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Environmental efficiency of ports
under the dual carbon goals:
Taking China’s Bohai-rim ports
as an example

Jinpei Li1, Jianing Ren1, Xun Ma1 and Guangnian Xiao2*

1School of Economics and Management, Beijing University of Chemical Technology, Beijing, China,
2School of Economics and Management, Shanghai Maritime University, Shanghai, China
In 2020, China proposed the country’s dual carbon goals of peaking carbon

emissions by 2030 and achieving carbon neutrality by 2060. Under the dual

carbon goals, the low-carbon transformation has become an important

development direction for Chinese ports. Taking eight ports in China’s Bohai-

rim port group as an example, this study adopts the Slacks-Based Measure (SBM)

model to evaluate the port efficiency considering the environmental factor of

carbon dioxide (CO2) emissions. The results show that the average scale

environmental efficiency of the eight ports during 2005-2020 is the highest,

followed by local pure technical environmental efficiency and global technical

environmental efficiency. The efficiency values of each port under different

environmental efficiency categories vary greatly. Overall, each port is in a state

of environmental inefficiency. From port technology, input-output optimization,

supervision, and management of relevant departments, recommendations for

improving the environmental efficiency of ports under the dual carbon goals are

put forward.

KEYWORDS

environmental efficiency, carbon emissions, China’s Bohai-rim ports, SBM model, dual
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1 Introduction

Under a series of social challenges, including environmental pollution, the World

Commission on Environment and Development proposed the concept of sustainable

development in 1987. Since then, sustainable development has become a common goal of

the world (Huang, 2022). In order to achieve the goal of sustainable development, China

has formulated many strategies and measures to improve the environment. Currently, the

most extensive strategy implemented by China is the dual carbon goals of peaking carbon

emissions by 2030 and achieving carbon neutrality by 2060. China has made great efforts to

save energy and reduce carbon emissions in recent years. For example, starting from the

“Twelfth Five-Year Plan” period, China has incorporated the reduction of carbon intensity

into the national economic and social development planning outline as a binding goal.
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World Bank data shows that since 2005, China’s cumulative energy

savings have accounted for more than 50% of the world’s. In 2020,

China’s carbon intensity dropped by 48.4% compared to 2005,

exceeding the goal that China promised to the international

community to reduce its carbon intensity by 40% to 45% by 2020.

In economic globalization, trade exchanges between countries

have increased rapidly, and China’s trade has been in line with

world trade. Since 2005, China has ranked among the top three

world trading countries. And since 2017, China has been the world’s

largest trading country, and the total import and export

commodities in 2021 have reached about 6.05 trillion US dollars.

As a critical node for import and export, the vital role of the port is

self-evident. According to the Outline of the Eighth Five-Year Plan

for National Economic and Social Development of the People’s

Republic of China to the Outline of the Fourteenth Five-Year Plan

for National Economic and Social Development of the People’s

Republic of China, China’s support policy for the port industry has

transformed from “strengthening the construction of coastal ports”

to “optimizing and upgrading key port clusters,” and then to

“accelerating the construction of a transportation power.”

Moreover, with the advancement of the One Belt and One Road

policy, Chinese ports have been extensively developed.

Ports should take responsibility for their interests, implement

national requirements, and enjoy national policy dividends. In

2019, the Ministry of Transport of China issued the Guiding

Opinions on Building World-Class Ports, emphasizing that by

2025, meaningful progress will be made in constructing world-

class ports, and significant breakthroughs will be made in the green,

intelligent and safe development of major ports. Compared with

developed countries, the construction of China’s green ports is

lagging, and multiple problems such as waste of resources and high

pollution have emerged, especially China’s dual carbon goals have

set new targets for energy conservation and emission reduction of

ports. In order to improve port efficiency, it is necessary to clarify its

influencing factors. The evaluation study of the environmental

efficiency of the port can quantitatively identify the redundancy

and shortage of the port in terms of input and output. However,

existing studies on port efficiency do not pay enough attention to

direct energy input and carbon emissions, and cannot objectively

identify the green development level of ports under the dual carbon

goals. Therefore, the primary purpose of this study is to evaluate

port efficiency considering energy input and carbon emissions

under the double carbon goals.

The possible contribution of this study is reflected in two

aspects. First, the existing port efficiency evaluation research

generally selects port infrastructure as an input factor, and

seldom considers energy consumption. This study takes port

energy consumption as one of the input variables, which can

better reflect the greenness of port development. Second, this

study takes the CO2 emissions of the port as an undesirable

output, which is more in line with the development direction of

ports under China’s dual carbon goals, and has practical

significance for the sustainable development of the port.

