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The diagnosis and management of sleep problems depend heavily on sleep

staging. For autonomous sleep staging, many data-driven deep learning models

have been presented by trying to construct a large-labeled auxiliary sleep dataset

and test it by electroencephalograms on di�erent subjects. These approaches

su�er a significant setback cause it assumes the training and test data come from

the same or similar distribution. However, this is almost impossible in scenario

cross-dataset due to inherent domain shift between domains. Unsupervised

domain adaption was recently created to address the domain shift issue. However,

only a few customized UDA solutions for sleep staging due to two limitations in

previous UDA methods. First, the domain classifier does not consider boundaries

between classes. Second, they depend on a shared model to align the domain

that could miss the information of domains when extracting features. Given those

restrictions, we present a novel UDA approach that combines category decision

boundaries and domain discriminator to align the distributions of source and

target domains. Also, to keep the domain-specific features, we create an unshared

attention method. In addition, we investigated e�ective data augmentation in

cross-dataset sleep scenarios. The experimental results on three datasets validate

the e�cacy of our approach and show that the proposed method is superior to

state-of-the-art UDA methods on accuracy and MF1-Score.

KEYWORDS

unsupervised domain adaptation, automatic sleep staging, EEG data, adversarial training,

attention mechanism, data augment frontiers

1. Introduction

Sleep appears indispensable in all mammals, and many studies try to unravel the

regularity of sleep (Harding et al., 2019; Peng et al., 2020; Bowles et al., 2022). People

have been working on this research in the past decade, among which sleep staging has

significantly progressed. Sleep staging contributes to detecting sleep disorders, which are

usually collected through noninvasive brain-computer interface devices. It keeps track of

cerebral cortex activity using a polysomnogram (PSG), a collection of bio-signals including

an electrocardiogram (EEG), electromyogram, and an electroencephalogram. According to

the American Sleep Society (AASM) (Iber et al., 2007), sleep is divided into three stages:

wake (W), rapid eye movement (REM), and non-rapid eye movement (NREM), and N1, N2,
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and N3 are the three substages of NREM. In the clinical setting,

expert clinicians mainly interpret manually for sleep records.

It takes a lot of time and effort for professionals to check,

segment, and classify each segment 8–24 h multichannel signals

into continuous, fixed-length periods of 30 seconds’ epoch.

In recent years, the sleep staging problem has benefited from

improvements in machine learning methods (Supratak et al.,

2017; Sors et al., 2018; Phan et al., 2019a; Sun et al., 2019),

which processed EEG data using various network topologies and

properly trained classification models to function effectively in

testing. Those methods aim at automating the tedious process.

However, many sleep laboratories still rely on the manual scoring

of EEG data. There are two main reasons: First, automated sleep

staging algorithms still require a large number of labeled data

to train the models, which needs to be done manually by sleep

technicians or expert clinicians. In this context, attempting to

train a deep network on a large labeled source domain and

transfer it to the target domain is a good compromise. Yet,

this method gives lower performances than expected, which is

the second question. The data produced in sleep labs and the

publicly available training data differ significantly (Nasiri and

Clifford, 2020; Phan et al., 2020a). It can happen for several

reasons, including various measuring sites on the skull, different

sampling rates of measuring instruments (Azab et al., 2018), or

inherent variability between subjects. The training (source) and

the test (target) distributions are different, referred to as a domain

shift problem.

Unsupervised domain adaptation (UDA) (Ganin and

Lempitsky, 2015) has lately shown great potential in enhancing

deep learning models when labeled data is scarce. It can solve

the two problems above simultaneously. Firstly, it does not

need mass-labeled data cause it transfers knowledge from

the domain source with rich labels to the target domain with

imperfect labels. Secondly, it solves the problem of distribution

differences between source and target domains by aligning

the distribution of source features and targets. From Figure 1,

UDA uses both the labeled source domain and the unlabeled

target domain to train the model to perform well on both the

source and target domains. UDA is widely used in machine

vision (Wang and Deng, 2018) to reduce the discrepancy

between the source and the target distributions without

utilizing any labels from the target domain. Some research

has examined UDA’s role in classifying sleep stages thus far.

For instance, Chambon et al. (2018) improved the feature

transferability between source and target domains using the

best transport domain adaptation. Besides, Nasiri and Clifford

(2020) used adversarial-based domain adaptation to increase

feature transferability.

In UDA, a domain classifier (also known as a discriminator)

and a feature generator are used as two players to align

allocations in an adversarial way. However, applying these methods

to automatic sleep staging continues to have the following

drawbacks. First, they disregard the connection between the

decision border and the target samples when aligning distributions.

In other words, the main task of the generator is to match

the distribution between the source and the target. This theory

assumes that the classifier can correctly classify these target

features because they are consistent with the source samples.

