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Opioids, sleep, analgesia and
respiratory depression: Their
convergence on Mu (µ)-opioid
receptors in the parabrachial area
Nicole Lynch, Janayna D. Lima, Richard L. Spinieli and
Satvinder Kaur*

Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA, United States

Opioids provide analgesia, as well as modulate sleep and respiration, all by

possibly acting on the µ-opioid receptors (MOR). MOR’s are ubiquitously

present throughout the brain, posing a challenge for understanding the precise

anatomical substrates that mediate opioid induced respiratory depression (OIRD)

that ultimately kills most users. Sleep is a major modulator not only of

pain perception, but also for changing the efficacy of opioids as analgesics.

Therefore, sleep disturbances are major risk factors for developing opioid overuse,

withdrawal, poor treatment response for pain, and addiction relapse. Despite

challenges to resolve the neural substrates of respiratory malfunctions during

opioid overdose, two main areas, the pre-Bötzinger complex (preBötC) in the

medulla and the parabrachial (PB) complex have been implicated in regulating

respiratory depression. More recent studies suggest that it is mediation by the PB

that causes OIRD. The PB also act as a major node in the upper brain stem that

not only receives input from the chemosensory areas in medulla, but also receives

nociceptive information from spinal cord. We have previously shown that the PB

neurons play an important role in mediating arousal from sleep in response to

hypercapnia by its projections to the forebrain arousal centers, and it may also act

as a major relay for the pain stimuli. However, due to heterogeneity of cells in the

PB, their precise roles in regulating, sleep, analgesia, and respiratory depression,

needs addressing. This review sheds light on interactions between sleep and pain,

along with dissecting the elements that adversely affects respiration.

KEYWORDS

analgesia, opioid induced respiratory depression, opioid use disorder, opioid tolerance,
sleep-loss

Introduction

Physical pain is a guaranteed experience of just about any existence, yet opioids, one of
the most effective treatments for pain, kills about 220 people per day in the United States
(Centers for Disease Control Prevention [CDC], 2022). Initially declared an epidemic by
the president in 2017, the opioid crisis has only gotten worse since then with opioid-related
overdose deaths increasing by 44% in the following 3 years (National Institutes of Health
[NIH], 2015). This is no surprise given that 1 in 5 people in the US, and globally, suffer from
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chronic pain (Goldberg and McGee, 2011; Yong et al., 2022).
Used for thousands of years for pain and sedation, opioids first
became commonly prescribed after new standards and regulations
of pain management were established by the United States in 2000.
Combined with incentives from the pharmaceutical manufacturing
companies, and a lack of suitable alternatives, opioid prescribing
quickly turned into over-prescribing (Jones et al., 2018). Significant
research has since looked at opioids and the effect of prolonged use,
finding that 1 in 4 patients receiving long term opioid treatment
become addicted (Centers for Disease Control Prevention [CDC],
2017). Most commonly, long term users develop an opioid use
disorder (OUD), which is a chronic relapsing disorder caused
by intense cravings, increased opioid tolerance, and avoidance of
withdrawal symptoms (Strang et al., 2020; Dydyk et al., 2022). The
addictive quality of opioids have been attributed to the feeling of
euphoria, in addition to analgesia, that the user experiences (White
and Irvine, 1999). Over 16 million people worldwide, including 2.1
million in the US, suffer from an OUD of which 20% are estimated
to eventually die from an overdose (Dydyk et al., 2022). Respiratory
depression, specifically a decrease in respiratory rate and tidal
volume, is ultimately what causes fatality from opioids (White
and Irvine, 1999; Dahan et al., 2001; Pattinson, 2008). Overdose
fatalities are common because, with repeated use, chronic opioid
users gradually increase their dosage amounts (opioid tolerance)
to achieve the same level of pain relief, slowly approaching
amounts (White and Irvine, 1999) that depress all phases of
respiratory activity (rate, minute volume, and tidal exchange)
and produce irregular breathings (Pattinson, 2008; Dahan et al.,
2010; Ramirez et al., 2021). Opioid analgesics including fentanyl
depress respiration primarily by reducing the responsiveness of
brain−stem respiratory centers to carbon dioxide (CO2) (Kirby
and McQueen, 1986), therefore, opioids are also well-known to be
associated with increased incidence of sleep-disordered breathing
(SDB) pathology (Webster et al., 2008; Correa et al., 2015). Due to
this, the infants less than 6 months old, opioid−naïve patients, the
elderly, and those who have coexisting conditions such as chronic
pulmonary disease and major organ failure, or are receiving other
central nervous system (CNS) depressants, are some of the sub-
populations that are at greater risk of opioid induced respiratory
depression (OIRD).