The remainder of this study is structured as follows. Section 2

reviews the relevant literature. Section 3 describes the methodology,

selected indicators, samples, and data used in our study. Section 4
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presents the results and discussion. Section 5 provides the

conclusion and policy implications.
2 Literature review

2.1 Port efficiency evaluation method

In terms of efficiency evaluation, data envelopment analysis

(DEA) is a well-known method, and transportation is one of the

most widely used industries (Liu et al., 2013). The DEA model is a

non-parametric production frontier approach. It assumes that

inputs and outputs change proportionally to each other, so it is

considered to evaluate the relative efficiency of a group of decision-

making units. The Charnes-Cooper-Rhodes (CCR) model is one of

the most basic DEA models proposed by Charnes et al. (1978), and

has been widely used. Tongzon (2001) analyzed a sample of

Australian and other international ports using the CCR model

and demonstrated that DEA provides a viable means of assessing

relative port efficiency. Birgun and Akten (2005) adopted the CCR

model to measure the relative efficiency of the ports and illustrate

the managers of the ports. The CCR model is built on the

assumption of constant returns to the scale of activities. As a

representative extension of the CCR model, the Banker-Charnes-

Cooper (BCC) model assumes variable returns to scale and has been

further applied. For example, Shen (2021) used the BCC model to

calculate the green efficiency of four port groups in China.

Moreover, some scholars combine multiple types of the DEA

model. da Costa et al. (2021) used the traditional two models of

DEA to analyze the efficiency of major container terminals in

northern Brazil. Barros (2012) applied the Luenberger DEA

model and the Malmquist index to analyze the productivity

change of African seaports. Baran and Górecka (2015) used CCR

and BCC model and applied the Malmquist Productivity Index to

evaluate the global technical efficiency, pure technical efficiency, and

scale efficiency of container ports and to analyze changes in seaport

productivity. In addition, some scholars use the DEA model in

combination with other econometric models. For instance,

Nikolaou and Dimitriou (2021) used a multi-period DEA-Tobit

model to estimate the efficiency of the world’s top 50 container port

terminals serving the global freight supply chain over five years.

In recent years, the world has paid more and more attention to

environmental issues. The marine environment has thus become

one of the areas that scholars focus on, such as inland shipping

pollution (Xu et al., 2022a), marine sustainable development (Xu

et al., 2022b), port pollutant emission (Xiao et al., 2023), and carbon

emission reduction technology for shipping companies (Xiao and

Cui, 2023). The port is an essential part of the marine environment,

and its environmental issues have become the primary concern for

ports (Yu et al., 2022). Thus, evaluating port efficiency has gradually

introduced undesired environmental outputs, such as pollutant

emissions. In this regard, some scholars have further expanded

the port efficiency evaluation model, which has undesired output

variables, among which the slacks-based measure (SBM) model is

widely used. The SBM model is an effective method of efficiency in

DEA. On the one hand, the SBM model overcomes the condition
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that the traditional DEA model assumes that all inputs and outputs

change proportionally, and is more in line with the real-world

situation. On the other hand, the SBM model can measure the

efficiency of decision-making units that consider both desirable and

undesirable outputs (Cooper et al., 2007), and the SBM model is

proved to be more discriminative among various non-parametric

methods for assessing environmental performance method (Zhou

et al., 2008). Moreover, the SBM model has good compatibility with

other measures of efficiency (Tone, 2001). Lee et al. (2014) used the

SBM model to evaluate the environmental efficiency of the port

cities. They found that Tianjin is the least environmentally efficient

port city compared to other cities such as Singapore, Busan, and

New York. Elsayed and Khalil (2017) used two traditional DEA

models and the SBM model to evaluate and analyze the factors

affecting the efficiency level of Safaga port in Egypt. They found that

the more strategically located DP World Sokhna port has higher

efficiency than the Safaga port. In addition, Tovar and Wall (2019)

used a directional distance function approach (DEA-DDF model)

to evaluate environmental and technical efficiency for a cross-

section of 28 Spanish Port Authorities. They found that when the

output elements are different, the degree of optimal reduction of

CO2 emissions is different when the environmental efficiency of the

port is effective.
2.2 The input-output elements of
port efficiency

In the selection of input-output elements for port efficiency

evaluation, most studies select input elements from port

infrastructure or equipment approximating the capital level (Bonilla

et al., 2004; Birgun and Akten, 2005; Wiegmans and Witte, 2017;

Chang et al., 2021), such as berth length or depth, number or intensity

of cranes; output elementsmostly select container throughput or cargo

throughput (CullinaneandWang, 2006;Changet al., 2021), only a tiny

number of scholars regard passengers as an output factor (Simões and

Marques, 2010; Tovar andWall, 2019); at the same time, some scholars

also examine non-desired output factors, such as carbon dioxide

emissions (Na et al., 2017; Dong et al., 2019).

