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Designing and executing a good quality control (QC) process is vital to robust 
and reproducible science and is often taught through hands on training. As FMRI 
research trends toward studies with larger sample sizes and highly automated 
processing pipelines, the people who analyze data are often distinct from those 
who collect and preprocess the data. While there are good reasons for this trend, 
it also means that important information about how data were acquired, and 
their quality, may be missed by those working at later stages of these workflows. 
Similarly, an abundance of publicly available datasets, where people (not always 
correctly) assume others already validated data quality, makes it easier for trainees 
to advance in the field without learning how to identify problematic data. This 
manuscript is designed as an introduction for researchers who are already familiar 
with fMRI, but who did not get hands on QC training or who want to think more 
deeply about QC. This could be  someone who has analyzed fMRI data but is 
planning to personally acquire data for the first time, or someone who regularly 
uses openly shared data and wants to learn how to better assess data quality. 
We describe why good QC processes are important, explain key priorities and 
steps for fMRI QC, and as part of the FMRI Open QC Project, we demonstrate some 
of these steps by using AFNI software and AFNI’s QC reports on an openly shared 
dataset. A good QC process is context dependent and should address whether 
data have the potential to answer a scientific question, whether any variation in 
the data has the potential to skew or hide key results, and whether any problems 
can potentially be addressed through changes in acquisition or data processing. 
Automated metrics are essential and can often highlight a possible problem, but 
human interpretation at every stage of a study is vital for understanding causes 
and potential solutions.
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1. Introduction

The fundamental question that a quality control (QC) process should answer is, “Will these 
data have the potential to accurately and effectively answer my scientific question and future 
questions others might ask with these data?” The secondary goal of QC is to identify data 
anomalies or unexpected variations that might skew or hide key results so that this variation can 
either be reduced through data processing or excluded. Even for a perfectly designed study, 
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problems can arise during nearly every step of the data acquisition and 
analysis. While a specific problem might be unexpected, the existence 
of problems should be expected. Failure to check the quality of data 
will result in incorrect or misleading interpretations of data. Therefore, 
a QC process should be a fundamental element in the design of any 
study. While good QC processes will not guarantee good results, they 
can greatly reduce the chances of generating misleading or 
incorrect results.

QC is both a key part of scientific progress in fMRI and a 
neglected topic. Overviews of good practices mention the importance 
of a good QC process (Poldrack et al., 2008; Nichols et al., 2017), but 
do not describe the elements of a good QC process in depth. Detailed 
QC protocols for fMRI studies tend to be published only for large or 
multi-site studies, do not always present context, and only a few 
include operating procedures for non-automated steps (Friedman and 
Glover, 2006; Marcus et al., 2013; Alfaro-Almagro et al., 2018; Kim 
et al., 2019; Scott et al., 2020; Huber et al., 2021; Huguet et al., 2021). 
Publications and seminars that systematically discuss and debate 
expectations and methods of QC for fMRI are rare. Automated or 
semi-automated QC tools have long been part of fMRI processing 
pipelines (Cox, 1996) and there is a growth in QC tools for specific 
phases of acquisition and processing (Dosenbach et al., 2017; Esteban 
et al., 2017; Heunis et al., 2020). Still, despite the central importance 
of good quality data for scientific reproducibility, there is only a 
modest amount of education and methods development research that 
focuses on improving QC processes.

Our anecdotal experience is that learning how to think about 
fMRI QC and the practical parts of checking data are often taught 
through hands-on training, particularly when people acquire data. 
With a rising number of researchers working with shared data and not 
acquiring data, a smaller proportion of neuroimagers may be receiving 
this necessary training during formative career stages. This is paired 
with an assumption that data that are published and shared are 
reasonable quality data. We have repeatedly heard shared datasets 
being referred to with terms such as “gold standard data,” which is 
another way of saying data users think they can trust downloaded data 
without running their own QC process.

To reduce these training gaps and push for more work and 
innovation, we document our approach to fMRI QC with two goals 
in mind: (1) Outline a quality control framework for fMRI for 
scientists who have not learned these skills during formative training 
periods. (2) Highlight QC priorities for a researcher who uses data 
they did not collect. We demonstrate a QC process, primarily using 
AFNI software, on a sample dataset as part of the FMRI Open QC 
Project.1 For this project, multiple groups demonstrate their QC 
procedures with a variety of software packages on the same data.