So, they do not consider the relationship between the target

sample and the decision boundary for distribution alignment. As

shown on the right in Figure 1, because the generator is only

attempting to make the two distributions close rather than the

categorization boundary, it can yield ambiguous features close

to the boundary. Secondly, they rely entirely on a common

frame to extract features from the source and target domains.

This could result in the loss of source and target domain-

specific features, which is detrimental to classification tasks in the

target domain.

To overcome the challenges above, this article presents

a novel framework named Task-Domain Specific Adversarial

Network (TDSAN), composed of a feature generator, a domain

discriminator, and a dual classifier. It aims to align feature

distributions from the source and target domains by combining

the classifier’s output for the target data and the domain

discriminator’s output for the domain identifier. Second, we

create a domain-specific attention module to maintain source and

target-specific features.

Specifically, we train a domain discriminator to predict the

input domain and a dual classifier to predict task-specific class

labels. We use domain pseudo-labels (i.e., source domain as “1”

and target domain as “0”) as input. The domain discriminator

is trained until it cannot distinguish between the distributions

of its training and test domain examples. At the same time, the

dual classifier is used to correctly classify the source samples

while being trained to find target samples that are located far

from the source of support. Because they are not grouped into

any classes, samples far from the support do not have traits

that can be used to differentiate between them. That is to say.

While considering the classifier’s output to the target samples,

it is instructed to produce desired features close to the support

points simultaneously. Therefore, our approach uses a domain

discriminator to distinguish the features between samples drawn

from the source domain and drawn from the target domain by

predicting the domain label and a dual classifier to generate the

discriminative features of the target sample because it considers

how the decision boundary and the target data relate, and training

is adversarial. Additionally, we use domain-specific attention to

clean up the extracted features so that each domain keeps its

essential characteristics.

The contributions of our paper are summarized as follows:

a novel cross-dataset sleep classification framework is proposed

that simultaneously changes the categorization boundaries between

classes and the conditional distribution between domains. The

algorithm adopts a non-shared attention module to keep

critical features during adaptation, thereby improving adversarial

performance on the target domain. Aiming at the data imbalance

in sleep staging, we applied data augment to effectively improve the

impact of sample skew on the classification network. Numerous

tests show that our TDSAN delivers more excellent cross-domain

sleep stage classification performance compared to cutting-edge

UDA techniques.

The rest of this paper is organized as follows. Section 2

introduces related work of EEG sleep classification on domain

adaptation and describes the proposed model. In Section 3,
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FIGURE 1

Domain adversarial neural networks.

the experimental results are presented and debated. Section 4

concludes this study.

2. Materials and methods

2.1. Related work

The use of single-channel EEG for automated sleep staging

has received much attention in the literature. Specifically, deep

learning-based techniques (Sors et al., 2018; Kuo and Chen, 2020;

Fan et al., 2021; Lee et al., 2021) have made significant progress.

These approaches create various network structures to extract

characteristics from EEG data and capture temporal dependencies.

However, these methods often require enough labeled data to train

networks with thousands of parameters. Furthermore, all the above

scenarios assume that the training and test data distribution is

the same or very comparable, which frequently is not the case

because different psychological states or complex equipment noise

may cause changes in data distribution. Although these methods

have been successful in dealing with complex EEG data, they have

limited results in sleep stage classification across domains (Wu

et al., 2020) (e.g., cross-datasets and cross-devices) because of

domain shift. As a result, numerous studies were told to use transfer

learning techniques to address this problem.

There have been a few studies investigating the problem of

individual sleep staging using transfer learning (Mikkelsen and

De Vos, 2018; Phan et al., 2020b) to increase the specific subject’s

classification accuracy within a similar dataset. They exclude two

nights of test subjects for datasets with two nights of recordings per

subject and pretrain the model. Then, the data from the other night

is used for evaluation, while the data from the first night is used to

fine-tune the model.

The cross-dataset scenario, which involves training a model

on data from one dataset and evaluating it on another dataset,

has yet to receive much attention. Using a sizable source dataset

and another labeled but small target dataset, Phan et al. (2020a)

investigated the problem of data variability. Abou Jaoude et al.

(2020) also applied a similar transfer learning strategy for extended

scalp EEG recordings. They used the larger source dataset to train

their model and the smaller target dataset to refine it. Similar to the

problem scenario, Phan et al. (2019b) proposed using deep transfer

learning to overcome the channel mismatch between the two

domains. Abdollahpour et al. (2020) also used this idea to predict

sleep staging on fused features on pretrained models. Guillot and

Thorey (2021) composed eight heterogeneous sleep staging datasets

into a large corpus, which solved the problem of incompatible input

data shapes on tasks across datasets and improved the classification

accuracy in the target domain. Moreover, even though some

studies were not focused on sleep staging, they classify EEG/EMG

for fatigue or motor image research and provide some practical

examples. For example, Soroushmojdehi et al. (2022) proposes a

subject-transfer framework. It uses the information learned from

other subjects to make up for the data from the target subject. This

article is about a study of hand movement intention identification

based on EMG signals. Perry Fordson et al. (2022) also propose a

domain adaptation method. It tries to individually treat features

from auditory and visual brain regions, which successfully tackles

subject-to-subject variations.