However, the existing research on port efficiency evaluation has

not reached a consensus on constructing the input-output index

system. For example, Na et al. (2017) used berth length, port area,

number of quay cranes, and yard cranes as input variables, container

throughput of the port as the output variable, and the CO2 emission

amount of each port as an undesirable output variable. Elsayed and

Khalil (2017) adopted water area, storage, terminal, depth of berth

passenger station, and labor as input variables, cargo, number of the

berth, berth length, land area, fixed cranes, and yard cranes as output

variables.Dong et al. (2019) evaluated the environmental performance

of container ports along the Maritime Silk Road (MSR) using the

number of berths, quay cranes, and berth length as input variables,

throughput as desirable output variable, and carbon dioxide emissions

as undesirable output variable. Liu et al. (2022) evaluated the efficiency

of the primary container terminals in Hong Kong, Guangzhou, and

Shenzhen from 2018 to 2019, using gross crane productivity, crane

intensity, berth length, and berth depth as input variables, calls and
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moves as desirable output variables, and finish as undesirable

output variable.
3 Methodology

3.1 Sample selection and data

Due to the availability of data and the representativeness of

samples, this study selects eight ports in the Bohai-rim port group as

the research objects. The eight ports are Dalian Port, Yingkou Port,

Qingdao Port, Rizhao Port, Yantai Port, Tianjin Port, Tangshan

Port, and Qinhuangdao Port. On the one hand, the data of these

eight ports in the Bohai-rim port group are relatively complete,

while other Chinese ports lack data on one or more input-output

variables. On the other hand, as the center of the three-dimensional

transportation network of the Bohai Rim region in the core area of

the Northeast Asian economic circle, the ports of the Bohai Rim

port group not only play an important role in the economic and

social development of China’s three northeastern provinces, but

also have outstanding representative value for the development of

Chinese ports. Specifically, the coastline of the Bohai Sea is 5,800

kilometers, and the Bohai-rim port group is one of the five major

port groups in China. The ports in Tianjin, Hebei, Liaoning, and

Shandong in the Bohai-rim region are all coastal ports with superior

geographical locations (see Figure A.1 for details). In the past ten

years, the cargo throughput of coastal ports in the Bohai-rim region

has accounted for more than 40% of all coastal ports and about 30%

of the national ports. It is worth noting that the cargo throughput of

the sample ports selected in this study accounted for more than 80%

of all ports in the Bohai-rim region and more than 20% of the

national ports (see Table 1 for details). Additionally, in terms of

foreign trade throughput, ports in the Bohai-rim region accounted

for 42% of the national ports in 2020. The sample ports selected in

this study accounted for 92% of the total in the Bohai-rim region.

The data used in this study mainly come from official statistics

from 2005 to 2020, including the China Port Yearbook, the

Provincial and Municipal Statistical Yearbook, and the official

website of the National Bureau of Statistics. In addition, the data

of some indicators come from the China Stock Market and

Accounting Research (CSMAR) database. CSMAR is a

comprehensive research database developed based on the needs of

academic research, which simultaneously meets international

professional standards and adapts to China’s features.
3.2 Variable selection

For the application of the SBMmodel, the selection of input and

output variables is crucial (Cooper et al., 2007). Referring to existing

literature and based on data availability, this study selects the

number of berths used in port production, the length of the dock

for production, and energy consumption as input variables, and

selects cargo throughput, container throughput, and passenger

throughput as desirable output variables. At the same time, based

on the strategic background of China’s realization of the dual
frontiersin.org
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carbon goals, this study selects CO2 emissions as an undesirable

output variable. The input and output variables are shown

in Table 2.

Note that the Ministry of Transport of China began to monitor

port energy consumption in 2011, while our research period is from

2005 to 2020, and there is a significant gap in the statistical time of

data. To ensure the consistency of data sources and statistical

caliber, this study uses the measurement method proposed by Ge

and Wang (2021) to calculate energy consumption and carbon

dioxide emissions. The formula for calculating the energy

consumption of the port is as follows:

EC =
HC
THC

·
WFV
TFV

· TEC (1)

where HC represents the cargo throughput of the port. THC

means the cargo throughput of all ports in the province where the

port is situated.WFV represents the waterway freight volume of the

province where the port is located. TFV represents the total freight

volume of the province where the port is located. TEC represents

the total energy consumption of transportation, warehousing, and

postal industry in the province where the port is located. The data

for these indicators come from the Statistical Yearbook of the

relevant provinces and the China Port Yearbook. For several

missing data, the interpolation method is used to make up.
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Furthermore, the formula for calculating the CO2 emissions of

the port is as follows:

C = EC · HC · CEF (2)

where C is the CO2 emissions of the port, and CEF is the CO2

emission coefficient. According to the carbon emission coefficient of

1t standard coal (0:67tc=tce) recommended by the Chinese National

Development and Reform Commission, the conversion coefficiecnt

between carbon emissions and CO2 emissions is 3.6667, and the

CO2 emission coefficient can be calculated as 2:4567tCO2=tce.

