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What multiplexing means for the
interpretation of functional MRI
data
Cheryl A. Olman*

Department of Psychology, University of Minnesota, Minneapolis, MN, United States

Despite technology advances that have enabled routine acquisition of

functional MRI data with sub-millimeter resolution, the inferences that cognitive

neuroscientists must make to link fMRI data to behavior are complicated. Thus,

a single dataset subjected to different analyses can be interpreted in different

ways. This article presents two optical analogies that can be useful for framing

fMRI analyses in a way that allows for multiple interpretations of fMRI data to

be valid simultaneously without undermining each other. The first is reflection:

when an object is reflected in a mirrored surface, it appears as if the reflected

object is sharing space with the mirrored object, but of course it is not. This

analogy can be a good guide for interpreting the fMRI signal, since even at

sub-millimeter resolutions the signal is determined by a mixture of local and

long-range neural computations. The second is refraction. If we view an object

through a multi-faceted prism or gemstone, our view will change–sometimes

dramatically–depending on our viewing angle. In the same way, interpretation of

fMRI data (inference of underlying neuronal activity) can and should be different

depending on the analysis approach. Rather than representing a weakness of the

methodology, or the superiority of one approach over the other (for example,

simple regression analysis versus multi-voxel pattern analysis), this is an expected

consequence of how information is multiplexed in the neural networks of

the brain: multiple streams of information are simultaneously present in each

location. The fact that any one analysis typically shows only one view of the

data also puts some parentheses around fMRI practitioners’ constant search for

ground truth against which to compare their data. By holding our interpretations

lightly and understanding that many interpretations of the data can all be true

at the same time, we do a better job of preparing ourselves to appreciate, and

eventually understand, the complexity of the brain and the behavior it produces.
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1. Introduction and outline

This article has five main sections. First, a background section contains three very brief
overviews that summarize some key background for this perspective and point to more in-
depth review articles for readers unfamiliar with the topics. Next, a short section defines
and summarizes the problem of multiplexing. Then, two sections present two different
analogies–reflection and refraction–for thinking about what multiplexing means for the
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interpretation of fMRI data. Finally, a summary section highlights
three main consequences of multiplexing: the fact that there
are always multiple possible interpretations for each fMRI result
does not invalidate the data; we can learn something from
fMRI experiments even when they cannot be validated against
ground-truth datasets and experiments; feedforward and feedback
processes might be impossible to separate in our data.

1.1. Neural architecture

First, we will consider the neural architecture of visual pathways
since examples from vision science will support key elements
of our argument. Although feedforward and feedback pathways
are well-defined (Felleman and van Essen, 1991; Callaway, 2004;
Barone et al., 2020), it is rare to observe unidirectional information
flow in the brain. Visual representations of scenes and objects do
make their way up through the feedforward pathways of the early
visual hierarchy to eventually reach higher visual areas and non-
visual areas to guide behavior. However, at each stage, deep-layer
pyramidal neurons begin to integrate/summarize the state of the
local network and feed that information back to earlier stages of
information processing, morphing the signal as it rises through the
hierarchy. Thus, the firing rates of neurons in V1 are only predicted
by retinal inputs for the first 50–80 ms (Gieselmann and Thiele,
2022). After that, we need knowledge of activity throughout the
visual and non-visual networks of the brain in order to predict
neural responses in even low-level sensory regions.

1.2. High-resolution fMRI

Next, we will consider the spatial scale of fMRI data compared
to the neural networks we want to study. Over the past decade, there
has been a notable increase in the availability of ultra high-field
scanners and sub-millimeter data acquisition techniques. Advances
in both acquisition (Adriany et al., 2012; Huber et al., 2017) and
denoising (Vizioli et al., 2021) approaches are facilitating the wide-
spread use of depth-resolved fMRI (Koopmans et al., 2010; Olman
et al., 2012; Kok et al., 2016; Jia et al., 2020; de Hollander et al.,
2021), which seeks to distinguish fMRI responses that are driven
primarily by feedforward, intra-regional computations, or feedback
based on the location of the response in the depth of cortex.
While depth-resolved fMRI signals do probe neural populations
that might be biased toward feedforward or feedback responses,
fMRI cannot separate these pathways, which are mixed at every
depth. This is not a unique limitation of the methodology–even
electrophysiological or optical measures that can isolate responses
of individual neurons must also wrestle with the fact that the
membrane potential, spiking rate, and spiking pattern of each unit
is determined by a different mixture of feedforward, lateral, and
feedback signals (Figure 1).