Both a labeled target dataset and a sizable corpus of source

datasets are necessary for these techniques to fine-tune their

models. To solve these problems, UDA strategies that align the

traits from several domains with a few annotation data were

presented. These methods can be classified as discrepancy-based

approaches and adversarial-based approaches. Discrepancy-based

methods, such as Maximum Mean Difference (MMD) (Long et al.,

2015, 2016) and Correlation Alignment (CORAL) (Sun et al., 2016),

strive to reduce the distance measured between the source and

target distributions. On the other hand, adversarial-based methods

are like Generative Adversarial Networks (GAN) (Goodfellow et al.,

2014). This approach trains a domain classifier to predict the

input domain and a class classifier to predict task-specific class

labels. Both classifiers share the feature extraction layer. The two

layers are trained to predict the labels of the source samples

correctly as well as to fool the domain classifier. This method

is used in current sleep staging works. It was recommended by

Zhao et al. (2021) to employ adversarial UDA with a domain

discriminator and several classifiers fed from different feature
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extractor layers. Nasiri and Clifford (2020) employed adversarial

training and strategies for focusing local and global attention to

extract transferable personal information. Yoo et al. (2021) used

three discriminators for adversarial domain adaptation. One is the

global discriminator, and two are local discriminators. The local

discriminators will preserve the intrinsic structure of sleep data and

reduce local misalignment. Eldele et al. (2022) used a dual classifier

for the adversarial domain adaptation framework to improve the

accuracy of the decision boundary.

The distribution alignment approaches based on GAN or

MMDdo not consider the connection between decision boundaries

and target samples. Saito et al. (2018) presented an unsupervised

adaptation method on the bias of Maximum Classifier Difference

(MCD). The technique has a generator module to extract high-

level features from the source and target domains. MCD matches

distributions by producing representations within similar task-

specific boundaries. Dual classifiers are proposed following the

same structure. First, the annotated source data is trained to

obtain two different classifiers. Second, target samples that are

not supported by the source are found. Then, the L1 distance

of the probability output is employed to measure the difference

between the two classifiers. In this stage, the difference is maximal.

It will result in the separation of the two classification boundaries.

The generator will relocate the outliers within the target domain.

Third, the exact differences are then minimized. Due to the two

distributions widely overlapping in stage 2, the target domain is a

component of the source domain in this stage. Training deals with

the minmax issue bymaximizing the target variance and generating

a representation that minimizes features. Inspired by this, we

set two discriminators. The domain discriminators for domain

adaption and dual classifiers for classification boundaries adapting.

The classification boundaries are between classes. A generator for

generating the minimized differences features. Furthermore, we

improve the adversarial training process by maintaining domain-

specific features through domain-specific attention.

2.2. Proposed method

Section 2.2.1 briefly introduces the notations and definitions.

In Section 2.2.2, we outline the structure and the details. Finally,

the whole training process is described in Section 2.2.3.

The definition and notations of EEG-based sleep staging are

first briefly discussed in this section. We denote Xs =
{(

xis, y
i
s

)}ms

i=1

withms labeled source data and Xt =
{(

xit ,
)}ms

i=1
withmt unlabeled

samples. In the context of EEG data, xis and x
j
t ∈ R1∗T , since EEG

data is 2D time series data, symbol 1 means channels (electrodes)

and T means how many numbers of timesteps are in each 30-

second EEG epochs. Feature extractor F, receives Xs or Xt as input.

Domain attention module A receives the output of the feature

generator, dual classifier networks C1, C2, and domain classifier

D extract features from A and classify them. The dual classifier

networks classify the extracted features into K classes, i.e., output

a 5-dimensional logarithmic vector. The domain classifier classifies

them into two classes, which are set to be one if the data come from

the source domain and set to 0 otherwise. All the class probabilities

are obtained through the softmax function. Here, the softmax

function’s activation of the L1 distance between the probabilities

of the two classifiers serves as the discrepancy loss. Following the

experience of Saito et al. (2018), we denote the discrepancy loss

as follows:

d
(

p1, p2
)

=
1

K

K
∑

k=1

∣

∣p1k − p2k
∣

∣ (1)

where p1k and p2k represent the probability outputs of p1 and p2 of

k classes, respectively. We also have an adversarial loss, which tries

to deceive the domain classifier by confusing the two data domains.