While no manuscript can replace hands-on training, 
we  highlight ways of thinking about fMRI QC that may guide 
additional learning. Our framework and demonstration are 
centered on the idea that automation should augment rather than 
replace human judgement. Also, discussions about QC often focus 
on what data to accept vs. exclude, but timely human judgement can 
identify problems that can be  corrected through changes in 

1 QC Project main page: https://www.frontiersin.org/research-topics/33922/

demonstrating-quality-control-qc-procedures-in-fmri

acquisition and analysis. This interaction between automation and 
human judgement will become more critical to understand and 
improve as fMRI datasets increase in size. Large studies require a 
clear plan for which aspects of QC can be automated and where the 
finite amount of human intervention and judgement is most useful. 
To that end, we provide a framework for thinking about general 
approaches with a specific focus on where human intervention is 
particularly important.

2. Quality control framework for fMRI

QC asks whether and how data can be used. For fMRI data, this 
comes down to addressing two questions (1) Which voxels have 
useable data? (2) Are the locations of those voxels in the brain 
accurately defined? Answers to the first question involve ensuring 
consistent fields of view across all scans, computing basic QC metrics 
such as signal-to-noise ratio (SNR) and the temporal-signal-to-noise 
ratio (TSNR), and searching for spatial and temporal artifacts which 
may render these areas unreliable for modeling. Answers to the second 
question involve looking at functional alignment between runs, 
functional to anatomical alignment, anatomical alignments to a 
common stereotaxic space, and anatomical alignments across 
study participants.

The quality checks needed to answer these questions are not 
the same for all study purposes and the best tools to answer them 
vary by study phase and purpose. As discussed in a generalized QC 
framework by (Wang and Strong, 1996), QC includes both intrinsic 
and contextual measures. Intrinsic measures characterize inherent 
properties of the data. For example, the average temporal-signal-
to-noise ratio (TSNR) of gray matter voxels might be intrinsically 
useful. However, contextual measures depend upon the research 
hypothesis. For example, the TSNR values of voxels in the temporal 
pole might only matter in the context of studies with hypotheses 
about the temporal pole. Similarly, some functional-to-anatomical 
alignments are intrinsically poor, but an imperfect alignment 
might be sufficient in the context of a study that focuses on large 
regions-of-interest (ROIs) or spatially smoothed data. As another 
example, a modest amount of head motion or breathing artifacts 
might be addressable through data processing for some studies but 
could be problematic in the context of a study with task-correlated 
breathing (Birn et  al., 2009) or with population biases in head 
motion (Power et al., 2012). This distinction between intrinsic and 
contextual quality is critical because many discussions of fMRI QC 
focus on whether to keep or exclude data, yet there are often 
situations where data can be processed to be useful for a subset of 
potential applications, underscoring the need to keep the 
application of data central when assessing quality.

We organize our QC framework into four phases: during study 
planning, during data acquisition, soon after acquisition, and during 
processing. This structure should guide when to think about certain 
steps, but the same overall issues cross all phases, and they are not in 
a strict temporal order. For example, an issue identified during 
processing may prompt changes to study design or acquisition. An 
additional element of QC is QC of the acquisition hardware, which 
should be checked regularly as part of the operational procedures of 
any fMRI research facility. Since there are already multiple resources 
for this type of fMRI QC (Friedman et al., 2006; Liu et al., 2015; Cheng 
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and Halchenko, 2020), we are limiting our scope to QC that is specific 
to the data collected during a study. The appendix summarizes the 
suggestions in this framework for use as a guide when designing a 
study-specific QC protocol.

2.1. QC during study planning

Good QC procedures depend on having the QC-relevant 
information stored in a representationally consistent manner where 
they can be efficiently accessed (Wang and Strong, 1996). This requires 
effort during the planning stage of a study to make sure this 
information will be identified, collected, and organized. Defining QC 
priorities during the planning phase also supports future data sharing. 
The information that needs to be organized to support a robust QC 
protocol will also be accessible to future users of the data.