1.3. Theoretical neuroscience

Finally, we want to bring into the conversation some
perspectives from computational neuroscience, which considers

questions about what information is represented in these neural
networks, and why. Most leading theories include the idea that
the computation is iterative: while different regions of the brain
do produce responses that are selective for different aspects of
a given task, none works in isolation and feedforward/feedback
loops are pervasive (Kawato et al., 1993; Rao and Ballard, 1999;
Friston, 2003; Aitchison and Lengyel, 2017). Not only does it seem
as though our brains, in everyday life, use sensory data to update
an existing understanding of the world (as opposed to building
that understanding from scratch in each moment) but it also
appears as though this updating is accomplished by feedback from
higher to lower visual areas (Bastos et al., 2012). Thus, there are at
least two kinds of signals simultaneously present in a given area
of the brain: signals from the feedforward pathway and signals
from the feedback pathway. Given the existing electrophysiological
evidence for the heterogeneity of contextual modulation of neurons
in primary visual cortex at each depth in cortex, it is likely
that competing hypotheses are represented in spatially mixed
neural populations, some receiving stronger feedforward inputs
and others receiving stronger feedback inputs (Figure 1C). Thus,
it is very difficult to predict–either for a single neuron or for a
well-localized, 0.5 mm voxel–which computation is more strongly
reflected in the mixture of field potentials and action potentials that
determines the local cortical response.

2. Multiplexing is not a surprise

At this point, we’ve laid out the basics for an argument that
there is no such thing as “the fMRI response in ___,” where
you can fill in the blank with whatever brain region you are
interested in understanding. Of course, there is a single response,
in the sense that each voxel has a single measured intensity at
a single point in time. But it can be problematic when “the
fMRI response” is used to imply a singular or uniform neural
response, because there is not just one neural population response
in a region or a voxel. The diversity within the population is
striking, and the sources of the signals that influence the local
responses are far flung, such that interleaved sub-populations are
simultaneously representing different sensory and behavioral states
and goals and reflecting computations throughout the brain. This
is the problem of multiplexing, and it will remain with us even
as technology continues to improve and our resolution becomes
more precise.

This problem of multiplexing is not unique to fMRI and
has been considered in single-unit electrophysiology for a long
time. A full understanding of a single neuron’s response requires
not just measurement of the firing rate, but also the timing of
specific spikes which can, for example, multiplex representation
of color and pattern (McClurkin and Optican, 1996). In another
example, the variance of a single neuron’s firing rate might signal
uncertainty (Lengyel and Dayan, 2006). From these and other
examples, it has been well established that, because multiple signals
are multiplexed in even a single neuron’s spiking activity, the
answer to “What information does this neuron represent?” depends
on the techniques we use to ask the question.

Functional MRI researchers have long been cognizant of this
problem, as well, and a large array of analysis techniques are
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available to address the issue on a scale appropriate for fMRI.
Straight-forward univariate analyses estimate response amplitudes
by regressing voxel time series against predictors derived from the
experiment design and behavioral responses. Univariate analyses
are still common and a valuable tool for understanding local
neuronal population activity, but they are rarely considered best
practice if applied in isolation. Multi-voxel pattern analyses,
encoding models, and connectivity analyses are now part of the
standard toolkit for fMRI analysis, and the remaining sections of
this paper argues that their power and popularity come from the
fact that they address the fact that neural population responses are
reflected and refracted in the fMRI signal.

3. Reflection: Treating each fMRI
response as just one node in a
dynamic network

When we see a reflection in a mirror, we generally know that the
object or scene that we are seeing is not actually in the mirror but
is standing or happening outside the mirror. The reflection we see
is made possible by the nature of the mirror–due to metallic polish
or layering of dielectrics, light is turned. So we do learn something
about the makeup of an object when we see a reflection in it; rarely,
however, do we confuse the mirrored surface for the reflected object
we are perceiving.