We aim to acquire a feature generator that minimizes the

variance of the target samples.

2.2.1. Network framework
We propose the TDSAN model, which consists of a feature

extractor, a domain-specific attention module, a dual classifier,

and a domain classifier. The overall model of TDSAN is shown

in Figure 2. We first extract the shared feature to generate high-

level features representation using both source data and target data.

Then, domain-specific attention is put in charge of calculating the

relevance of the time sequence. It plays a crucial role in keeping

each domain’s useful features by fine-tuning the extracted features.

The feature extractor and the domain-specific attention together

form a generator module. The dual classifier has the following

two functions. First, complete the classification task. Second, it

is iteratively trained with the generator as a discriminator. It

tries to align the distribution on task-specific boundaries. The

domain classifier recognizes the domain ID to align domain

feature distribution.

2.2.1.1. Feature extractor

The feature extractor consists of three CNN-based convolution

blocks, each in 1 dimension. To speed up training and keep

CNN Network stable, we use a batch normalization layer. It can

reduce internal covariate shift (Perry Fordson et al., 2022). We use

leaky ReLU as an activation function and MaxPooling to reduce

information redundancy. Given an input source sample x ∈ R1·T ,

it generates source features through a feature extractor, that is,

F(x) = (fl, . . . , fl) ∈ R1·l where l is the length of the feature.

2.2.1.2. Domain-specific attention

After convolution, EEG data output is shorter 2D EEG data

usually contains the temporal dimension. We do not simply treat

the EEG series as a particular image. Based on such consideration,

we attempt to extract recessive temporal features from EEG

using temporal self-attention mechanisms. In addition, we get

shared features after feature extraction. However, different datasets

may have different temporal features. Therefore, we use a non-

shared attention module to extract domain-specific information.

Extracting different domain time temporal also plays a vital role

in fine-tuning features. The attention module computes a weighted

sum of the features at all locations with the bit of computational

cost for each location in the feature space. As a result, each site’s

features contain intricate details that correspond to fine details in

the feature’s distant sections.

Inspired by Zhang et al. (2019), as seen in Figure 2, we

use a convolutional attention method. The attention operation
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FIGURE 2

Overall architecture of the proposed TDSAN framework.

obtains a feature representation at each location based on two 1D

convolutions (e.g., M1 and M2). Particularly, psx, psy ∈ R
d are the

eigenvalues of positions x and y, which are transferred into Qsx =

M1

(

psx
)

and Qsy = M2

(

psy
)

. Note that the score is expressed as:

Wyx =
exp

(

Q⊤
sxQsy

)

∑l
k=1 exp

(

Q⊤
sk
Qsy

)

(2)

where Wyx represents the degree to which the y-th location pays

attention to the x-th position. The output is

osy =

l
∑

x=1

Wyxpsx (3)

Equations 1 and 2 refer to the attention process as A(·); therefore,

Os = As(F(xs)). The same procedure applies to the target domain

data stream to train At .

2.2.1.3. Dual classifier

The dual classifier consists of three fully connected layers. A

dual classifier has two tasks: acting as a classifier for the source data

and detecting the target samples outside the source support when

we combine two category classifiers. The dual classifiers C1 and

C2 first try to maximize the difference for a given target feature to

find the target samples away from classification boundaries. Then it

minimizes the discrepancy to make them close to the classification

boundary. By iterating this process repeatedly, we train a generator

that has rare differences with the classification Boundary of the

source domain.

2.2.1.4. Domain discriminator

It is widely used in UDA (Tzeng et al., 2017). The main

goal is to minimize and regularize the distance between the

empirical mapping distributions by training iteratively with the

generator. Specifically,We first introduce the domain discriminator

by using source samples and target samples with their domain

labels. Subsequently, we fix the domain discriminator and train

the generator to deceive the discriminator confusing the data

domain. We finally get the domain-invariant representations

through iterative training.

The details of these four modules are shown in Table 1.

2.2.2. Training steps and loss function
We described the four modules in detail in Section 2.2.1. This

section describes the training steps and loss functions to train the

entire network. First, the framework of the overall network is to

solve a maximize problem. It should be noted that the training is

iterative between the generator and the dual classifier and between

the generator and domain Discriminator. We solve this problem in

four steps.

2.2.2.1. Train the dual classifier

First, the CNN and the attention mechanism network extract

the high-level representation. Then we put them in the dual

classifier and train it to get two different decision boundaries with

source data. We use cross-entropy loss since the data is labeled. It

should be noted that C1 and C2 are initialized differently to obtain
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TABLE 1 Model parameters of the feature extractor and classifiers.