Expert study-specific advice is highly recommended during 
study planning. If one has access to experts in experimental design 
and acquisition, seek out their advice during this phase rather than 
the “What is wrong with my data?” phase. Many of the QC 
protocols referenced in the introduction feature study-specific 
examples and show how others have prioritized and organized 
QC-relevant information. Key topics to consider when planning a 
study are:

 • What QC measures will support the goals of the study? For 
example, if a study has a priori ROIs then QC measures for those 
ROIs and pilot scans that optimize those QC measures can flag 
issues that prompt acquisition changes and avoid wasted data.

 • Minimize variability in operating procedures across scan sessions 
by generating checklists and written instructions that clearly 
describe what experimenters should do during the scan (e.g., 
acquisition instructions), and should tell to participants [e.g., 
clear task or rest instructions and protocols to decrease head 
motion (Greene et al., 2018)]. The same applies to preprocessing 
and QC measures to calculate soon after each scan so that issues 
can be efficiently identified. (Strand, 2023) is a general overview 
for how good procedures can help avoid errors and improve 
data quality.

 • What data should be  collected during acquisition that will 
support QC later? This includes both logs of expected and 
unexpected events such as: participant behavior (e.g., task 
behavioral response logs, feedback from participants, observed 
movement during runs, seemed to fall asleep in a run, needed to 
leave scanner & get back in), issues with stimulus presentation, 
qualitative observations and quantitative measures of real-time 
data quality, respiratory and cardiac traces, external sources of 
variation between participants [e.g., time of day, caffeine intake, 
endogenous and exogenous sex hormone variation (Taylor et al., 
2020)] and all scanning parameters.

 • How QC measures will be organized and shared. Acquisition-
stage QC is useful only if it is connected to the data, 
understandable by others, and easy to share.

 • Finally, pilot sessions should go beyond attempting to optimize 
MRI acquisition parameters, to play a role in addressing all the 
above QC topics, so that when acquisition for a study begins, the 
procedures for acquiring, organizing, and rapidly checking QC 
metrics are already in place.

2.2. QC during data acquisition

It is better to design and follow a QC-focused scanning protocol 
and proactively collect good data than to retrospectively attempt to 
remove or fix bad data. That means one should aim to look at 
reconstructed MRI data as soon as feasible to identify unusual dropout 
or serious artifacts. When scanners are equipped with real-time fMRI 
capabilities, this initial inspection can happen as volumes are being 
acquired. While all modern scanners allow people to look at volumes 
during a scanner session, additional, real-time systems such as AFNI 
(Cox and Jesmanowicz, 1999) and NOUS (Dosenbach et al., 2017) can 
help identify artifacts in time series and excessive motion events, 
prompting researchers to notify the participant and to re-collect data. 
Real-time quality checks should be  extended to any concurrent 
peripheral measurements such as respiratory or cardiac traces, 
behavioral responses, EEG, and eye tracking, to name a few. Stimulus 
presentation scripts can also integrate some rapid feedback so that 
experimenters can identify participants who are not performing a task 
as expected. Even if a session-specific issue observed during 
acquisition is not correctable in real-time, it can be flagged during 
acquisition for closer attention during processing or can lead to 
protocol changes to improve future scanning sessions.

2.3. QC soon after acquisition or download

Rapid QC after acquisition can focus on intrinsic issues that might 
not have been obvious during acquisition. If done between acquisition 
sessions, information gathered this way can identify ways to improve 
future acquisitions and avoid unexpected downstream analysis problems. 
The most important thing to check is that the expected data are present, 
have understandable and accurate file names, and are properly 
documented. Shared datasets often have a few surprises (e.g., missing or 
corrupted files, duplicated data, incomplete runs). For example, early QC 
can help identify and fix a task presentation script that insufficiently 
logged behavioral responses and times. These early checks should also 
include confirming that each MRI run and peripheral measurement, 
such as respiration and cardiac traces, have the correct number of 
samples, and look as expected. Checks should also determine if fMRI 
data look anatomically correct and have consistent orientation and brain 
coverage. This should also include checking whether parameters in data 
headers are plausible and match documentation. For example, 
we recently saw a dataset where the publication accurately listed a slow 
5.1 s TR for a specialized sequence, but the files were incorrectly saved 
with a 1.5 s TR in their headers. This caused problems when processing 
steps read the incorrect TR from the file headers.