This section picks three lines of research addressing visual
representations of information in primary visual cortex–imagery
studies, contextual modulation studies, and estimation of receptive
field location–to demonstrate the degree to which visual responses
originating in cortical regions outside V1 are reflected in the V1
fMRI signal. In each case, the nature of the information modulating
the V1 signal is such that it must originate in cortical regions
outside V1, i.e., through feedback pathways. These examples are
selected to illustrate instances in which cortico-cortical feedback
is just another type of input to V1 and highlight the importance
of analysis techniques, such as functional connectivity, that let us
characterize these crucial signals driving V1 responses.

Perhaps the most straightforward situation in which the
V1 fMRI response reflects neural computations that originate
elsewhere in the brain is in studies of visual imagery or expectation.
In these studies, a retinotopically-localized response in V1 is
measured even though there is no stimulus in the corresponding
region of the visual field (i.e., no retinal inputs). If scene context
elsewhere in the visual field suggests structure that should be
present in a blank region of the visual field, the localized V1
responses reflects the implied structure (Muckli et al., 2015; Kok
et al., 2016). If attention is directed to a peripheral object and
participants are asked to perform a difficult feature-discrimination
task on that object, V1 responses in the fovea, where there is no
stimulus, indicate the attended features in the periphery (Williams
et al., 2008). Finally, when participants are trained to recall specific
images, on cue, while viewing a blank screen, the V1 responses
show selectivity for the location and structure of the imagined
images (Breedlove et al., 2020). In each case, the identity of the
stimulus that is not presented, but rather imagined or inferred, can
be decoded (or recovered by the solution of an inverse encoding
model, as discussed below) from the localized V1 response. The

selectivity of these signals is arguably due to a combination of
(1) the response properties of the local neurons (why else would
feedback be targeting these specific retinotopic regions?), and (2)
the visual information representations created by remote neural
populations. However, in these cases, the emergent V1 fMRI
response is fully determined by the observer’s behavioral goals and
not by any feedforward inputs.

An apparently simple but deceptively complex stimulus
paradigm in vision science is orientation-tuned surround
suppression. The apparent simplicity derives from its predictably:
the overall response in a well-localized population of V1 neurons
will be reliably suppressed when a uniform stimulus extends
beyond the (shared) classical receptive field of that population
(Sillito et al., 1995; Shushruth et al., 2013). If a feature contrast, such
as a change in orientation, is introduced between the stimulus in the
central (classical RF) region and the stimulus in the extra-classical
surround region, the suppression will be reduced or eliminated.
Individual neurons might actually experience response facilitation
due to the feature contrast, and this is where the complexity begins
to enter the picture. Several different V1-intrinsic and -extrinsic
factors contribute to the suppression and release from suppression
(Zipser et al., 1996; Coen-Cagli et al., 2015), individual neurons
experience these effects to different degrees (Cavanaugh et al.,
2002), and the magnitude of the effects depends on how the
observer’s attention is directed (Roberts et al., 2007; Reynolds and
Heeger, 2009). Functional MRI studies of these contrast surround
suppression phenomena have produced mixed results, ranging
from results that are oppose predictions from electrophysiology
experiments (Schumacher and Olman, 2010), to results that show
little sensitivity of the univariate fMRI response to orientation
(Schallmo et al., 2016), to results that nicely match predictions from
electrophysiology and behavioral measures of perceived contrast
(Zenger-Landolt and Heeger, 2003). These disparate results can be
reconciled if a wider range of behavior-dependent, cortico-cortical
feedback signals to V1, e.g., 2nd-order contrast (Flevaris and
Murray, 2015) are included among the explanatory variables that
predict the V1 fMRI response magnitude. Thus, the V1 fMRI
response cannot be predicted solely from firing rates measured
in similar electrophysiology experiments. Accurate prediction of
the V1 fMRI response requires us to include a component of the
response that reflects feedback from other regions in the brain
(Figure 2A).

