, hyperlocomotion, memory deficits, and exacerbated 
inflammatory response. Therefore, the aim of this study was to investigate the 
effects of 4 weeks of RE intermittent training on the prevention and recovery from 
these AD-related neuropathological conditions in APP/PS1 mice.

Methods: For this purpose, 6-7-month-old male APP/PS1 transgenic mice and 
their littermates, negative for the mutations (CTRL), were distributed into three 
groups: CTRL, APP/PS1, APP/PS1+RE. RE training lasted four weeks and, at the 
end of the program, the animals were tested in the open field test for locomotor 
activity and in the object recognition test for recognition memory evaluation. 
The brains were collected for immunohistochemical analysis of Aβ plaques and 
microglia, and blood was collected for plasma corticosterone by ELISA assay.

Results: APP/PS1 transgenic sedentary mice showed increased hippocampal Aβ 
plaques and higher plasma corticosterone levels, as well as hyperlocomotion and 
reduced central crossings in the open field test, compared to APP/PS1 exercised 
and control animals. The intermittent program of RE was able to recover the 
behavioral, corticosterone and Aβ alterations to the CTRL levels. In addition, the 
RE protocol increased the number of microglial cells in the hippocampus of APP/
PS1 mice. Despite these alterations, no memory impairment was observed in APP/
PS1 mice in the novel object recognition test.

Discussion: Altogether, the present results suggest that RE plays a role in 
alleviating AD symptoms, and highlight the beneficial effects of RE training as a 
complementary treatment for AD.
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1. Introduction

Alzheimer’s disease (AD) is characterized by clinical symptoms, 
such as loss of cognitive functions, memory deficits, and progressive 
dysfunction of motor and behavioral activities (McKhann et al., 1984). 
One of the main neuropathological alterations of AD is the formation 
of senile plaques due the accumulation of amyloid-β (Aβ) protein 
which leads to synaptic transmission impairment and neuronal 
damage, initiating the neurodegenerative process (Ashe and Zahs, 
2010; Ma et al., 2022).

The extracellular plaque formation leads to increased 
neuroinflammation and neuronal loss, which evolves cognitive 
impairment and clinical symptoms (Braak and Braak, 1991; 
Montine et al., 2012). In this initial phase of AD, there is still no 
considerable memory loss or cognitive impairment (Sasaguri et al., 
2017), although signs of agitation (hyperlocomotor activity), 
restlessness and wandering (Cheng et  al., 2014), in addition to 
increased levels of cortisol (Haraguchi et  al., 2006), can already 
be observed. Interestingly, it has been reported that high levels of 
stress and corticosteroids may correlate with an increased risk of 
developing AD and may accelerate disease progression in the early-
stage of AD-related dementia (Hartmann et al., 1997; Yuede et al., 
2018; Lyons and Bartolomucci, 2020; Saeedi and Rashidy-
Pour, 2021).

In experimental models using transgenic mice to study AD, the 
animals also present Aβ accumulation and plaque formation in the 
prefrontal cortex and hippocampus (Drummond and Wisniewski, 
2017), as well as elevated plasma corticosterone levels (Green et al., 
2006) and hyperlocomotion in the open field test (Jucker and Walker, 
2011; Cheng et  al., 2014; Wang et  al., 2020). According to some 
studies, high levels of corticosteroids in the brain of AD animals lead 
to increased activation of BACE1 that, in turn, increases the activation 
of APP and PS1. Importantly, APP is cleaved by BACE1 (β-secretase) 
and subsequently by γ-secretase, forming the Aβ neurotoxic peptide 
(Green et al., 2006; Calvo-Rodriguez et al., 2019; Zhang H. et al., 2021).

Physical exercise, in both humans and rodents, has been 
associated with a lower risk of dementia and cognitive impairment in 
aging (Buchman et al., 2012; Hörder et al., 2018; Liu et al., 2020). 
Additionally, several human studies have shown the positive impact 
of physical exercise in individuals diagnosed with AD, in terms of 
memory improvement, increased attentional levels, verbal fluency, 
and better performance on an intelligence scale test (Palleschi et al., 
1996; Arkin, 2007; Chen et al., 2016; Stephen et al., 2017; Choi et al., 
2018). In animal models, physical exercise has been shown to improve 
spatial memory and increase neurogenesis (van Praag et al., 2005; 
Tapia-Rojas et  al., 2016), decrease Aβ deposition and reduce Aβ 
plaque formation rates (Adlard et al., 2005; Kennedy et al., 2017).