For shared data, check if there is any information about the QC 
procedure or a list of excluded runs or participants. If there is no 
information on problems with the data, that is likely a warning sign 
that there was no systematic QC procedure, and one should examine 
the data more carefully before using. If there was a clear QC procedure, 
one can also check if contextual metrics for newly planned analyses 
were included. For example, if the initial analysis focused on task 
responses and new plans focus on connectivity measures, the initial 
QC may not have focused on potential temporally correlated artifacts.

While full processing of data can be a slow process, an initial, 
limited preprocessing aimed at generating key automated QC 
metrics should be  run as soon as possible. Even if a full 
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preprocessing pipeline is not finalized, running some basic 
preprocessing steps can identify issues that will help tally what data 
are useable and can help better optimize the final preprocessing 
pipeline. For example, if anatomical to functional alignment is poor 
in many participants during initial preprocessing, then time can 
be  devoted to figuring out ways to optimize the alignment 
algorithms for a given dataset.

2.4. QC during data processing

The big advantage of integrating QC into a data processing pipeline 
is that QC metrics and key images for visual inspection can 
be  automatically calculated for multiple steps in the pipeline. For 
example, AFNI’s afni_proc.py pipeline automatically generates a QC 
html page with values and images that aid human interpretation of data 
quality. By compiling automatically calculated measures, someone with 
modest training can view reports to identify many things that look odd 
and are worth showing to a more experienced researcher.

While the processing steps have a fixed order, examination and 
interpretation of QC measures do not. Therefore, automated QC 
pipelines should calculate and organize measures from across the 
processing stream to aid human interpretation. This is particularly true 
for shared data where issues with unprocessed data may not have been 
checked or documented. For example, a few authors were recently 
working with a shared dataset where the acquired slices did not cover 
the most superior 5 mm of the cortex. This was flagged as a failure of 
the registration algorithm, but by going back to the unprocessed data, 
it became clear that the alignment was fine, but data were missing.

After data are processed, check if there are any warnings or errors 
from the execution of the processing script. These may seem obvious, 
but subtle downstream errors from unnoticed script failures happen. 
This is also the easiest place to see if the same warnings repeatedly 
appear and warrant changes to a processing pipeline. AFNI makes this 
easy by compiling the warnings from all processing steps in AFNI’s QC 
output so that users can look in one place to see if any parts of the script 
failed to execute or if serious data issues were automatically flagged.

Then quality checks can be  separated into answering the two 
questions from the beginning of this section: (1) Which voxels in a 
dataset have usable data? (2) Are the locations of those voxels in the 
brain accurately defined?

2.4.1. QC during data processing: Usable voxels
The most straightforward check is noting areas of the brain that 

were included in the scan’s field-of-view. Since most pipelines attempt 
to mask out non-brain voxels, one must make sure the mask is not 
excluding brain voxels or retaining voxels outside the brain. fMRI data 
always suffers from signal dropout and distortions, so voxels within 
the brain are expected to be missing, but, for a study with the same 
acquisition parameters, the location and amount of dropout and 
distortion should be relatively consistent. A dataset with unusually 
large amounts of dropout should be checked to see if there are other 
issues. Even if dropout is fairly consistent, the QC process should 
identify voxels with usable data in only a subset of participants. 
Particularly for ROI-based analyses and connectivity measures, voxels 
with data in only a fraction of a population can cause non-trivial 
biases in data that are hidden under ROI averages or averaged 
group maps.

The temporal signal-to-noise ratio (TSNR = detrended mean/
standard deviation) is a rough, but useful measure of fMRI quality that 
highlights issues that can be missed by looking only at the magnitudes, 
since the standard deviation of time series will be affected by temporal 
acquisition artifacts and head motion spikes. On a voxel-wise map, the 
spatial pattern of TSNR values can vary based on acquisition options. 
For example, a 64-channel head coil with many small receiver coils 
will likely have relatively higher TSNR values on the surface versus the 
middle of the brain compared to a 16-channel coil (although the raw 
TSNR values should be higher everywhere). In addition to viewing 
TSNR maps, with consistent acquisition parameters, TSNR should 
be similar across a study, so data warrants closer examination if the 
average TSNR for the whole brain, white matter, or gray matter is 
lower in some runs.