Finally, If there is one neuroscientific claim that is broadly
accepted since its first demonstration (Hubel and Wiesel, 1959), it is
that neurons in primary visual cortex (V1) have spatially restricted
receptive fields: a response from a given V1 neuron reliably signals
the presence of an object (real or imagined) in that location.
However, the vision research literature is rich with examples of
the malleability of receptive fields (e.g., David et al., 2004) and
we now understand even the V1 receptive field location to be an
emergent property of the neural network–something that cannot
be completely defined from anatomical measurements of the inputs
and outputs for a neuron, but must be measured as a result of
aggregated excitatory and inhibitory inputs to a neuron while the
stimulus is present. The term “feedback receptive field” has recently
been coined (Keller et al., 2020; Kirchberger et al., 2022) to describe
the reliable way in which V1 neurons’ responses depend on cortico-
cortical connections in addition to thalamocortical connections.
What is important for this argument is that it is an emergent
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FIGURE 1

Even for fMRI data with sub-millimeter resolution, analysis and interpretation need to address the fact that multiple signals coexist at every location.
(A) A simplified network model of deep (toward the bottom), middle, and superficial neural populations (circles: black = excitatory; red = inhibitory)
and connections (arrows) in primary visual cortex. Proportions are not represented. (B) Copies of the first panel highlight the fact that, at the
mesoscopic level (0.1–0.5 mm), neural populations receive both feedforward and feedback connections. (C) At the microscopic (single-neuron
level) it is likely that different neurons receive different projections in different proportions. This is an entirely hypothetical illustration of superficial
pyramidal neurons receiving both feedforward, horizontal (intermediate-range), and feedback (long-range) inputs, color coded according to the
degree to which each neuron is modulated by each type of input. This is not intended to have specific anatomical validity, but to illustrate the
likelihood that even the best-localized population has a heterogeneous feedforward/feedback balance, allowing simultaneous representation of
different potential behavioral or perceptual states.

FIGURE 2

The analogies of reflection and refraction are helpful for framing population responses in V1 as a function of spatial context. (A) Reflection:
feed-forward receptive fields in V1 are determined by thalamic inputs to the brain (cyan circle: population receptive field location), but the local V1
fMRI response can also reflect strong drive from cortical sources (gray arrows from extrastriate regions, VX). The reflection analogy refers to the fact
that this non-zero fMRI response is reflecting figure/ground segmentation computations from other regions in the brain. This allows the local V1
population to perform an important comparison between new sensory information and expected scene configuration. Task-dependent connectivity
analyses will discover that correlations between unmodeled fluctuations in the V1 signal and extrastriate (VX) signals are strong during the second
condition. (B) Refraction: different analyses will show different patterns of response, but one does not invalidate the other. On the left, colored bars
indicate rough predictions of responses in a population receptive field (cyan dashed circle) to stimuli that invoke different levels of feedforward and
feedback inputs to the local population (approximately the size of a 3 × 3 × 3 mm fMRI voxels). Top row: stimulation of just the classical receptive
field would produce dominantly feedforward responses (pinkish colors), which are strongest in the middle of the gray matter thickness. Bar height
represents relative fMRI drive of neurons participating in that pathway; bar width represents estimates from recent literature of the relative fMRI
response elicited by feedforward, horizontal, or feedback pathways. Bottom row: with no retinal drive in the classical receptive fields, horizontal and
feedback connections will still provide input to the local population whose receptive field is stimulated. Relatively high green bars indicate feedback
inputs due to strong figure/ground segmentation cues. Just as the heights and widths of the colored bars on the left are only rough summaries of
the anatomical literature, there are also not yet enough data to constrain precise predictions of fMRI response from the diverse neuronal population
responses. However, for the sake of argument, illustrative predictions are shown on the right. A depth-resolved analysis with sub-millimeter
resolution should show reduced responses in middle and superficial depths in the absence of thalamic input, but deep layers should show relatively
large responses. A standard fMRI experiment, on the other hand, should simply show reduced (but not zero) response to the surround-only stimulus.

property not just of the local neural network, but of the extended
(extrastriate) network. One experiment that illustrates this effect
in human fMRI is the demonstration of a small but reliable spatial
shift in the location of V1 responses when an object is perceived to
be larger in one context compared to another (Murray et al., 2006).

Each of these examples points to the fact that V1 fMRI
responses cannot be understood based solely on feedforward
information and intrinsic computations mediated by lateral

interactions; correct analysis of the V1 fMRI response requires
additional information about inputs from other cortical regions
(feedback).