In addition to respiratory depression, opioids also increase
cardiovascular events, sleep disorders, clinical depression,
hyperalgesia, risk of bone fractures, hormone dysregulation,
immunosuppression, constipation, sedation, and dizziness
among others (Baldini et al., 2012). In fact, sleep disruption
(SD) occurs even in acute administration of opioids in healthy
individuals, and contributes not only to the development of
opioid dependence, but also relapse (Tripathi et al., 2020).
A side effect with its own serious complications, sleep apnea
is commonly experienced by opioid users and increases
patients’ risk of coronary artery disease, heart attacks, heart
failure, and strokes (Guilleminault et al., 2010; Schwarzer
et al., 2015). On the contrary, treating OUD is in itself an
effective treatment for sleep apnea, demonstrating the high
interconnectivity of the opioid-induced analgesia and respiration
pathways (Schwarzer et al., 2015). Further understanding
of the bidirectional relationships shared between opioids,
sleep, and respiration will help develop targeted therapies for
pain management.

Opioid receptors–their role in
analgesia and respiration

Opioids act on opioid receptors, which are g-couple protein
receptors (GPCRs) and are located throughout the body, both
in the peripheral and central nervous system. There are four
different opioid receptors that are structurally and functionally
different. The delta (δ) opioid receptor, located mostly in the
brain and mesenteric plexus, is responsible for spinal and supra-
spinal analgesia, motor integration, thermoregulation (Mansour
et al., 1988; Al-Hasani and Bruchas, 2011; Dietis et al., 2011).
The kappa (κ) opioid receptor, in, spinal cord, and mesenteric
plexus, produces analgesia, diuresis, food intake, neuroendocrine
function and (Mansour et al., 1988; Al-Hasani and Bruchas, 2011;
Dietis et al., 2011). The nociceptin opioid receptor (NOP), located
in the spinal cord, depending on the concentration of opioids
administered causes analgesia, hyperalgesia, and allodynia. Finally,
the mu (µ) opioid receptor (MOR) derived from the Oprm1
gene, is located throughout the brain, spinal cord, mesenteric
plexus, and submucosal plexus (Dahan et al., 2001; Dietis et al.,
2011). The MOR is responsible for analgesia, sedation, respiratory
depression, bradycardia, nausea, vomiting, and reduction in gastric
motility. MORs alone are responsible for both pain and respiratory
effects of opioids, which are the most adverse and clinically
relevant effects of opioids for prescribing them as analgesics
(Dahan et al., 2001). Other receptor subtypes show minimal effects
on pain or respiration in the absence of MOR, therefore, this
review will focus exclusively on the MOR (Meunier et al., 1995;
Matthes et al., 1996).

Opioid alternatives–blocking
adverse effects of MOR agonists on
respiration

Therapies that rescue respiratory depression following opioid
administration are currently being investigated. Similar to
Naloxone, the widely known non-specific opioid antagonist used
to quickly reverse opioid overdose, non-opioid treatments like
the potassium channel blocker (GAL021), ampakine (CX717),
or 5-HT4(a) receptor antagonists have been shown to rescue
opioid-induced respiratory depression, but not without affecting
analgesia (Manzke et al., 2003; Oertel et al., 2010; Roozekrans
et al., 2014). Though interventions are important to treat opioid
overdose, alternative pain management therapies would be far
more beneficial as they could replace opioids altogether. Novel
GPCRs that primarily activate the G protein pathway with limited
arrestin recruitment, as β-arrestin recruitment by the MOR appears
to contribute to some of the unwanted effects of classical opioids
(Mores et al., 2019), and therefore, these ligands are particularly
interesting as potential targets for pain therapy. For instance,
G-protein-biased µ-opioid receptor (MOR) activation using the
ligands like TRV130, PZM21, and SR17018, may provide analgesia
without the associated side effects of opioids including respiratory
depression (Viscusi et al., 2016; Dahan et al., 2018; Elango et al.,
2021). Additionally, use of poly-pharmacological ligands, which
affect multiple receptor types that act on several different pain
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receptors or pathways, which could eventually summate to the
same analgesic strength of opioids, without affecting respiration
and sleep (Pasquinucci et al., 2021) is also promising. However, to
accurately predict poly-pharmacology would also require high level
of data curation, integration, and methodology development from
various drug delivery disciplines. Peripherally restricted analgesics
that target only peripheral opioid receptors, but not those in the
central nervous system, could provide sufficient analgesia (Che
and Roth, 2021) without the potential adverse effects. While these
therapies seem promising, the lack of effective alternatives so
far to opioids demonstrate the continued importance of further
dissecting different elements of the pain and respiration pathways
that are so much interwoven.