Modules Layers Kernel

Feature extractor

Conv1d 1x25,32

BatchNorm1d

MaxPool1d 1*2,stride 2

Conv1d 1x8,64

BatchNorm1d

MaxPool1d 1*3,stride 3

Conv1d 1x8,128

BatchNorm1d

MaxPool1d 1*3,stride 3

Domain attention / /

Dual classifier

FC 1,024

FC 512

FC 5

Domain discriminator

FC 1,024

FC 512

FC 2

two different decision boundaries.

min
G,c1 ,c2

L (Xs,Ys) (4)

L (Xs,Ys) = −E(xs ,ys)∼(Xs ,Ys)

K
∑

k=1

I[k=ys] log p
(

y | O (xs)
)

(5)

2.2.2.2. Fixed generator, training domain discriminator

In this step, the source domain ID is one, and the target

domain ID is 0. It aims to minimize the domain confusion loss

for source and target samples on a fixed G. This is a supervised

learning process.

L = −

N
∑

i=1

y(i) log ŷ(i) +
(

1− y(i)
)

log
(

1− ŷ(i)
)

(6)

2.2.2.3. Fixed generator, dual training classifier

In this step, we train classifiers C1 and C2 to minimize

discrepancy on target samples for a fixed generator G. They can

detect target samples far from source support and force them to

relocate to the corresponding category.

Ladv (Xt) = Ext∼Xt

[

d
(

p1
(

y | O (xt)
)

, p2
(

y | O (xt)
))]

(7)

2.2.2.4. Fixed dual classifier and domain discriminator,

training generator

In this step, we train generator G to maximize discrepancy

on target samples. It identifies the target samples that the source’s

support has eliminated.

max
c1,c2

Ladv (Xt) (8)

In our system, these three phases are repeated. Our primary

focus is on adversarially training classifiers and generators to

identify source samples and confusing domain distribution.

Algorithm 1 summarizes the complex algorithm of TDSAN.

Input: source data Xs,Ys, target data Xt

for epoch in maxepoch do

for each mini-batch do

pretrain C1, C2 with source Xs,Ys;

reduce O
(

fs
)

and O
(

ft
)

;

for p in F) do

train D for O
(

fs
)

and O
(

ft
)

;

end

train C1, C2 with source Xs,Ys;

maximize discrepancy using the class

probability of target ft;

reduce task-specific variance based on the

class probability of target ft;

end

end

Algorithm 1. Training Procedure for TDSAN

3. Results

3.1. Data

We evaluated the proposed framework on three datasets,

including two public and one private dataset, namely sleep-EDF-

SC (EDF), sleep-EDF-ST(ST), and self-collection datasets. Before

downsampling, a summary of the three datasets above is displayed

in Table 2.

3.1.1. Public datasets
The sleep-EDFx dataset (Goldberger et al., 2000) is made up of

42 subjects’ 61 polysomnographic (PSG) data and corresponding

hypnograms (annotations by sleep experts). European data format

(EDF) is used to store PSG records, while EDF+ is used to store

hypnograms. A horizontal EOG channel, a sub-mental chin EMG,

two EEG channels, Fpz-Cz and Pz-Oz, an event marker, and an

EOG channel are all included in each record. At 100 Hz, the EEG

signal is captured. The annotations for each stage of sleep in the

hypnogram file are W (wake), R (REM), 1 (N1), 2 (N2), 3 (N3),

4 (N4), M (movement time), and not scored (denoted as?). 42

participants from two separate groups—the Sleep Cassette (SC)

group and the Sleep Telemetry (ST) group—were employed in the

study. The ST group consists of the remaining 22 participants with

modest sleep problems. In contrast, the SC group consists of the

remaining 20 healthy subjects who are not taking any medicine.

Every SC subject in the EDFx dataset has two nights’ sleep records,

except one, which only has one. 22 sick participants were recorded

for one night of sleep by the ST group. Based on the experience of
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TABLE 2 A brief description about the datasets.

Dataset Subject Recordings Sample rate Channel Scoring

EDF 20 39 100 Fpz-Cz R&K

ST 22 44 100 Fpz-Cz R&K

self-collection 6 30 250 C4-A1 AASM

Supratak et al. (2017) and Eldele et al. (2021), we evaluate ourmodel

on the channel Fpz-Cz.

3.1.2. Self-collection datasets
This study conducted 30 nights of polysomnography trials

following clinical recommendations and the AASM guideline.

There are six subjects, each under observation for five nights. The

subjects were all young, healthy adults between the ages of 20

and 24, with a male-to-female ratio of 1:0.67. Each participant

voluntarily agreed to take part in this sleep study. They had to

bathe and do their hair before the investigation to keep their heads

tidy. The time ranged from 23:00 to 07:30, exceeding 8 h. All

participants ensured they were in good health, had no medical

history, and hadn’t done any strenuous exercise the hour before the

sleep experiment began. The 3-channel EEG, 2-channel EOG, 1-

channel EMG, and 1-channel ECG signals were accurately acquired

and stored. The system gain is 24, and the sampling rate is 250

Hz. In addition, conductive gel paste is applied to all the gold-

plated disc electrodes used in EEG electrodes for signal acquisition.