This challenge is not unique to fMRI. Even electrophysiological
studies that sample single-unit responses, and thus are able to
characterize the temporal evolution of responses, are rarely able to
determine the sources of the modulatory signals that incorporate
information about context into the V1 field potentials and firing
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rates after the first hundred milliseconds. In sum, these raise the
question of whether feedback inputs should just be considered as
much a part of the V1-intrinsic response as feedforward inputs.

The challenge, of course, is that feedforward signals are
much more amenable to experimental control; they can be
largely determined by experimental stimuli and task instructions.
Feedback signals, on the other hand, are generated by disparate
brain networks that we do not fully understand, which can depend
on each person’s interpretation of the scene and context that we
cannot control. A powerful solution, for fMRI experiments, is
offered by task-dependent connectivity analysis.

Connectivity analyses use correlations between fMRI signal
fluctuations in different locations to infer neural communication
or connectivity between these areas (Friston et al., 1997; Gitelman
et al., 2003; Haak et al., 2012; Cisler et al., 2014). Care must be
taken to exclude uninteresting sources of common fluctuation,
like brain motion or imaging artifacts (Smith et al., 2013)
or stimulus-evoked responses (Al-Aidroos et al., 2012). But
smart analyses can rule out these confounds and use the fMRI
signal to discover something about which we had no a priori
knowledge: the degree to which signal modulation in one brain
region/voxel/neural population/node in a neural network can
explain or predict signal modulation in another region. Thus,
connectivity analyses offer an important tool for teasing apart
the intrinsic and extrinsic factors that drive a well-localized fMRI
response (Schindler and Bartels, 2017).

In each of the experiments described above, performing a
task-dependent connectivity analysis with the V1 response as a
seed should/could/does reveal one or more other regions in the
brain where residual signal (the portion of the signal that is left
over after stimulus-evoked responses and physiological artifacts
are removed by regression) shows task-dependent correlations
with the V1 signal. Our lab is one of many that have begun
including connectivity analyses in studies of V1 responses; in
our case, functional connectivity has been useful for describing
responses to contours embedded in complex scenes (Qiu et al.,
2016; Pokorny et al., 2021). We find it difficult to draw conclusions
about what these long-range correlation signals mean, but it is
important to start identifying potential cortical sources of input to
V1 alongside known thalamic drive. Directionality of this coupling
is difficult (perhaps unwise) to determine with these correlation-
based approaches. However, this ability to discover communication
partners for V1 is crucial for achieving a full accounting of the
inputs to V1 that determine the response, since the V1 fMRI
response commonly reflects computations elsewhere in the brain
that are multiplexed in the V1 signal as the visual system attempts
to make sense of the visual world.

4. Refraction: Accepting that the
fMRI signal changes appearance
based on perspective

When fMRI was a relatively new technique, vision scientists
with a strong background in engineering executed careful
experiments designed to validate the fMRI response against
neural response properties that were well-characterized by invasive
electrophysiology experiments. Retinotopic mapping experiments,

and then ocular dominance and orientation column mapping,
validated the spatial precision of fMRI. Drawing on a strong
psychophysical tradition in which behavioral sensitivity to simple
image features like contrast and orientation can be correlated with
the firing rates of superficial pyramidal neurons in V1 (outputs),
these early validation experiments succeeded in finding strong
and positive relationships between fMRI response magnitude and
presumed V1 population firing rates, corroborated by perceptual
reports of contrast discrimination (Boynton et al., 1999; Zenger-
Landolt and Heeger, 2003).

Another series of careful experiments then started the debate
about whether fMRI represents the output of a given brain
region (i.e., Layer 2/3 firing rates, as in the early validation
experiments) or the local computation–the mess of excitatory and
inhibitory synaptic activity that integrates input, local, and feedback
connections to shape the selectivity of the output responses.
Comparisons between invasive electrophysiology measurements,
in both animals and humans, has led to the general conclusion
that local field potentials (LFPs), which measure background in
flux rather than spiking of large pyramidal neurons, are the
best predictors of the blood oxygenation level-dependent (BOLD)
hemodynamic response (Logothetis et al., 2001; Maier et al., 2008;
Hermes et al., 2019).