Sleep loss/deprivation as a
modulator of the opioid mediated
analgesia

Numerous studies have investigated the impact of experimental
sleep disturbances on pain perception (Moldofsky, 1995; Iaboni
and Moldofsky, 2008; Finan et al., 2013; Schrimpf et al., 2015),
and despite highly heterogeneous SD protocols, the overall results
point to an increase in pain responses and behaviors when the sleep
is disturbed in otherwise healthy humans, rats, or mice. Studies
in rodents show that sleep loss either in the form of total sleep
(Alexandre et al., 2020) or rapid eye movement (REM) sleep loss
(Nascimento et al., 2007; Skinner et al., 2011) not only increases
pain perception, but also decreases the analgesic efficacy of opioids.
Furthermore, sleep apnea which is commonly experienced by
opioid users, that also results in fragmented sleep, and may be an
additional risk factor in developing opioid tolerance, OUD and
susceptibility to relapse (Doufas et al., 2013; Jaoude et al., 2016;
Ardon et al., 2020).

The loss of opioid efficacy in sleep-deprived individuals
represents a potential major risk at the clinical level that could
likely accelerate the development of tolerance, leading to dose
escalation, and the risk of dependence or overdose. Interestingly,
administration of the non-selective COX1/2 inhibitor ibuprofen
failed to prevent both mechanical and heat hypersensitivity induced
by 9 h of total sleep deprivation in mice and rats (Wodarski
et al., 2015; Alexandre et al., 2020). This was reversed by caffeine
and modafinil, two wake-promoting agents that have no analgesic
activity in rested mice, but immediately normalize pain sensitivity
in sleep-deprived animals, without affecting sleep debt (Alexandre
et al., 2017). A similar study in rats also confirms an unexpected
role for alertness in setting hyperalgesia (Hambrecht-Wiedbusch
et al., 2017). Also studies in humans show that the increase
in prostaglandin production, especially PGE2 is the potential
mediator in sleep-loss induced changes in nociceptive processing
(Haack et al., 2009; Simpson et al., 2020), and sleep loss produces
an apparent loss of drug efficacy when compared to well-rested
individuals. Therefore, there is an urgent need to identify the
brain circuits that are primarily affected by sleep deprivation (e.g.,
over-activated wake circuits), which could be targeted to alter the
efficacy of MORs in providing pain relief without producing opioid
tolerance.

Anatomical substrates for opioid
induced respiratory depression
(OIRD) and analgesia

To understand how pain and respiration pathways are
interconnected, significant research has been done to determine
which brain structures are important in facilitating respiration
and, therefore, are most important in mediating OIRD. Both the
analgesic and respiratory effects of opioid signaling are mediated
by µ receptor 1 (Oprm1), which are inhibitory (Ramirez et al.,
2021). The abundance of Oprm1 expression in the majority
of the respiratory control areas of the brainstem has made it
more challenging to resolve the neural substrates of respiratory
malfunctions during overdose. Two main areas, the pre-Bötzinger
complex (preBötC) in the ventral medulla and the PB complex
in the upper brain stem area (Stucke et al., 2015; Miller
et al., 2017; Varga et al., 2020) are implicated in regulating
OIRD. The medullary ventral respiratory group (VRG) (Onimaru
and Homma, 2006) that regulates inspiration and respiratory
rhythmogenesis (preBötC) receives descending inputs from various
areas including the PB and Kölliker Fuśe (KF) nuclei which
exert significant additional regulatory control (Wang et al., 1993).
Among the medullary VRG, only the preBötC is considered critical
for depressive action of opioids (Mellen et al., 2003; Del Negro
et al., 2018; Sun et al., 2019; Norris et al., 2021). In fact, additional
research has shown that while the preBötC is responsible for
respiratory rhythm generation, it is the PB, specifically, that has
a modulatory effect, especially during OIRD (Eguchi et al., 1987;
Bachmutsky et al., 2020). Further, MORs located in the PB, not
the preBötC or KF, mediate the respiratory response to opioid
administration as inhibition of the PB MORs mimic OIRD, while
activation reverses it (Lalley et al., 2014; Liu et al., 2021). While the
preBötC is important for generating respiration, it is the mediation
by the PB that causes opioid-induced respiratory depression,
making the PB, a structure of focus to dissect the elements that
transmit pain, modulate respiration and sleep.