Patch electrodes are used in EOG, EMG, and ECG electrodes.

The subject’s dormitory bed served as the site for the entire sleep

experiment, and the AASM suggested all electrode implantation

settings. Three EEG channels, i.e., C4-A1, F4-A1, and O2-A1, were

combined to form the electrode title, which is now only C4, F4, and

O2. Then, EOG-R and EOG-L are combined to form REOG and

LEOG from the two EOG channels. We evaluated our model on

channel C4-A1.

3.2. Data preprocessing

In the 30 s/epoch time series, the filtered data were separated

into non-overlapping pieces according to the AASM staging

criteria.

• Epochs classified as being in motion, artifacts, or unknown

were eliminated.

• To meet the AASM norm, sleep stages S3 and S4 were

combined into a single N3 stage.

• Only the first and last 30 mins of wake time were included.

• Downsampling the data with a sampling frequency higher

than 100 Hz, and the length of a single epoch is 30 s × 100

Hz (T = 3,000).

• Cutoff frequency design: based on high-pass and low-pass

filters (0.3-35 Hz) to reduce the noise.

3.3. Experimental settings

We used the macro-averaged F1-score and the classification

accuracy (ACC) to assess the proposed performance. The metrics

are denoted as follows:

ACC =

∑K
i=1 TPi

M
(9)

MF1 =
1

K

K
∑

i=1

2× Precision i × Recall i

Precision i + Recall i
(10)

where Precision = TP
TP+FP , Recall = TP

TP+FN . TP, FP, TN,

and FN denote True Positive, False Positive, True Negative, and

False Negative, respectively. The whole sample number is M,

and the total class number is K. The experiment was model

initialized from various random seeds and repeated five times. The

average final result (ACC and MF1) was then presented with the

standard deviation.

We divide the experimental data into 80% and 20% for training

and testing. We do not disrupt the order of epochs of subjects

so that domain-attention-specific can capture the relationship

between different sleep stages. We employ the Adam optimizer

with a batch size of 128 and a learning rate of 1e−3. We

did not fine-tune these hyperparameters for a fair comparison.

Another hyperparameter is n, which represents the number of

times this operation is repeated for the same mini-batch. This value

represents the trade-off between the generator and the classifier. All

experiments are done by pytorch1.12 on an NVIDIA GeForce RTX

2080 Ti GPU.

3.4. Baselines

We analyze our suggested TDSAN by contrasting it with

different baselines. We started by including the Direct Transfer

(DT) findings from DeepSleepNet’s (Supratak et al., 2017) three

sleep stagingmethods. In addition, we adopted four state-of-the-art

baselines based on adversarial domain adaptation (DA). We briefly

describe these baselines:

• DANN (Eldele et al., 2021): It simultaneously trains a feature

extractor and a domain classifier using a gradient reversal layer

(GRL) to remove the gradient of the domain classifier.

• ADDA (Ganin et al., 2016): It accomplishes a comparable task

to DANN but reverses the labels.

• CDAN (Tzeng et al., 2017): Minimize the cross-covariance

between feature representations and classifier predictions.
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TABLE 3 Comparison of di�erent baselines on ACC. Bold: the best results; Underlined: the second best results.

Baselines EDF→ST EDF→SC ST→EDF ST→SC SC→EDF SC→ST ACC

DT DeepSleepNet 72.34 61.53 68.35 50.23 62.75 49.85 60.84

DA DANN 73.70 65.98 64.23 58.94 65.93 67.53 66.05

ADDA 73.72 77.40 64.14 65.93 58.43 68.65 68.71

CDAN 76.42 67.36 66.68 70.36 62.89 70.06 68.96

ADAST 72.85 70.41 71.23 70.06 68.41 69.88 70.47

TDSAN(ours) 73.97 79.32 73.90 70.89 65.12 68.19 71.89

TABLE 4 Comparison of di�erent baselines on MF1. Bold: the best results; Underlined: the second best results.

Baselines EDF→ST EDF→SC ST→EDF ST→SC SC→EDF SC→ST MF1

DT DeepSleepNet 56.58 45.88 53.86 44.83 55.32 40.30 50.12

DA

DANN 61.35 55.79 53.49 50.63 55.19 56.63 55.51

ADDA 59.69 55.5 55.69 54.79 48.89 63.86 56.40

CDAN 63.06 54.73 53.91 64.01 52.61 59.71 57.95

ADAST 59.86 61.89 60.72 64.29 56.65 60.33 60.62

TDSAN (ours) 60.00 60.66 59.91 58.95 53.29 55.30 58.01

• ADAST (Yoo et al., 2021): It uses dual classification on

top of domain obfuscation to consider class-conditional

distributions.