There is no inherent conflict between these research
perspectives. Both output spiking activity and local field potentials
contribute to the fMRI signal. It is likely that they do so to different
degrees at different locations depending on the task and experiment
design, and our current challenge is in determining the rules for
those mixtures. As early pioneers, vision scientists definitely led
many quantitative advancements in fMRI (Himmelberg et al.,
2022). But one could also argue that vision science, with well-
defined sets of external stimuli and a historical focus on recording
action potentials from pyramidal cells (Olshausen and Field,
2004), has also encouraged an over-reliance on firing rates and an
over-emphasis of external inputs in predicting fMRI responses.
Since local field potentials reflect afferent neural activity more
strongly than local firing rates (Herreras, 2016), the fact that
fMRI is sensitive to both spikes and LFPs means that fMRI is an
excellent tool for detecting the diverse information sources that are
multiplexed in local neural networks.

Multi-voxel pattern analysis (MVPA) was first introduced as a
simple linear classifier applied to visual object recognition (Haxby
et al., 2001) and has grown to encompass a wide range of model-free
approaches that determine whether the pattern of fMRI responses
in a given region can be used to distinguish between different
behavioral states or experimental manipulations. As a very open-
handed approach (the classifier really is free to use any aspect of
signal modulation in the included voxel population to distinguish
between experimental conditions) MVPA analyses are well-suited
to situations in which we cannot build an a priori model for
exactly how the underlying neuronal population or the multiplexed
signal represents a stimulus or behavioral state. Researchers who
seek a principled understanding of causal relationships between
task, fMRI response, and neural population activity (a “forward
model”) can be frustrated by the difficulty of interpreting a positive
result in MVPA analysis, but MVPA techniques are powerful
tools for reliably determining whether a particular region of the
brain is impacted, in some way, by an experimental manipulation
(Kriegeskorte et al., 2008; Williams et al., 2008).
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In contrast to MVPA, approaches that use encoding models
rely more heavily on a priori understanding of the underlying
neural responses. An encoding model is a computer simulation
of what the fMRI response might be expected to look like, given
our expectations for the neuronal activity in a given brain region
during an experiment. Once again, vision scientists have been early
adopters of this approach (Naselaris et al., 2011), but applications
are certainly not limited to vision science [for examples in language
and music, (Hoefle et al., 2018; Jain and Huth, 2018)]. The beauty
of fMRI analyses using inverted encoding models (Brouwer and
Heeger, 2011) is that one can build all sorts of neural response
complexity into predictors for individual voxel responses, so the
model can capture subtle differences in responses to different
experimental conditions. The fact that each brain region has
hundreds or thousands of voxels that can be modeled helps address
the problem that the models tend to have many more degrees
of freedom than the fMRI response. But the challenge, of course,
is that the model can only characterize responses anticipated by
the experimenter, and fMRI signal modulated along dimensions
not captured by the model will go undetected (categorized as
unexplained variance).

Importantly, both MVPA and encoding model approaches will
produce analysis results that depend on decisions made while
setting up the analysis. The results of an MVPA analysis can depend
on how you construct and train a classifier, and the results of an
encoding model analysis will depend on assumptions made about
either the structure and function of the underlying neural responses
and/or the neurohemodynamic coupling model used to translate
simulated neural responses to simulated fMRI responses (e.g., the
degree to which local inhibition and/or LFPs vs. spikes contribute
to positive fMRI BOLD responses). As simple examples, either
color or orientation (or the conjunction) can be decoded in V1
responses to stimuli that vary along both dimensions (Seymour
et al., 2010), and both attended and presented direction can be
decoded from population responses to moving stimuli (Kamitani
and Tong, 2006). However, the potential variability in results from
these analyses represents a limitation that we all need to be aware
of, not an inherent flaw that negates the results of the analysis.
This is where the analogy of a view through a multi-faceted prism
is useful–each view provides useful information about an object
that has not yet been fully described (Figure 2B). No view is
sufficient to describe the object completely, but each view provides
additional information about the neural responses we are trying to
understand.