Table 3 presents the summary statistics for the input and output

variables in this study.Whether it is input variables or output variables,

there are significant differences between differentDMUs. In particular,

theminimum value of CO2 emissions is 1.98, and themaximum value

is 1621.76, so if the undesirable output of CO2 emissions is ignored, it

may lead to bias in the evaluation of the environmental efficiency of the

port, especially in the context of dual carbon goals.
3.3 Methods

To explore the environmental efficiency of ports, this study

draws on the research methods of the existing literature (Lee et al.,

2014; Elsayed and Khalil, 2017), and adopts the SBM model. The
TABLE 2 Input and Output Variables.

Variable name Unit

Input variables

Number of production berths Pcs

Length of the dock for production M

Energy consumption 10,000 tons of standard coal

Desirable output variables

Cargo throughput 100 million tons

Container throughput 10,000 TEU

Passenger throughput 10,000 passengers

Undesirable output variables CO2 emissions million tons
TABLE 1 Comparison of port cargo throughput.

Year Bohai-rim Ports/
Coastal Ports

Bohai-rim Ports/
National Ports

Sample Ports/
Bohai-rim Ports

Sample Ports/
National Ports

2021 43.45% 27.87% 82.92% 23.11%

2020 44.47% 28.98% 82.50% 23.91%

2019 44.92% 29.58% 82.37% 24.37%

2018 46.50% 30.66% 82.65% 25.34%

2017 46.71% 30.20% 80.39% 24.28%

2016 47.57% 30.47% 80.51% 24.53%

2015 47.18% 30.15% 83.03% 25.03%

2014 47.46% 30.62% 83.71% 25.63%

2013 47.02% 30.21% 84.19% 25.44%

2012 46.38% 29.61% 85.22% 25.23%
Data source: China Port Yearbook, Ministry of Transport of the People’s Republic of China, and Transport Knowledge Service System.
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SBM model is a non-radial and non-angular DEA model proposed

by Tone (2001), which overcomes the problem of the overestimate

of the efficiency value of the decision-making unit (DMU) by the

radial DEA when there is a non-zero slack in inputs or outputs, and

the angular DEA must choose between inputs (assuming that

outputs are unchanged) or outputs (assuming that inputs are

unchanged). The unit of analysis in this study is the port, which

is called a DMU in the SBM model. Generally speaking, a basic rule

for the successful application of a SBM model is that the number of

DMUs exceeds the total number of input and output variables by at

least three times (Cooper et al., 2007). According to the sample

selection and input and output variables mentioned above, the

number of DMUs in this study is 128, while the combined number

of input-output items is 7. Given that the number of DMUs is more

than 18 times the total amount of input and output variables, the

SBM model is desirable for this study.

Given the data, this study measures the environmental

efficiency of each port once and hence needs n optimaizations,

one for each DMU to be evaluated (Cooper et al., 2007). Suppose

that there are n DMUs, each of which contains input variable x,

desirable output variable yg , and undesirable output variable yb. The

numbers of inputs, desirable outputs, and undesirable outputs are

represented by m, s1, and s2, respectively. The input data matrixM,

the desirable output data matrix yg , and the undesirable output

matrix yb can be arranged as follows:

X = ½x1,⋯, xn� = (xij) ∈ Rm�n (3)

Yg = ½yg1,⋯, ygn� = (ygkj) ∈ Rs1�n (4)

Yb = ½yb1,⋯, ybn� = (yblj) ∈ Rs2�n (5)

where X > 0, Yg > 0, Yb > 0. The production possibility set P is

defined by

P = (x, yg , yb)jx ≥ XL, yg ≤ YgL, yb ≤ YbL,L ≥ 0
n o

(6)

wherein, the intensity vector is represented by L = ½l1,  ⋯, ln�T
∈ Rn.

Further, in order to estimate the environmental efficiency of a

DMU (x0,   y
g
0, y

b
0), the following fractional program is formulated:
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r* = min
1 − 1

mom
i=1

s−i
xi0

1 + 1
s1+s2

½os1
r=1

sgr
ygr0

+os2
k=1

sb
k

ybk0
�

(7)

s : t :

xi0 = XL + s−i ,∀ i

ygr0 = YgL − sgr ,∀ r

ybk0 = YbL + sbk,∀ k

o
n

j=1
lj = 1

s− ≥ 0, sgr ≥ 0, sbk ≥ 0, lj ≥ 0

8>>>>>>>>>><
>>>>>>>>>>:

In this model, s− ∈ Rm and sb ∈ Rs2 represent the excesses in

inputs and undesirable outputs, respectively. sg ∈ Rs1 expresses

shortages in desirable outputs. The objective function value is the

environmental efficiency value of the DMU, which satisfies 0 <

r* ≤ 1. If the value of r* is equal to 1, it means that the

environmental efficiency of a DMU is efficient, and s− = 0, sb = 0,

and sg = 0. Otherwise, the DMU is inefficient and can be improved

by removing excess inputs and undesirable outputs, and increasing

desirable outputs. Note that convexity constraint o
n

j=1
lj = 1 means

the assumption of VRS; however, the efficiency under the

assumption of CRS needs to remove the convexity constraint.
4 Results and discussion

4.1 Overview of the evaluation results of
port environmental efficiency

Based on the SBM model described in Section 3.3, 128 DMUs

are used to construct the production possibility set, and the software

of DEA-Solver Pro13.1 is used to measure the environmental

efficiency of the port. In order to comprehensively evaluate the

environmental efficiency of the port, this study estimates the global

technical environmental efficiency, local pure technical

environmental efficiency, and scale environmental efficiency of

the port based on the analysis of returns to scale. A comparative

study of these three types of environmental efficiencies helps to

understand the sources of inefficiency that a DMUmay have, that is,

whether the inefficiency is caused by the inefficient operation of the

DMU itself or by the unfavorable conditions in which the DMU
TABLE 3 Summary Statistics.

Max Min Average SD N

Number of production berths 231.00 18.00 99.25 56.60 128

Length of the dock for production 43218.00 4444.00 21313.01 10194.20 128

Energy consumption 145.61 2.12 35.97 30.61 128

Cargo throughput 7.03 0.33 3.21 1.45 128

Container throughput 2201.00 3.55 530.21 544.85 128

Passenger throughput 967.00 0.00 122.93 208.17 128

CO2 emissions 1621.76 1.98 324.16 351.00 128
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operates. According to Cooper et al. (2007), the evaluation result

under the assumption of CRS is global technical environmental

efficiency, the evaluation result under the assumption of VRS is

local pure technical environmental efficiency, and the scale

environmental efficiency is defined by the ratio of these two

efficiencies. That is, the scale environmental efficiency = global

technical environmental efficiency/local pure technical

environmental efficiency. Further, if a DMU is fully efficient in

both the global technical environmental efficiency and local pure

technical environmental efficiency, it is operating in the most

productive scale size. If a DMU has full local pure technical

environmental efficiency but a low global technical environmental

efficiency, then it is operating locally efficiently but not globally

efficiently due to the scale size of the DMU. It should be noted that

the value of scale environmental efficiency is equal to 1 in the most

productive scale size and is not greater than 1 (Cooper et al., 2007).

The evaluation results of global technical environmental efficiency,

local pure technical environmental efficiency, and scale

environmental efficiency of the eight ports from 2005 to 2020 are

shown in Tables A.1–A.3, respectively.

The results in Tables A.1, A.2 show that during the study period

from 2005 to 2020, there are 18 DMUs with a global technical

environmental efficiency value equal to 1.0000, accounting for

14.06% of all DMUs, and 26 DMUs with a local pure technical

environmental efficiency value equal to 1.0000, accounting for

20.31% of all DMUs. Moreover, the results of scale environmental

efficiency in Table A.3 show that there are 18 DMUs with a scale

environmental efficiency value of 1.0000, which means that these 18

DMUs are operating at the most productive scale size. And,

combining the results of Tables A.1, A.2, the global technical

environmental efficiency and local pure technical environmental

efficiency of these 18 DMUs are also 1.0000. Therefore, these 18

DMUs are both scale and technically efficient for the assumptions of

CRS and VRS. In addition, the remaining 85.94% of all DMUs have

a scale environmental efficiency of less than 1.0000, among which 8

DMUs have full local pure technical environmental efficiency but a

low global technical environmental efficiency. Thus, the overall

inefficiency of these 8 DMUs is caused by their failure to achieve

scale inefficiency. At the same time, the local pure technical

environmental efficiency and scale environmental efficiency of the

102 DMUs are all inefficient. In other words, the overall inefficiency

of these 102 DMUs is not only caused by their technical inefficient

operat ion, but also caused by their disadvantageous

scale conditions.

In addition, in order to gain a deeper understanding of the

port’s environmental efficiency under the dual carbon goals, we also

evaluate the port’s efficiency without considering carbon emissions.

Tables A.5–A.7 in the appendix present the evaluation results of

port efficiency without considering carbon emissions. Since carbon

emissions are undesirable outputs, the SBM model without

undesirable output is used for port efficiency evaluation, and

Formula A.1 is shown in the appendix. During the study period

from 2005 to 2020, there are 11 DMUs with a global technical

efficiency value of 1.0000 for ports that do consider carbon

emissions, accounting for 8.59% of all DMUs, which is 5.47

percentage points lower than those considering carbon emissions.
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Moreover, there are 14 DMUs with a local pure technical efficiency

value of 1.0000, accounting for 10.94% of all DMUs, which is 9.37

percentage points lower than those considering carbon emissions,

and 11 DMUs with a scale efficiency value of 1.0000, which is 5.47

percentage points lower than those considering carbon emissions.