The PB, located in the rostral hindbrain at the midline of
the pons and hindbrain, is split, medially and laterally, by a
large fiber tract called the superior cerebellar peduncle (Palmiter,
2018). The PB has diverse neuronal populations that express
MORs (PBOprm1) and mediate normal breathing, affected by
modified breathing during hypercapnia challenge (Kaur et al., 2017;
Kaur and Saper, 2019, 2021) and by the OIRD (Hurlé et al.,
1983). MOR-expressing neurons in the PB have been shown to
be specifically important in cardiovascular, gustatory, and pain
functions, which is understandable given their specific projection
patterns to the amygdala, basal forebrain, amygdalo-piriform
transition area, hindbrain reticular formation, and cranial motor
nuclei (Chamberlin et al., 1999; Wilson et al., 2003; Huang et al.,
2021a). Part of the initial difficulty in studying the role of PB MOR-
expressing neurons (PBOprm1) is their high levels of expression
throughout the PB and that opiates can cause both sedation and
wakefulness, depending on the site of action, receptor type, and
dosage (De Andrés and Caballero, 1989).

Direct administration of opioid agonists locally into the PB
results in suppression of respiratory rate, directly contrasting
the results observed following local opioid administration
within the VRG, particularly the preBötC (Krause et al., 2009;
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Mustapic et al., 2010; Stucke et al., 2015). In mice lacking the
MOR, morphine-induced decrease in ventilation was abolished,
suggesting that MOR is the site of action for respiratory effects of
morphine (Dahan et al., 2001). In awake mice, removal of MORs
from PB/KF neurons significantly rescues morphine-induced
respiratory rate depression (Bachmutsky et al., 2020; Varga et al.,
2020). This occurs at a therapeutically relevant analgesic dose
and, importantly also at a very high dose that adversely affects
respiration. By comparison, removal of MORs from preBötC
neurons only rescues morphine-induced rate depression at lower
doses, but at high doses further increases the occurrence of
apneas (Varga et al., 2020). More evidence for the involvement
of PBOprm1 neurons in OIRD pathogenesis comes from a recent
study, where it was shown that PBOprm1 neuronal activity is
tightly correlated with respiratory rate, and this correlation is
abolished following morphine injection (Liu et al., 2021, 2022).
Chemogenetic inhibition of PBOprm1 neurons mimics OIRD
in mice, whereas their activation following morphine injection
rescues respiratory rhythms to baseline levels (Liu et al., 2021).
This suggests that PBOprm1 neurons may play a larger role in OIRD
(Varga et al., 2020; Liu et al., 2021). However, their activation
would inadvertently disrupt sleep and also increase pain sensitivity
(Alexandre et al., 2017, 2020), as activation of most PBOprm1

neurons promotes wakefulness (Kaur et al., 2013, 2017; Qiu et al.,
2016; Kaur and Saper, 2019). Sleep disruption and increased pain
sensitivity are major contributors to the development of increased
opioid dependence, overuse and addiction (Hartwell et al., 2014;
Koller et al., 2019; Huhn, 2021). Therefore, a better understanding
of the PB neuronal subtypes is needed to prevent OIRD while
preserving analgesia and sleep.

Opioids also reduce sensitivity to hypercapnic, hypoxic
ventilatory responses, by acting on the MORs (Dahan et al.,
2001; Pattinson, 2008; Lam et al., 2016) that possibly inhibit the
PBOprm1 neurons. Patients with opioid overdose lack hypercapnic
arousal responses (Dahan et al., 2001; Pattinson, 2008; Lam
et al., 2016). Under normal conditions, cessation of breathing
during sleep (apneas) with obstructive sleep apnea (OSA)
activates the respiratory chemosensory nuclei in the pons, namely,
retrotrapezoid (RTN) and nucleus of solitary tract (NTS) that serve
as relay centers for blood gas information that converges onto
PBOprm1 neurons, which promote arousal and also provide feed-
back to respiratory control centers to increase respiratory drive.
Distinct output pathways of the lateral PB neurons (dorsal vs.
external lateral) may selectively affect the relay of the noxious input
for mediating analgesic and sedative effects of opioids (Chiang
et al., 2020). Calcitonin gene related peptide (CGRP) neurons in the
external lateral part of PB (PBCGRP) are not only critical for relaying
pain signals to the central nucleus of amygdala (CeA) (Neugebauer
and Weidong, 2002; Han et al., 2015; Chen et al., 2017; Bowen et al.,
2020) but this pathway may also transduce affective waking and
cortical arousal in response to hypercapnia (Kaur et al., 2013, 2017;
Qiu et al., 2016; Kaur and Saper, 2019).