5. Discussion

The ever-increasing spatial precision of fMRI presents us with
two challenges. First, the ability to pinpoint responses with sub-
millimeter accuracy leads us to make claims that we have identified
the location of a computation. However, if each location in the
cortex is viewed as a node in an interconnected network, and if
the fMRI signal reflects both local spiking responses and the sub-
threshold modulatory signals measured in LFPs, then it becomes
clear that localized responses reflect remote computations just
as meaningfully as they reflect local computations. Second, in
even the smallest fMRI voxels there are thousands of neurons,

the responses of which are regulated by different mixtures of
feedforward, horizontal, and feedback terms. Thus, no matter how
high our resolution, multiple signals are multiplexed in each voxel
such that there is not a single computation to uncover.

In the field of depth-resolved (layer) fMRI, it has been proposed
that fMRI data can only be correctly interpreted in the context of a
forward encoding model that relies on invasive electrophysiological
measurements to provide complete characterization of the expected
neural responses (Merriam and Kay, 2022). While I am entirely
sympathetic with this argument and with the desire to reference
experiments against solid ground truth, I also believe that this
is currently an unattainable ideal. A ground truth-referenced
approach requires either knowing the result of an experiment
before conducting it (i.e., merely doing experiments that test
whether inference of neural activity provided by non-invasive fMRI
in humans produces the right answer) or possessing a validated
computational model that can generate accurate predictions for
laminar neural activity for novel paradigms. The latter is indeed
a primary goal of computational and vision neuroscience; we
seek a complete enough understanding of neural code that we
can simulate realistic feedforward, lateral, and feedback neural
responses. However, the field is not there yet. In the meantime,
my argument is that we can continue to do fruitful, informative
experiments that do update our understanding of neural responses
in human brain, as long as we frame our results as pieces of the
puzzle and not the whole picture.

One fundamental challenge that experimental cognitive
neuroscientists will continue to wrestle with, in our continued quest
to build up a more complete understanding of the brain’s function
that can generalize from established paradigms to novel paradigms,
is our need to study (habit of studying?) the brain out of context.
True to our scientific training, we try to control experiments.
Experiment control in cognitive neuroscience generally looks like
asking a participant to do a specific, narrowly defined task, on
cue, for a relatively short amount of time (because we need to
repeat each trial several times to get reliable data). The result
of careful experiment design is often that, when we isolate the
elements of a task, we create disjoint and unpredictable experiences.
A predictive coding framework would argue that many of the task
fMRI datasets we analyze are biased toward “error” signals because
of the abrupt presentation of new information. So while our careful
experiment design might do an excellent job of isolating specific
neural computations, which we need to do in order to understand
the types of things that the brain does, it can lead us assign them the
wrong priority, which makes it difficult to predict the outcomes of
a new experiment with different context and task demands.

While anatomists and theorists have long known that
cytoarchitectonically distinct regions of the brain are richly
connected by forward and backward pathways, which are crucial
to our ability to infer and learn (Friston, 2003), one of the
biggest impacts fMRI has had on cognitive neuroscience has
been the provision of tangible views of the interconnectivity and
interdependence of brain regions, even at rest (Smith et al., 2013).
Different locations in the brain are most certainly specialized for
different tasks, with unique connectivity patterns that support
different computations or roles in behavior [although see Westlin
et al. (2023) for an argument against the “localization assumption”].
However, computations that can be detected at particular locations
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quite often originate elsewhere, or would not exist without both
the intrinsic and extrinsic connections in a given region [e.g., V1
neurons can be described as having both feedforward and feedback
receptive fields (Keller et al., 2020)]. When, for example, the
widening or narrowing of a V2 population receptive field coincides
with the deployment of spatial attention or an improvement in
performance on a crowding task (He et al., 2019), what does it mean
that the population receptive field is measured in V2? The size of the
receptive field is determined both by the properties of V2 neurons
and by V2-extrinsic factors, such that the size of the receptive field
is both a property of the responses in V2 and of responses in
other regions of the brain yet to be determined. In the end, the
multiplexing of the feedforward and feedback signals requires us to
draw meaning from fractured and partial views, holding multiple
perspectives on neuronal function to be simultaneously true while
we figure out how they fit together.
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