Therefore, under the requirement of realizing the dual carbon goals,

it is necessary to include carbon emission elements in the evaluation

system of port efficiency; otherwise, it will lead to biased evaluation

results, which is not conducive to the green and sustainable

development of ports.
4.2 Longitudinal comparative analysis of
port environmental efficiency

In order to discuss the environmental efficiency trends, we

averaged the three types of environmental efficiency for all ports

year by year, and the results are shown in Figure 1. From 2005 to

2020, the global technical environmental efficiency showed a clear

trend of fluctuation. Specifically, global technical environmental

efficiency showed an upward trend from 2005 to 2007, declined in

2008, began to recover rapidly after 2009, and reached the highest

level in 2013. However, it then began to show a downward trend

and reached its lowest level in the entire study period in 2017. From

2018 to 2020, the global technical environmental efficiency showed

a dynamic of “rise-fall-rise,” and the unstable state was more

prominent. Furthermore, from 2005 to 2007, the changing trend

of local pure technical and global technical environmental efficiency

is the opposite. Specifically, pure technical environmental efficiency

shows a downward trend, while global technical environmental

efficiency shows an upward trend. From 2008 to 2020, the dynamics

of local pure technical efficiency and global technical environmental

efficiency are similar. Especially from 2008 to 2016, the values of

these two types of efficiency are very close. In addition, the average

values of local pure technical efficiency are always greater than

global technical environmental efficiency, which conforms to the

above definition. That is, scale environmental efficiency is equal to 1

in the most productive scale size and is not greater than 1, where

scale environmental efficiency is the ratio of local pure technical
FIGURE 1

The annual average environmental efficiency of the eight ports.
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efficiency to global technical environmental efficiency (Cooper

et al., 2007).

Further, the changing trend of scale environmental efficiency is

closely related to local pure technical efficiency and global technical

environmental efficiency, as shown in Figure 1. From 2005 to 2009,

the changing trend of scale environmental efficiency and global

technical environmental efficiency is consistent, indicating that the

change of scale efficiency during this period is the main reason for

the change of global technical environmental efficiency. The

possible explanation is that before 2007, the Bohai-rim region

mainly relied on the extensive economic development mode that

invested heavily in production factors, and the ecological

environment governance did not receive sufficient attention. In

this context, as an essential port group for economic development

in the Bohai-rim region, the eight representative sample ports have

invested heavily in the number of productive berths, the length of

productive docks, and energy, which meet the requirements of

increasing revenue and expanding scale. But carbon dioxide

emissions are poorly controlled, and the utilization of inputs is

low. Therefore, the port development during this period has a

noticeable shortage of desirable output and redundant undesirable

output. Moreover, the global financial crisis occurred in 2008, which

greatly affected international trade and seriously impacted port

development, resulting in a further decline in the environmental

efficiency of ports. Subsequently, in response to the global financial

crisis, China implemented stimulus policies, such as increasing

investment, stimulating consumption, and increasing exports, and

the port development gradually improved. At the same time, new

achievements have been made in technological innovation, energy

conservation, and emission reduction. The scale environmental

efficiency of ports has been stable from 2009 to 2016, and the

efficiency value is at a relatively high level. It is worth noting that in

2013, the global technical environmental efficiency increased

significantly, which may be due to the gradual improvement of

the ecological level of the Bohai Rim region under the influence of

the requirements of China’s “Twelfth Five-Year Plan.” At the same

time, the Ministry of Transport has carried out pilot projects for the

regionalization and thematic management of special funds for

transportation energy conservation and emission reduction,

which not only boosted the confidence of ports in energy

conservation and emission reduction, but also provided particular

financial support for ports. Through the analysis of ports with high

environmental efficiency values, we found that these ports have

reached the highest level in terms of local pure technical

environmental efficiency and scale environmental efficiency (see

Tables A.1–A.3 in the appendix for details), which is closely related

to the scientific allocation of resources, development of science and

technology, and optimization of port energy utilization structure.

After 2016, the scale environmental efficiency has a clear

fluctuation trend, which is related to the extensive fluctuation

range of local pure technical efficiency and global technical

environmental efficiency. In 2017, the world economy had not yet

completely shaken off the profound impact of the financial crisis,

and the international trade and investment situation is still idle.