Mean images and TSNR are useful for identifying potential 
problems, but not necessary for understanding causes and potential 
solutions. By recognizing different types of MRI artifacts, it is possible 
to figure out if a problem can be solved through data processing, or 
censoring time points or voxels. Not every artifact is a problem. For 
example, the differences in TSNR between the surface & the center of 
the brain with multi-channel head coils is not inherently a problem, 
but it can affect studies that directly compare or correlate cortical 
surface and subcortical responses (Caparelli et al., 2019). MRI imaging 
artifacts are best understood with hands-on training, but there are 
some key things to look for. Any contrast changes that do not seem to 
follow brain tissue or are not symmetric between hemispheres might 
be artifacts. It is important to look at data from multiple views (i.e., 
axial and sagittal) because some artifacts may be  obvious within 
acquired slices and others may be visible across slices. If there is a 
bright artifact in one location, it might be possible to exclude data 
from that location, but many types of artifacts are obvious in one 
location and present, but less obvious over a larger portion of the 
brain, which would make data unusable. Processing that includes 
masking or temporal scaling of the data can often hide these artifacts, 
but they can be more visible in TSNR versus mean images or if the 
contrast is adjusted to give values nearer to zero more brightness. 
Another useful tool is to look at power spectra of data, which can 
identify if an artifact is fluctuating at consistent frequencies. 
Temporally periodic artifacts can be due to acquisition problems that 
might affect an entire dataset or by respiratory and cardiac fluctuations 
which are potentially addressable.

If the brain volume overlaps itself or there is a replicated part of 
the brain where it should not be, this wrapping or ghosting can inject 
signal from one part of the brain into another part and make a run 
unusable. A way to examine the seriousness of a ghosting or wrapping 
artifact is to correlate the rest of the brain to voxels within the artifact. 
AFNI’s instacorr interface lets users interactively correlate data to 
specified voxels and is particularly useful for this. Instacorr does not 
depend on AFNI processing so it can be used on data processed with 
other packages. If a voxel in an artifact is correlated with other clusters 
of voxels in a non-anatomical pattern (e.g., The signal in one brain 
region correlates with the same-shaped ghosted region elsewhere in 
the volume) that is a serious sign that the artifact corrupted the data.

One additional tool for identifying temporal artifacts in voxels is 
to look at partially-thresholded and unmasked activation maps for 
both task-locked GLM models and correlations to the global averaged 
signal or white matter. While one cannot reject a dataset if the task of 
interest is not significant, if a study uses a visual task and there is no 
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task-locked activity in the primary visual cortex, then there are likely 
additional issues with the data. If there is task-locked activity outside 
of the brain or on tissue/CSF boundaries, that is a sign of ghosting, 
motion artifacts, or task-locked breathing (Birn et al., 2009). If there 
is not a task, correlation maps can highlight similar issues, but they 
can also be used to identify population differences. For example, given 
the widely documented differences in global signal across populations 
(Power et al., 2012; Gotts et al., 2013; Yang et al., 2014), any study that 
plans to regress out the global signal as noise needs to correlate the 
global signal to the other voxels in the brain and test whether the 
correlation between the global signal and voxels systematically varies 
between populations or other contrasts of interest.

There are many automated QC metrics, in addition to TSNR, that 
can be used to automatically exclude data in voxels or highlight areas 
of concern. The most common ones are spike detection and motion 
estimates. Those can be used to both censor specific volumes and to 
automatically decide whether a run has too many censored volumes 
to be useable. The remaining degrees of freedom (DOF) after temporal 
filtering, censoring, and noise regression can be used to decide if 
sufficient DOF remain for statistical tests. The effect of temporal 
filtering on the loss of degrees of freedom is sometimes ignored in 
fMRI studies. AFNI also outputs a spatial smoothness estimate for 
each dataset. These numbers are not especially useful in a single run, 
but for a given set of acquisition parameters, the smoothness estimate 
should be roughly consistent across a study. If smoothness estimates 
vary widely, it is worth looking more carefully at outlier runs.