Evidence indicates that physical exercise is more effective in 
improving AD when it is initiated before or in the early stages of Aβ 
deposition (Lourenco et al., 2019). When exercise is introduced into 
the pre-plaque phase there is less Aβ deposition. Additionally, 
increased neurogenesis associated with physical exercise in the early 
stages of the pathogenesis of AD may help improve cognitive function, 
thus providing a strategy for modifying or even preventing diseases 
such as AD (Choi et  al., 2018). Furthermore, animals exposed to 
physical exercise have lower levels of corticosterone, along with 
cognitive improvements and reduction of Aβ load in the hippocampal 
region (Radahmadi et al., 2015).

Most studies, however, use aerobic exercises and few have 
investigated the effects of other modalities that may also show benefits 
in AD progression, such as resistance exercise (RE; Hashiguchi et al., 
2020). Considering that the quality of life of the elderly population is 
compromised by loss of strength and endurance, muscle atrophy 
(sarcopenia), and greater difficulty in being physically active, RE 
emerges as an important strategy to improve muscle mass, muscle 
strength and balance, as well as functional capacity and cognitive 
function (Ozkaya et al., 2005; Cassilhas et al., 2007; Liu-Ambrose 
et al., 2012; De Frutos-Lucas et al., 2018). Moreover, RE also produces 
neuroprotective effects and provides benefits such as increased release 
of neurotrophic factors and immunomodulatory responses, 
stimulating neurogenesis and neuroplasticity, and improving memory 
(Cassilhas et  al., 2007). According to Navarro et  al. (2018), RE 
improves brain function in the elderly and can be neuroprotective, 
reducing the risk for the onset of AD and other dementia. When 
applied to 6–7-month-old APPswe/PS1dE9 transgenic mice, daily RE 
promotes the control of hyperlocomotion, reduction of Aβ load in the 
hippocampus and decreased pro-inflammatory cytokine levels 
(Hashiguchi et al., 2020).

Based on that, the present work aimed to evaluate the effects of 
RE, such as climbing a ladder with progressive overload in alternate 
days during 4 weeks, on the molecular (increased Aβ protein, 
microglia cells, plasma corticosterone levels) and behavioral 
(hyperlocomotion, recognition memory impairment) alterations 
related to AD observed in APP/PS1 mice.

2. Methods

2.1. Animals

Adult male, 6-7-month-old APPswe/PS1dE9 transgenic mice 
(APP/PS1) and their littermates negative for the mutations (CTRL) 
were provided by CEDEME (Center for the Development of Animal 
Models in Biology and Medicine at the Universidade Federal de São 
Paulo). They were housed in polypropylene home cages 
(41 cm × 34 cm × 16.5 cm) in a pathogen-free facility, under controlled 
temperature (22–23°C) and lighting (12 h light, 12 h dark; lights on at 
6:45 a.m.) conditions. Appropriate food and water were available ad 
libitum. The Ethics Committee of the Universidade Federal de São 
Paulo approved all experiments under the protocol 9,268,250,618. 
Adult male APPswe/PS1dE9 transgenic mice (APP/PS1) and their 
littermates negative for the mutations (CTRL) with 6-7-month-old 
were used.