Heterogeneity in the PB

The neuronal subtypes in the PB are both diverse and
intermixed (Geerling et al., 2011, 2016, 2017; Huang et al., 2021a;

Yeghiazarians et al., 2021), a difficult combination when trying
to determine the function of each in distinct sensory pathway.
Prior research has relied on structural or location identifiers to
distinguish different cell populations, which is now replaced by
the use of the precise genetic markers that accurately identify the
pivotal structure. Transcription factors like, Lmxb1 and Atoh1
mark two distinct developmental macro-populations (Karthik
et al., 2022) in the PB, where the Lmxb1 population contains gene
markers for FoxP2, Calca and Sat2b, while the Atoh1 contains pro-
dynorphin (pdyn), g-protein coupled receptor (GPR) and FoxP2,
and are located more ventrally (Karthik et al., 2022). Of those,
Calca (encoding CGRP) has been linked to control over pain and
hypercapnia induced arousal (PBCGRP). Fork head box protein
transcription factor (FoxP2) expressing neurons (PBFoxP2) are
located ventrally to that of the Atoh1 population, and are possibly
associated with hypercapnia induced increase in respiration or with
insufficient respiration as in OSA (Kaur and Saper, 2019, 2021;
Karthik et al., 2022).

Advanced molecular tools provide more directed approach
to dissect selective cell types. Use of targeted viral vectors (cre-
dependent) and optogenetics, that specifically act on selective
neuronal subtype and allow us to manipulate (activate or
inhibit) them, while recording the animals for respiration,
electroencephalogram/electromyography (EEG/EMG) signals,
allows us to objectively investigate role of each cell types in pain,
sleep and hypercapnia induced arousal (Kaur et al., 2013, 2017;
Chiang et al., 2019, 2020).

The PB contains a population of glutamatergic neurons that
are part of a chemosensory relay circuit projecting to forebrain
arousal centers (Kaur et al., 2013; Yokota et al., 2015; Qiu et al.,
2016; Saper and Kaur, 2018; Chiang et al., 2019). Calca-expressing
neurons in the PBel (PBCGRP), which have the densest MORs
expression in the PB (Wolinsky et al., 1996; Chamberlin et al., 1999;
Miller et al., 2017; Huang et al., 2021b) regulate both pain-induced
arousal (Kuner and Kuner, 2021) and respiration (Kaur et al., 2013,
2017; Qiu et al., 2016; Kaur and Saper, 2019). Thus opioid-induced
inhibition of these neurons likely contributes to the sedative effects
of opioids and can possibly explain their interconnected role
in regulating pain, sleep and respiratory depression to opioids.
Stimulation of PBelCGRP neurons affect cortical arousal, while
their inhibition decreased hypercapnic arousal responses without
affecting the ventilatory drive (Kaur et al., 2013, 2017, 2020;
Kaur and Saper, 2019, 2021). In addition, the neurons located
in the dorsal PB and caudal to the KF (that are FoxP2 or pdyn
positive) also express Oprm1 (Chamberlin et al., 1999; Huang
et al., 2021a). Our preliminary studies with manipulating and
recording neuronal activity of the PBFoxP2 neurons shows that
they are activated in response to hypercapnia, and further that
their activity correlates with breathing and inhibiting these neurons
reduces the minute ventilation in response to hypercapnia, suggests
that PBFoxP2 neurons could likely mediate OIRD. Hypercapnia
also activates a subset of FoxP2 neurons in the centro-lateral
that express pro-dynorphin (PBpdyn). Thus, differential expression
of Oprm1 on these three types of PB neurons (Huang et al.,
2021a,b; Karthik et al., 2022) may contribute to the differential
response to opioids, critical in defining respiratory depression and
analgesic effects (Figure 1). Genetic silencing of PBCGRP neurons
also block pain responses and memory formation, whereas their
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FIGURE 1