3.5. Results

Tables 3, 4 show the comparison results among various

methods. It suggested that the direct transfer results are usually

the worst. This result indicated that the domain shift issue has

a significant impact and needs to be handled independently. The

findings of the other 4 DA baselines confirm the need for domain

adaptation to overcome the domain shift issue.

It is important to emphasize that we use the proposed backbone

feature extractor on four baseline methods except DeepSleepNet

to ensure a fair comparison. In this setting, we note that

methods that consider class-conditional distributions: such as

CDAN and ADAST, outperform the globally aligned source and

target domains, namely DANN and ADDA. This shows that taking

class distribution into account is crucial to improving classification

performance on the target domain, mainly when dealing with

imbalanced sleep data. Our proposed TDSAN outperforms all

baselines in accuracy in four of the six cross-domain scenarios

and achieves the second-best average score among all baselines on

MF1-Score.

We consider possible reasons: First, by iteratively training

the generator and classifier, we obtain a feature extractor that

can extract the smallest difference between the source and

target domains. At the same time, the task-specific classifier

fully considers the relationship between the target task and

the decision boundary. Second, performance is enhanced by

TDSAN because it uses a non-shared attention module to preserve

domain-specific features.

In Tables 3, 4, we also find essential clues on different cross-

dataset situations. In SC→EDF and SC→ST, they are generally

lower than other scenarios in various cross-domain scenarios. This

may be because the dataset is too small, and the classification

performance of the classifier on the source domain data is poor,

which is insufficient to correct the do-main offset results. In

addition, we also observed that the transfer results of datasets

between SC and ST are relatively poor. We observed from the

characteristics of datasets that EDF and SC datasets are the sleep

EEG data of healthy people, while ST data sets are collected

from people with mild sleep disorders. In addition, the acquisition

channels and frequencies of ST and SC are different, so they are a

relatively remote domain from EDF and SC. These findings suggest

that adapting to distant domains is still exceedingly difficult.

3.6. Data augmentation

Each stage’s length varies for a sleep recording. Mainly, stage

N2 makes up between 45% and 55% of the entire sleep time and

contributes to the majority class. N1, on the other hand, only makes

up roughly 2%–5% [36]. Every sleep dataset that is accessible has

this problem, including public datasets we can retrieve and our self-

collection dataset. As mentioned in many studies (Tsinalis et al.,

2016a,b; Supratak et al., 2017; Sun et al., 2019), class imbalance

may hinder the classifier’s performance, limiting the improvement

of automatic sleep staging algorithms. Following the suggestion of

Ko et al. (2021), we use the sliding window method to augment

the N1 stage data. The window size is 30s, and the step size is

25s. We are also experimenting with six cross-domain scenarios

to see if augmentation affects the classification results. Table 5

shows the comparison before and after data augmentation on six

cross-domain scenarios with three indexes, precision, recall, and
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TABLE 5 Classification performance before and after data augment.

Cross-domain Slide windows Sleep score W (%) N1
(%)

N2
(%)

N3
(%)

REM
(%)

ACC (%) MF1 (%)