2.2. Experimental design

Adult (6-7-month-old) male APPswe/PS1dE9 transgenic mice 
(APP/PS1) and their littermates negative for the mutations (CTRL) 
were distributed into three groups: CTRL, APP/PS1, APP/
PS1 + RE. Mice from CTRL and APP/PS1 groups were kept in their 
home cages while animals from APP/PS1 + RE group were trained to 
climb a ladder with a progressive overload, every other day, for 
4 weeks. One day after the last exercise training session, mice were 
exposed to the open field test for the evaluation of locomotor activity 
and anxiety-related behaviors. Twenty-four hours later, the novel 
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object recognition test was performed. Right after the behavioral tests, 
animals were deeply anesthetized (10 mg/Kg lidocaine, 50 mg/Kg 
thiopental) and blood was sampled from the mouse atrium for the 
quantification of plasma corticosterone concentration by enzyme-
linked immunosorbent assay (ELISA). Subsequently, mice were 
transcardially perfused with 100 ml of 0.1 M PBS and 100 ml 4% 
PFA. Brains were removed from the skull and kept in 4% 
paraformaldehyde (PFA) for 24 h, being transferred to a hypertonic 
30% sucrose solution for cryoprotection. The brains were frozen, 
coronally sectioned (30 μm), and immunostained with anti-6-E10 (Aβ 
protein marker) and anti-Iba-1 (microglia marker) antibodies for 
quantitative tissue cytometry as follows below. Figure 1 provides a 
scheme of the experimental design.

2.3. Resistance physical exercise protocol

APP/PS1 mice were exposed to a RE protocol adapted from 
previous studies (Cassilhas et al., 2012), which consists in climbing an 
apparatus with a progressive overload attached to the animal’s tail. The 
climbing apparatus is a 110 cm high and 18 cm wide ladder, with a 
distance of 2 cm between each step, with an incline of 80o and a shelter 
at the top.

The protocol includes two phases: familiarization and training. 
Familiarization with the device consisted of three voluntary attempts, 
on three consecutive days. Initially, a Coastlock Snap Swivel ring was 
attached to the mouse’s tail with adhesive tape (Scotch 3 M) and each 
animal was placed in the shelter for 60 s. In the first trial, the mouse 
was placed on the steps approximately 35 cm below the shelter door. In 

the second trial, the animal was positioned in the middle of the stairs, 
approximately 55 cm below the shelter door. In the third trial, the 
mouse climbed the entire ladder, 110 cm high. At the end, the ring was 
removed from the tail and the animal was placed back in its home cage.

The training phase started 2 days after familiarization. The protocol 
consisted of 3 sessions of progressive RE in alternate days, for 4 weeks. 
Therefore, the animal was exposed to 3 training sessions per week. Each 
training session consisted of six to eleven climbing trials, with 
progressive overload. In the first training session, the first two climbing 
trials had an overload of 75% of the animal’s body weight (weighed on 
the first training day). In the third and fourth trials, the overload was 
90% of the animal’s body weight. In the fifth and sixth trials, the 
overload was 100% of the animal’s body weight. There were 60s-intervals 
between each of these trials. From the seventh trial on, the increase in 
load was 3 g at each attempt with 120 s-intervals between them. The 
training session was over after climbing failure or after the eleventh trial.

In the following training sessions, the trial intervals and 
progressive overload were the same as described above. However, the 
overloads were calculated in relation to the maximum load reached 
during the previous training session and no longer in relation to the 
animal’s body weight. If necessary, the animal received a light touch 
on the back as stimulus for climbing. Climbing failure was considered 
when the animal did not reach the shelter after three stimuli.

2.4. Open field test

One day after the last exercise training session, mice were exposed 
to the open field test for assessment of locomotor activity and 

FIGURE 1

Experimental design. PBS: phosphate-buffered saline; PFA: paraformaldehyde.
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anxiety-related behavior. The open field test was performed in a 
cylindric apparatus of 40 cm-diameter, 50 cm-high, and 2 cm-thick 
walls, as previously described (Wuo-Silva et al., 2016). The arena floor 
is divided into 19 sections of approximately equal dimensions: 12 
peripheric sections (adjacent to the wall), 6 intermediate sections and 
1 central section in three concentric circles of different radiuses (20, 
14, and 8 cm, respectively).

Animals were placed in the arena for 10 min and allowed to 
explore it freely. All tests were video-recorded. Locomotion frequency 
was defined as the number of sections explored by the animal during 
the test; a locomotion unit was considered when the animal placed the 
four paws inside one of the sectors. Anxiety-like behavior was 
evaluated by analyzing the percentage of central crossings (ratio of the 
number of crossings in the intermediate or central sections to the 
number of total crossings multiplied by 100) performed by each 
animal. Decreased activity in the intermediate and central sections of 
the cylinder are associated to anxiogenic responses (Dao and 
Kovacsics, 2009).