However, the ports in the Bohai-rim port group have begun to

significantly increase inputs, resulting in a sharp decline in
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environmental efficiency. Then, in order to quickly improve the

air quality, China issued the “Three-Year Action Plan for

Atmospheric Cleanliness” in 2018, which proposed to optimize

and adjust the cargo transportation structure, requiring bulk cargo

to be mainly transported by rail or water in principle. At the same

time, it emphasized accelerating the upgrading of vehicle and ship

structures, requiring clean energy vehicles to be used for newly

added or replaced operating vehicles in ports. As a result, the

environmental efficiency of the port has been rapidly improved.

However, in 2019, China’s foreign trade environment was affected

by the Sino-US trade friction and the COVID-19 pandemic.

Compared with 2018, the desirable output of ports decreased

significantly, resulting in a decline in global technical

environmental efficiency and local pure technical of ports. As

China proposes to build a new development pattern in 2020 with

the domestic cycle as the main body and the domestic and

international dual cycles promoting each other, the port has

gained new development opportunities. Under the new

development pattern, the integration of port resources and the

construction of management systems have been promoted. Thus,

local pure technical environmental efficiency and global technical

environmental efficiency of ports have been improved. The annual

average environmental efficiency of the eight ports from 2005 to

2020 is listed in the appendix (Table A.4).
4.3 Horizontal comparative analysis of port
environmental efficiency

Table 4 reports the average value and rank of the three

environmental efficiencies of the eight ports during the sample

period from 2005 to 2020. The differences between the three types

of environmental efficiency values in different ports are shown in

Figure 2. The results show that under the assumption of CRS, the

average value of the eight ports’ global technical environmental

efficiency is 0.3896, which is at a relatively low level. Among all the

sample ports, Tangshan Port has the highest global technical

environmental efficiency of 0.7176, followed by Yantai Port, with

a global technical environmental efficiency of 0.6251. In contrast,

Yingkou Port has the lowest efficiency of only 0.1072. Under the

assumption of VRS, the average local pure technical environmental

efficiency of the eight ports is 0.4767, which is greater than the

global technical environmental efficiency, but still at a low level.

Moreover, compared with the global technical environmental

efficiency, the average local pure technical environmental

efficiency of each port is also more significant. In addition, the

rankings of Rizhao Port and Qinhuangdao Port have been reversed,

while the rankings of other ports have not changed. Specifically,

Tangshan Port ranks first, followed by Yantai Port, while Yingkou

Port is still in last place.

Unlike global technical environmental efficiency and local pure

technical environmental efficiency, the ranking of scale

environmental efficiency varies significantly across ports. During

the study period, Yantai Port ranked first in scale environmental

efficiency, followed by Qinhuangdao Port, and Tianjin Port ranked

last. However, Qinhuangdao Port, which ranks first in both global
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technical and local pure technical environmental efficiency, has

dropped to fourth in scale environmental efficiency. In addition, it

should be noted that whether it is global technical environmental

efficiency, local pure technical environmental efficiency, or scale

environmental efficiency, there are significant differences in the

efficiency values of various ports. Generally, if the local pure

technical environmental efficiency is relatively low, port operators

can improve efficiency by adjusting inputs. If the scale

environmental efficiency is relatively low, it can be improved by

adjusting the size of the port. Taking Tianjin Port as an example, its

scale environmental efficiency value is the smallest (0.5994),

indicating that Tianjin Port needs to control the scale growth

rate. Not only that, but the local pure environmental efficiency of

Tianjin Port is also at an extremely low level (0.2192) and ranks

second to last, indicating apparent input redundancy. Therefore,

Tianjin Port urgently needs to optimize resource allocation. As a

port with a large scale and high throughput, the environmental

efficiency of Tianjin Port is lower than other ports. The reason may

be that the port is located in the Beijing-Tianjin-Hebei region, and

the excessive competition between different areas has brought

enormous pressure to port operations and restricted the
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development of the port. Moreover, Tianjin Port, as a port that

was put into operation earlier, has a particular gap with the

requirements of the city’s rapid development in terms of

infrastructure and operating systems, which further leads to a

decline in the environmental efficiency of the port.

Overall, the main reason for the low environmental efficiency of

the eight ports in the Bohai-rim port group is that they have not

reached the optimal input-output level. And their scales have not

reached the ideal state, especially Qingdao Port, Rizhao Port, and

Tianjin Port. Proper sizing is an urgent need for these ports to

become more environmentally efficient. In addition, as the only port

without a passenger transport function, the global technical and

local pure technical environmental efficiency of Tangshan Port are

higher than that of other ports. Thus, the passenger transport

function is an essential output in the evaluation system of port

environmental efficiency. If the output factor of the passenger

transport function is ignored, evaluating port environmental

efficiency will not be objective and accurate.
5 Conclusion and policy implications

In implementing China’s dual carbon goals, ports must

establish a green transportation development model to promote

the intensive use of resources and contribute to emission reduction

and carbon reduction. The traditional evaluation of port efficiency

does not fully consider energy consumption and carbon emissions.