EDF→ST Before Precision 50.00 34.42 84.24 97.26 66.55 73.97 66.49

Recall 71.95 43.44 81.83 27.95 88.94 73.97 62.82

F1-score 59.00 38.41 83.02 43.43 76.13 73.97 60.00

Support 82 122 1156 254 434 73.97 2048

After Precision 80.17 60.00 94.36 96.19 61.70 75.12 68.10

Recall 96.04 28.68 95.81 55.04 73.32 75.12 53.03

F1-score 87.39 38.81 95.08 70.02 67 75.12 55.87

Support 82 205 1156 254 434 75.12 2131

EDF→SC Before Precision 37.25 15.79 87.32 92.53 62.46 79.32 59.07

Recall 66.67 11.11 84.22 82.29 78.60 79.32 64.58

F1-score 47.80 13.04 85.74 87.11 69.61 79.32 60.66

Support 323 191 925 201 408 79.32 2048

After

Precision 56.06 22.22 85.55 91.55 61.08 80.26 63.30

Recall 64.91 7.41 86.98 78.47 83.39 80.26 64.23

F1-score 60.16 11.11 86.26 84.51 70.51 80.26 62.51

Support 323 215 925 201 408 80.26 2072

ST→EDF Before Precision 62.18 38.24 88.77 68.77 58.63 73.90 64.92

Recall 30.03 6.81 86.27 97.51 85.29 73.90 61.18

F1-score 40.50 11.56 87.50 80.66 67.33 73.90 59.91

Support 101 77 1170 36 517 73.90 1901

After Precision 90.67 40.63 83.95 82.99 64.03 77.94 72.45

Recall 54.40 12.68 91.71 78.74 78.34 77.94 63.17

F1-score 68.00 19.33 87.66 80.81 70.47 77.94 65.25

Support 101 136 1170 36 517 77.94 1960

ST→SC Before Precision 62.18 38.24 88.77 68.77 61.63 70.90 61.92

Recall 30.03 6.81 86.27 97.51 85.29 70.90 61.18

F1-score 40.50 11.56 87.50 80.66 64.33 70.90 58.91

Support 323 191 925 201 408 70.90 2048

After Precision 55.93 47.83 83.86 98.85 47.87 75.42 64.25

Recall 76.74 8.21 91.21 80.54 94.07 75.42 60.83

F1-score 64.71 14.01 86.37 88.32 62.31 75.42 58.39

Support 323 215 925 201 408 75.42 2072

SC→EDF Before Precision 100.00 0.00 77.22 96.15 37.27 65.12 62.13

Recall 19.02 0.00 86.52 87.04 97.35 65.12 56.99

F1-score 30.59 0.00 81.60 91.37 53.91 65.12 53.29

Support 101 77 1170 36 517 65.12 1901

After Precision 97.59 4.35 80.87 96.15 49.28 72.28 65.65

Recall 43.67 1.95 92.30 91.88 90.00 72.28 63.96

F1-score 60.34 2.70 86.21 93.97 63.68 72.28 61.38

Support 101 136 1170 36 517 72.28 1960

SC→ST Before Precision 98.70 0.00 79.69 98.37 45.80 68.19 63.51

Recall 35.49 0.00 81.22 81.82 99.12 68.19 56.53

(Continued)
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TABLE 5 (Continued)

Cross-domain Slide windows Sleep score W (%) N1
(%)

N2
(%)

N3
(%)

REM
(%)

ACC (%) MF1 (%)

F1-score 37.93 0.00 80.45 89.33 58.80 68.19 55.30

Support 82 122 1156 254 434 68.19 2048

After Precision 81.82 0.00 92.94 47.39 68.54 73.44 58.14

Recall 21.95 0.00 72.84 100.00 89.86 73.44 56.93

F1-score 34.62 0.00 81.67 64.30 77.77 73.44 51.67

Support 82 205 1156 254 434 73.44 2131

FIGURE 3

Classification performance before and after data augment. (A)

Performances on ACC before and after sliding window. (B)

Performances on MF1 before and after sliding window.

MF1_score in detail. For easier reading, we use Figure 3 to present

these results.

The result suggested sample skew affects the performance of the

classification network. In domain adaption, data augmentation is

still optional when we can not get enough EEG data.

3.7. Feature visualization

Further, we use UMAP to visualize the feature representations

learned to make the Comparison more intuitive.

Initially, we investigate the alignment quality. Figure 4 shows

the alignment between the source and target domains in the

FIGURE 4

UMAP feature space visualization showing the source and target

domains alignment using, applied for the scenario EDF → ST. (A)

Before TDSAN. (B) After TDSAN.

EDF→ST scenario, where Figure 4A shows the feature distribution

of the source and target domains before training. Our TDSAN

framework alignment is shown in Figure 4B. The blue dots in these

pictures offer the target domain, whereas the red dots show the

source domain. The source and target domain feature distributions

have significant differences before alignment. After alignment, the

feature overlap between the source and target domains increases.

Additionally, after the alignment in Figure 4, we investigate

the target domain classification performance under the above

scenarios. In particular, Figure 5A is the class distribution of the

source and target domains before training, and Figure 5B is the

distribution after our alignment. The symbol (·) represents the
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FIGURE 5

UMAP feature space visualization showing the target domains

classification performance, applied for the scenario EDF → ST. (A)

Before TDSAN. (B) After TDSAN.

classification of the source domain data, and the emblem (×)

represents the classification of the target domain. We note that

Figure 5A shows that the type of source and target domains differs

considerably. And after training, the classification of the source and

target domains ismuch higher. This is achieved through an iterative

self-training strategy.

4. Conclusion

This paper proposes a novel UDA method, TDSAN, to address

the sleep EEG staging scores on unlabeled data. TDSAN is an

adversarial learning method that uses a specific classifier as a

discriminator whose target samples are remote from the source

support detected. To trick the classifier, the feature generator

masters to produce target features close to supports. The generator

will prevent creating target features close to class boundaries since

it incorporates feedback from task-specific classifiers. Meanwhile,

a non-shared attention mechanism preserves domain-specific

features, which can capture the relationship between different sleep

stages. Experiments show that we can achieve the same accuracy on

unlabeled sleep data as on labeled data.
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