2.5. Novel object recognition test

The novel object recognition test was carried out in the same 
open field apparatus in two sessions (training and test) as previously 
described (Clarke and Ludington, 2018). Training sessions were 
performed 24 h after the open field test. Test session was carried out 
1 h after training. During the sessions animals were exposed to two 
objects fixed with adhesive tape in opposite sides of the apparatus. 
In the training session (5 min), two identical objects were presented 
(A and A’) and in the test session (5 min) one of these objects was 
replaced by a new one, with a different color and shape (B).

Object interaction was defined as smelling or touching objects 
with the snout or front paws. Sitting or walking around the object 
were not considered object interaction. The discrimination index 
(DI) was used to analyze the interaction time (T) between new (NT) 
and familiar (FT) objects. DI was calculated using the 
[DI = (NT − FT)/(NT + FT)]. Positive DI values indicate that the new 
object was more explored than the familiar one was, while negative 
values indicate the opposite. Zero indicates lack of preference 
between the objects. Animals, which had interacted less than 20 s 
with both objects in the training session, were excluded from the 
analysis since it can indicate that these animals did not show any 
interest for the objects, precluding the evaluation for any preference 
in the test session (Lueptow, 2017).

2.6. Plasma corticosterone concentration 
determination

After the behavioral tests, animals were deeply anesthetized 
(10 mg/Kg lidocaine, 50 mg/kg thiopental, i.p.). Blood was sampled 
from the mouse atrium, collected in EDTA-lined tubes and 
centrifuged (10 min, 1,600 g, 4°C). Plasma was aspirated from the 
pellet and stored at −20°C until analysis. Plasma corticosterone 
concentration was quantified using a competitive enzyme-linked 
immunosorbent assay (ELISA) kit (EIACORT, ThermoFisher 
Research). Samples were run in duplicate and compared to a standard 
curve according to kit instructions. Final corticosterone 

concentrations (nM) in the plasma of each animal were the average of 
duplicate reads on a standard plate reader (Invitrogen Corticosterone 
ELISA Kit) at 450 nm.

2.7. Perfusion and tissue fixation

Animals under deep anesthesia (10 mg/Kg lidocaine; 50 mg/kg 
thiopental, i.p.) were transcardially perfused with approximately 
100 ml phosphate-buffered saline (PBS) and 100 ml of 4% PFA. The 
brains were removed from the skull and kept in 4% PFA for 24 h, being 
transferred to a hypertonic 30% sucrose solution for cryoprotection. 
The brains were frozen and coronally sectioned (30 μm). Sections were 
stored in anti-freezing solution (500 ml PBS, 500 ml H2O, 1.59 g 
NaH2PO4, 5.47 g Na2HPO4, 300 g sucrose, 300 ml ethylene glycol) 
at −20°C.

2.8. Immunohistochemistry/
immunofluorescence

Free-floating hippocampal sections were washed three times 
for 10 minutes. Then, they were incubated with blocking buffer 
solution (0.1% triton [100×], and 2% of normal goat serum in PBS) 
for 30 min and left overnight (12 h) with the primary antibodies: 
Aβ plaques (mouse anti-6-E10; 1:1,000; Covance) and microglial 
cells (rabbit anti-Iba-1; 1:1000, Wako Chemicals). Sections were 
then washed and incubated with secondary antibodies (anti-mouse, 
1:600, Vector, BA9200 or anti-rabbit, 1:600, Vector, BA1000) for 2 h 
at room temperature, followed by ABC (Avidin/Biotinylated 
enzyme Complex Vectastain Elite, Vector) kit incubation for 90 min 
and diaminobenzidine (DAB) for 5 min right after. Microglia 
around the plaques were identified by immunofluorescence 
microscopy using the anti-Iba-1 (rabbit anti-Iba-1; 1:1,000, Wako 
Chemicals) and anti-6-E10 (mouse anti-6-E10; 1:1,000; Covance) 
antibodies. On the following day, sections were incubated for 2 h 
with a fluorochrome-conjugated appropriate secondary antibody 
anti-mouse Alexa Fluor 488, anti-rabbit Alexa Fluor 488 and anti-
rabbit Alexa Fluor 568 (Invitrogen) and washed in PBS. Slides were 
mounted and sealed with DPX.