It cannot provide a practical reference for the current low-carbon

transformation of Chinese ports. In this study, taking eight ports in

the Bohai-rim port group as examples, the SBM model is employed

to evaluate the port efficiency considering the environmental factors

of carbon dioxide emissions and energy consumption. First, we

estimate the global technical environmental efficiency, local pure

technical environmental efficiency, and scale environmental

efficiency of eight representative ports in the Bohai-rim port

group from 2005 to 2020. Secondly, through longitudinal

comparative analysis, the changing trends of the three
TABLE 4 The average value and rank of the environmental efficiency of the eight ports from 2005 to 2020.

DMU

Global technical environmental
efficiency Local pure technical environmental efficiency Scale environmental efficiency

Value Rank Value Rank Value Rank

Dalian Port 0.3658 5 0.4441 5 0.8778 3

Yingkou Port 0.1072 8 0.1706 8 0.8211 5

Qingdao Port 0.4674 3 0.5978 3 0.7830 6

Rizhao Port 0.3306 6 0.4756 4 0.7232 7

Yantai Port 0.6251 2 0.6451 2 0.9691 1

Tianjin Port 0.1295 7 0.2192 7 0.5994 8

Tangshan Port 0.7176 1 0.8392 1 0.8535 4

Qinhuangdao Port 0.3738 4 0.4217 6 0.9044 2

Full Sample Port 0.3896 / 0.4767 / 0.8164 /
FIGURE 2

The annual average environmental efficiency of the eight ports.
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environmental efficiencies of ports during the study period are

discussed. Finally, through horizontal comparative analysis, the

differences between the three environmental efficiencies among

the eight ports are discussed.

The study finds that the environmental efficiency of ports is at a

low level from 2005 to 2020. Across all DMUs, only 14.06% of the

global technical environmental efficiency is effective, as is the scale

environmental efficiency, and only 20.31% of the DMUs have

effective local pure technical environmental efficiency. From the

perspective of changing trends, the global technical environmental

efficiency and local pure technical efficiency of ports fluctuate

significantly. After 2007 their changing trends are consistent and

relatively close, while the scale environmental efficiency is relatively

stable. However, the gap between global technical environmental

efficiency and local pure technical efficiency has gradually increased

since 2017. The scale environmental efficiency has also shown a

clear fluctuation trend since then. From the perspective of the

development of each port, the average local pure technical

environmental efficiency of each port is greater than the global

technical environmental efficiency, and the ranking of ports changes

little. In contrast, the ranking of the scale environmental efficiency is

entirely different from the ranking of the other two environmental

efficiencies. Moreover, the efficiency values of various ports are

pretty different in terms of different environmental efficiencies.

Based on the findings, ports should pay more attention to

improving local pure technical environmental efficiency. Global

technical environmental efficiency consists of local pure technical

and scale environmental efficiency. This study finds that the local

pure technical environmental efficiency of the port is significantly

lower than the scale environmental efficiency. Therefore, when port

operators are making management decisions, it is necessary to spend

more funds on technological innovation or improvement.

Technological innovation and progress can effectively reduce

pollutant emissions and maximize the use of equipment, facilities,

resources, etc., reducing redundancy and shortage, and promoting the

advancement of port environmental efficiency. In addition, the

environmental efficiency of ports has fluctuated significantly in

recent years, and port operators must adjust the size of ports

promptly. For example, increase cooperation with other ports by

integrating resources, or take measures to optimize the size of the

port itself. From the perspective of environmental governance, since

the environmental efficiency of ports has been at a low level, the

government should strengthen supervision and encourage ports to

actively adopt operational optimization strategies for energy

conservation and emission reduction. For instance, the government

regulatorydepartment canpublish the environmentalmonitoringdata

of each port in real-time, and subsidize or support ports accordingly,

thereby incentivizing ports to fulfill their environmental protection

responsibilities, such as taking environmental factors as an important

indicator of port performance, and accelerating the realization of low-

carbon transformation of ports.

Although the SBMmodel is awell-establishedefficiency evaluation

model and is widely used, it does not have the desirable characteristics

to distinguish efficient DMUswith the same efficiency score equal to 1,

resulting in limited analysis depth of port environmental efficiency.

Therefore, it is necessary to further study the environmental efficiency
Frontiers in Marine Science 09
of ports fromtheperspectiveofmodel improvement. Furthermore, the

Bohai-rim ports around the Bohai Sea are coastal ports, so the results

have limited applicability to other ports, such as river ports. Future

research must focus on the environmental efficiency of non-coastal

ports when data are available. In addition, optimizing input-output

elements can improve the competitiveness of ports (Xu et al., 2022c).

Future research may discuss how to improve port competitiveness

under the dual carbon goals from the perspective of enhancing port

environmental efficiency.
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