Schematic showing the possible role of the parabrachial µ-opioid receptor (MOR) expressing neurons (PBOprm1) in regulating opioid induced
respiratory depression (OIRD), analgesia, and sleep: The neurons in the centro lateral sub-nucleus of parabrachial area (PBcl) and Kölliker Fuśe (KF)
that express FoxP2 (PBclFoxP2) and those that express pro-dynorphin (PBclpdyn) may critically modulate respiration through their descending
projections to the medullary ventral respiratory group (VRG). Opioids at incrementally higher dose (due to developing opioid tolerance) may act by
inhibiting the PBclFoxP2/PBclpdyn neurons resulting in a continuous cycle of progressively depressed respiration that can prove to be fatal. Both
hypercapnia and hypoxia stimuli (during apneic events) are conveyed to the PB via the retrotrapezoid (RTN) and nucleus of solitary tract (NTS), and
these pathways are also inhibited by opioids use and tolerance. The interconnectivity of the PBOprm1 neurons, specifically between the
PBclFoxP2/PBclpdyn and PBelCGRP subpopulations may explain cortical arousal that results from respiratory stress during sleep apnea. The PB neurons
that express CGRP (PBelCGRP) regulate waking up in response to pain, hypercapnia and aversive stimuli through their projections to the forebrain
arousal areas such as, central nucleus of amygdala (CeA); the bed nucleus of stria terminalis (BNST); the basal forebrain (BF) and the lateral
hypothalamus (LH). Opioids may provide analgesia and prevent sleep disruption (SD) by inhibiting the PBelCGRP neurons that act as relay node for
the pain stimulus which is transmitted to these neurons via the spinal cord. In contrast, inadequate sleep over-activate this cortical arousal circuit,
inclusive of the PBelCGRP neurons, which causes decreased sensitivity to inhibition from opioids, also known as opioid tolerance. Sleep disruption, in
itself, also cause increased pain sensitivity, with decreasing levels of opioid induced analgesia. The resulting continuous cycle accelerates opioid
tolerance while progressively reducing opioid analgesia.

optogenetic stimulation produces hyperalgesia aversive memory
(Chen et al., 2017; Campos et al., 2018; Sun et al., 2020). PBpdyn

expressing neurons in the dorsal nucleus of the PB regulate body
temperature (Norris et al., 2021) and also provide cellular substrate
for transmission of nociceptive information to the PBCGRP efferent
(Chiang et al., 2019, 2020), which is important in pain processing.

Insomnia, pain induced sleep loss and apnea induced
sleep fragmentation may cause over activation of the arousal
circuits, that includes all the wake-active PB neurons (Figure 1)
and their projection targets, which are usually inhibited by
opioids to produce potent analgesia (Jasmin et al., 1994; Pieh
et al., 2011; Hartwell et al., 2014; Jaoude et al., 2016; Bertz
et al., 2019). In addition, opioids also enhance the inhibition
of descending pain-modulating pathways contributing to anti-
nociception (Millan, 2002; Lueptow et al., 2018). Sleep-loss
alters these pathways as well altering the nociceptive processing,
contributing to the development of opioid tolerance. Higher
opioid doses further exacerbates sleep disturbances (O’Brien
et al., 2021) increasing the risk for the associated respiratory
depression.

With further increase in opioid-related deaths during the
COVID-19 pandemic, it’s clear that the opioid crisis continues to
be a significant health concern for unforeseeable future. Since sleep,

respiration, and pain are so interconnected, pain-induced arousal
and opioid-induced respiratory depression pathways possibly
intersect at the PB, making this particularly vital to dissect its
heterogeneous cell population and its role in regulating pain,
respiration, sleep as well as their interaction with one another.
This will also provide insight into the additive effects of alcohol
use disorder, which may employ the same neuronal pathway, as
is evidenced by growing research on the use of MOR antagonists
to treat alcoholism (Drobes et al., 2003; Ripley et al., 2015; Ben
Hamida et al., 2019). As opioids and alcohol both cause systemic
depression, largely acting on MOR and GABA, respectively, to
mediate inhibition (Chamberlin et al., 1999; Morrow et al., 2001;
Ben Hamida et al., 2019). Frequent users of both alcohol and
opioids also experience chronic pain and hyperalgesia which is
further exacerbated by use of these substances together (Witkiewitz
and Vowles, 2018).

More studies are required targeted at characterizing the role
of different PB neuronal subsets in mediating the OIRD, which
will help design better therapeutics that will prevent not only
respiratory depression, but will also help spare opioid induced
analgesia and prevent pain induced SD and fragmentation.
Alternatively, given the bidirectional relationship between pain and
sleep, treating the disturbed sleep may also be the key to preventing
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opioid overuse, withdrawal, poor treatment response for pain and
addiction relapse.
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