Images were acquired with the TissueFaxs Confocal Cytometer 
(TissueGnostics GmbH, Vienna, Austria). Six hippocampal sections 
of 30 μm thickness were captured, resulting in approximately 90 fields 
of view/section. In each field of view, the total number of cells positive 
for 6-E10 or Iba-1 immunostaining was quantified with the Strata-
Quest software (TissueGnostics, Vienna, Austria).

2.9. Statistical analysis

Statistical analysis and graphs were designed in GraphPad Prism, 
version 8.0. Open field test data were analyzed by Kruskal-Wallis’ test 
followed by Dunn’s post hoc. The discrimination index of the novel 
object recognition test, plasma corticosterone concentration, as well 
as the number of positive cells for 6-E10 and Iba-1 were analyzed by 
one-way ANOVA followed by the Dunnett’s post-test. The critical 
value considered to indicate significant difference between groups was 
5% (p < 0.05).
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3. Results

Here, we evaluate the effect of RE in the molecular (increased Aβ 
protein, microglia cells, plasma corticosterone levels) and behavioral 
(hyperlocomotion, recognition memory impairment) alterations 
observed in APP/PS1 mice related to AD. As shown in Figures 2A–D, 
RE reduced the number of hippocampal Aβ plaques stained by anti-
6-E10 antibody in APP/PS1 mice (F2,14 = 42.68; p = 0.0001; one-way 
ANOVA followed by the Dunnett’s post-test).

Furthermore, as shown by Iba-1 immune staining in Figure 3, RE 
increased the total number of microglial cells (D: F2,12  = 36.14; 
p = 0.0001; one-way ANOVA followed by the Dunnett’s post-test), as 

well as the number (E: F2,13 = 141.07; p = 0.0001; one-way ANOVA 
followed by the Dunnett’s post-test) and area (F: F2,12  = 10.38; 
p = 0.0024; one-way ANOVA followed by the Dunnett’s post-test) of 
microglial cells around Aβ plaques in the hippocampus of APP/PS1 
mice, when compared to CTRL or APP/PS1 sedentary animals 
(one-way ANOVA followed by the Dunnett’s post-test) suggesting the 
regulation of neuroinflammation.

Because augmented corticosterone activates BACE1, the enzyme 
responsible for the processing of APP via the amyloidogenic pathway 
and the consequent formation of Aβ peptides (Green et al., 2006; 
Calvo-Rodriguez et  al., 2019; Zhang H. et  al., 2021), it would 
be expected that reduced corticosterone levels as a result of RE would 

A B

C

D

FIGURE 2

Resistance exercise reduced the number Aβ plaques in the hippocampus of APP/PS1 mice. Representative photomicrographs (scale bar = 40 μm) 
showing Aβ plaques (arrows) in hippocampal sections of mice from CTRL (A), APP/PS1 (B), and APP/PS1 + RE (C) groups. Graph values (mean ± standard 
error of the mean) represent the number of Aβ plaques labeled with 6-E10 (D). Asterisks indicate significant differences between groups (*p < 0.05; 
one-way ANOVA followed by the Dunnett’s posttest), n = 5–6 animals/group.
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FIGURE 3

Resistance exercise increased the number and the recruitment of microglial cells around Aβ plaques in the hippocampus of APP/PS1 mice compared 
to CTRL or APP/PS1 sedentary animals. Representative photomicrographs (scale bar = 50 μm) of immunofluorescence of Aβ plaques (6-E10, green), 
microglia (Iba-1, red), and double-stained (6-E10, green + Iba-1, red) with nuclear marker (DAPI, blue) shown in hippocampal sections of mice from 
CTRL (A), APP/PS1 (B), or APP/PS1 + RE (C) groups, as indicated by arrows. Graph values (mean ± standard error of mean) represent the total number of 
Iba-1 positive cells (D), the number of Iba-1 positive cells around the Aβ plaques (E), and the area of Iba-1 positive cells around the Aβ plaques (F). One-
way ANOVA followed by the Dunnett’s post-test, *p < 0.05, n = 4–6 animals/group.
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be responsible for the reduction of the amount of hippocampal Aβ 
plaques in APP/PS1 mice. Indeed, RE decreased plasma corticosterone 
levels in APP/PS1 (F2,13 = 4.792; p = 0.0276; one-way ANOVA followed 
by the Dunnett’s post-test), as shown in Figure 4.

Finally, RE prevented the occurrence of behaviors presented by the 
transgenic mice such as the increase in total locomotion (A: H = 16.83, 
p = 0.0002) and the decrease in the percentage of central crossings (B: 
H = 14.95, p = 0.0006) of APP/PS1 mice exposed to the open field test 
(Kruskal-Wallis’ test followed by Dunn’s post hoc), as shown in Figure 5.

However, no difference between groups in the discrimination 
index for the novel object recognition test (F2,39 = 1.191; p = 0.3147; 
one-way ANOVA) was observed (Figure 6).

4. Discussion

Compared to their non-mutant littermates, APP/PS1 transgenic 
mice exhibited greater amount of hippocampal Aβ plaques (measured 
by the increase of 6-E10 positive cells immune stained) and higher 
plasma corticosterone levels, which were associated with increased 
locomotion and decreased central crossings in the open field test. 
Despite these alterations, 6–7-month-old APP/PS1 mice did not display 
any memory impairment in the novel object recognition test when 
compared with CTRL animals. Interestingly, we showed for the first 
time that an intermittent protocol of RE every other day for 4 weeks 
with progressive load, normalized these behavioral and molecular 
alterations observed in APP/PS1 mice to CTRL levels. In addition, RE 
increased the number of Iba-1 positive cells mainly around Aβ peptide 
deposits in the hippocampus of APP/PS1 mice, suggesting that amyloid 
plaques lead to the recruitment of microglial cells.

One of the first neuropathological hallmarks of AD is the 
presence of senile plaques formed by Aβ peptide deposition 
(Alzheimer, 1907; De Ture and Dickson, 2019). Recently, studies have 
shown a direct correlation between the reduction of Aβ load, size and 
quantity of Aβ plaques, and physical exercise (Brown et al., 2019; De 
Almeida et al., 2022). Several mechanisms by which exercise alleviates 
amyloid pathology have been proposed, including expression 
downregulation of enzymes responsible for the formation of Aβ 
(Alkadhi and Dao, 2018; Zhang et al., 2018), reduction of astrogliosis 
(Liu et al., 2020), and modulation of microglial activity (Hashiguchi 
et al., 2020; Liu et al., 2020). Exercise can also enhance expression of 
Aβ-degrading enzymes, such as neprilisin-2, insulin-degrading 

FIGURE 4

Resistance exercise decreased plasma corticosterone levels in APP/
PS1 mice. Values (mean ± standard error of the mean) represent 
plasma corticosterone concentration (nM). One-way ANOVA 
followed by the Dunnett’s post-test, *p < 0.05, n = 5–6 animals/
group.

FIGURE 5

Resistance exercise prevented the occurrence of behaviors presented by the transgenic mice such as the increase in total locomotion (A) and the 
decrease in the percentage of central crossings (B) of APP/PS1 mice in the open field test to CTRL levels. Values (median ± interquartile range) represent 
the number of total crossings (A) or the percentage of central crossings (B) of mice in the open field test. Kruskal-Wallis’ test followed by the Dunn’s 
post hoc, *p < 0.05, n = 13–15 animals/group.
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enzyme, and proteasome (Quan et al., 2020; Vasconcelos-Filho et al., 
2021; Xu et al., 2022). Moreover, exercise may have a greater effect on 
amyloid pathology in the early stages of the disease (Huuha et al., 
2022), suggesting that the benefits of exercise in modulating the 
burden of Aβ may depend on the age, and the stage of the disease 
(Azevedo et  al., 2023). According to our results, RE reduced the 
number of Aβ plaques in the hippocampus of these animals, 
corroborating studies that also showed the clearance of Aβ after a RE 
program (Özbeyli et al., 2017; Liu et al., 2020; Pena et al., 2020), 
although others that have shown a reduction in the volume of plaques 
(Hashiguchi et al., 2020) or expression of Aβ peptide (Pena et al., 
2020) could not find differences in the levels of the protein APP 
(Hashiguchi et al., 2020; Pena et al., 2020).

Another hallmark of AD is the exacerbation of a 
neuroinflammatory responses mediated primarily by the recruitment 
and stimulation of microglial cells in pro-inflammatory state 
(Ardura-Fabregat et  al., 2017). Indeed, the presence of activated 
microglia in the AD brain is found in close association with amyloid 
plaques. In the initial processes of the disease, activation of microglia 
with phagocytic activity can serve to remove Aβ peptides, and protect 
the brain from pathogens by removing cellular debris, producing and 
releasing pro- and anti-inflammatory cytokines in an attempt to 
maintain cerebral homeostasis (Mangialasche et al., 2010; Gelman 
et al., 2018). However, it is known that, as the disease progresses, Aβ 
deposits accumulate in the hippocampus leading to increasing 
neuroinflammatory processes (Jardanhazi-Kurutz et  al., 2010). 
Subsequent chronic microglial activation that occurs throughout 
neurodegenerative processes can become harmful, leading to failures 
and dysfunctions in the cytokine production as well as in the 

capability of phagocyting and clearing Aβ oligomers (Hernandez et 
al., 2010; Baik et al., 2016; Hickman et al., 2018; Zucchella et al., 
2018). In an elegant study, Daria et al. showed that the clearance and 
phagocytic function of the amyloid plaque of the aged microglia was 
recovered by exposing the ancient microglia to conditioned medium 
of young microglia, this was sufficient to induce microglial 
proliferation and reduce the size of the amyloid plaque (Daria 
et al., 2017).

Interestingly, RE increased the number of microglial cells in the 
hippocampus of APP/PS1 mice. In addition, we observed that these 
cells are preferentially located around the plaques, and the number 
(Figure  3B) and area (Figure  3C) covered by Iba-1 positive cells 
surrounding the β-amyloid plaques were increased in APP/PS1 + RE 
mice, but not in the transgenic sedentary animals, corroborating 
another study showing that microglia around the amyloid plaques 
can protect the surrounding environment by forming a barrier of 
processes that condense the plaques (Condello et al., 2015). In fact, it 
has been described that exercise is capable of reducing 
neuroinflammation by modulating microglial activation, and 
consequently diminushing pro-inflammatory cytokine levels and 
improving the pathogenesis of AD (for review see Kelly, 2018; De 
Sousa et al., 2021; De Almeida et al., 2022). It has also been shown 
that exercise can shift activated microglia from a pro-inflammatory 
M1 to an anti-inflammatory M2 phenotype in a sporadic AD model 
(Lu et  al., 2017), together with studies that showed that exercise 
induces microglia proliferation and increases gene expression in 
microglia of a pro-neurogenic phenotype (Ehninger and 
Kempermann, 2003; Littlefield et  al., 2015). Therefore, the 
improvement observed in RE animals may be related to a change in 
exercise-triggered microglial activity, moving from a 
pro-inflammatory to an anti-inflammatory state. Although this issue 
has not been addressed here, it is plausible that RE could induce an 
increase in the anti-inflammatory phenotype of the microglial cells 
(or a decrease in the pro-inflammatory phenotype), which in turn 
could contribute to the decrease in Aβ load. Thus, we can speculate 
that it would not necessarily be associated with a decreased number 
of microglial cells, but rather with changes in microglial 
M1 and M2 phenotype patterning.

The hyperlocomotion shown by APP/PS1 mice in the open field 
test corroborates previous studies (Hooijmans et al., 2009; Cheng 
et al., 2014), and has been associated with agitation and increased 
locomotor activity observed in patients with AD (Chung and 
Cummings, 2000). These behaviors were reduced by RE, suggesting 
that this modality of physical exercise can improve AD-related 
behaviors as described in the literature (Zhou et al., 2022; Braz de 
Oliveira et al., 2023).

Several human studies have shown the positive impact of aerobic 
exercise on individuals diagnosed with AD (Choi et al., 2018; Gaitán 
et al., 2021). In animal models, voluntary exercise resulted in a lower 
deposition of Aβ in the hippocampus (Cassilhas et al., 2012; Kennedy 
et  al., 2017), and improved spatial memory in Morris’s maze of 
transgenic AD mice (Tapia-Rojas et al., 2016). More particularly, also 
RE showed positive effects on human brain function (Borst et al., 
2001; Cassilhas et al., 2007; Arazi et al., 2021; Castaño et al., 2022), 
and on memory deficits of animal models of AD (for review see 
Azevedo et al., 2023). RE is likely to exert its effects via mechanisms 
distinct from those of aerobic exercise (Barha et al., 2017; Tsai et al., 
2017; Gaitán et al., 2021). For example, Cassilhas et al. 2012 showed 

FIGURE 6

Seven-month-old APP/PS1 mice showed no impairment in short-
term recognition memory. Values (mean ± standard error of the 
mean) represent the discrimination index for the novel object 
recognition test which was calculated by the ratio of the time spent 
on the new object minus the time spent in the familiar object to the 
total time spent on both objects. One-way ANOVA, n = 12–15 
animals/group.
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that both aerobic and RE improves spatial memory activating distinct 
molecular mechanisms. Aerobic exercise modulates BDNF/TrkB and 
-CaMKII, whereas RE activates IGF-1/IGF-1R and AKT pathways.

Regarding the novel object recognition test, our results corroborate 
data from the literature showing that 6-7-month-old APP/PS1 animals 
present no impairment in recognition memory (Cheng et al., 2014). 
Studies indicate that deficits in recognition memory increase with age 
in APP/PS1 mice (Jardanhazi-Kurutz et al., 2010; Qiu et al., 2016; 
Georgevsky et al., 2019). In addition to age, the type of protocol used 
may also influence the behavioral response. One of the factors that 
must be controlled is the level of stress that animals were exposed to, 
which can be assessed by measuring glucocorticoid levels (Mormède 
et al., 2007). As shown before, both stress and AD increase the levels of 
circulating glucocorticoids (Umegaki et  al., 2000). Furthermore, 
epidemiologic clinical studies suggest the use of the analysis of long-
term cortisol measurements as a biomarker to help the diagnosis of 
people with AD (Ennis et al., 2017). A previous study showed that 
9-month-old APP/PS1 transgenic mice exhibit high plasma 
corticosterone levels (Zhang S. Q. et  al., 2021). Moreover, chronic 
administration of corticosterone accelerates cognitive impairment and 
increases Aβ plaque formation in the hippocampus and prefrontal 
cortex of these animals (Zhang S. Q. et al., 2021). Other animal models 
for the study of AD, such as 3 × TgDA, also show increased plasma 
levels of corticosterone when compared with the control group (Green 
et al., 2006). In order to investigate whether the RE protocol used was 
stressful for the animals, we measured the plasma corticosterone levels. 
According to our hypothesis, RE was not stressful for the animals but 
decreased the plasma corticosterone levels presented by APP/PS1 mice.

Since increased levels of corticosterone induces activation of 
BACE1, the enzyme responsible for processing APP via the 
amyloidogenic pathway and consequent formation of Aβ peptides 
(Green et al., 2006; Calvo-Rodriguez et al., 2019; Zhang H. et al., 2021), 
we speculate that the decrease in corticosterone levels induced by RE 
contributes to the decrease in hippocampal Aβ plaques of APP/PS1 
mice. Together, these factors may have contributed to the normalization 
of locomotor behavior in APP/PS1 animals subjected to RE.

Overall, this study highlights the beneficial effects of RE training 
as a complementary treatment of AD, a topic that has recently been 
addressed and reviewed by our research group (Azevedo et al., 2023).
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