2.4.2. QC during data processing: Alignment
Evaluating individual voxel data quality benefits greatly from 

automation, but masking and alignment results often require manual 
inspection and interpretation. This is because different acquisitions 
can have different contrasts and parameters, so what works well for 
one dataset might not work as well for another. Artifacts and 
non-trivial spatial distortions in unprocessed data can also affect 
masking and alignment. Automated metrics for alignment quality will 
keep improving, such as with a metric to automatically warn that the 
left and right sides of the brain are flipped (Glen et  al., 2020). 
Automation can be  used to compile images that facilitate human 
inspection. AFNI’s html reports include images where the sulcal edges 
from a participant’s anatomical volume are overlayed onto the 
functional images or common anatomical templates. This is a quick 
way to catch clearly mis-aligned brain edges or sulci and potential 
issues that are worth a closer examination of the full volumes’ 
alignments.

Visual checks can focus on several factors. If collected during the 
same session, an anatomical image should have a decent alignment to 
the functional data even without processing. Atypical brain structures 
can be viewed before processing. An expert can tell which types of 
variation are concerning – either to the volunteer or to data processing 
– but a less experienced reviewer can flag anything that is asymmetric 
for expert review. Benign cysts, larger ventricles, and other atypical 
structures do not require rejecting data, but they can affect spatial 
alignment between participants as well as the locations of functional 
brain areas. As such, those occurrences should be noted, and more 
attention should be spent on assessing alignment quality.

Since most fMRI research uses multi-channel receiver coils, one 
very common artifact is intensity inhomogeneity, where the voxels 
closest to the head coil have a higher magnitude signal than voxels 

nearer to the center of the brain. This inhomogeneity can look bad, 
but it is not inherently a problem. That said, it can affect the accuracy 
of brain masking and alignment so, if the data has a lot of 
inhomogeneity, it is useful to spend more time checking brain 
masking and alignment.

It is worth taking time to make sure a brain mask excludes sinuses 
and non-brain tissue, and that a mask does not remove parts of the 
brain. Inconsistent masking often leads to flawed anatomical-to-
functional alignment and flawed reregistration between participants. 
Unless problems are caused by artifacts or distortions, it is often 
possible to fix alignment issues by tuning function parameters or by 
hand-editing masks.

Once many participants in a study are processed and aligned to a 
template, a summation of all the fMRI coverage maps is very useful 
for identifying brain regions that are included in only a portion of 
study participants. Excessive blurring on the average of the aligned 
images can also signal faulty alignment for a subset of participants. 
From our experience, looking at such coverage maps is strangely 
uncommon. A concatenated time series of all anatomical images and 
an average anatomical are very useful for checking the consistency of 
alignment across a population.

2.5. Peripheral measures

QC for fMRI studies often focuses on the MRI data, but 
unprocessed and processed peripheral measurements can also 
be sources of error. While many peripheral measures can be collected 
and checked, we will highlight a few examples for how to think about 
such measures in general. To be used with fMRI, peripheral measures 
need to log their timing in relation to fMRI volume acquisitions. 
Errors can arise in peak detection for respiratory and cardiac traces. 
Movement of a finger within a pulse oximeter can create noisy sections 
with what looks like rapid changes in heart rate that can negatively 
affect some peak detection algorithms. Anyone who collects 
respiratory data will also find spontaneous breath holds, which will 
affect fMRI data. Breath holds will cause large, brain-wide signal 
changes that bias results or merely be a non-trivial source of noise. For 
task-based fMRI, check response logs to confirm the expected 
information was logged and participants were compliant with task 
demands. Also check to make sure that head motion or respiration 
patterns are not task-correlated, since non-neural signal sources that 
are task-locked will bias results.

For all QC steps, it is crucial to consider that algorithms often fail 
in subtle ways rather than with clear errors, and these are the hardest 
errors to catch. It is therefore imperative that all steps be thoroughly 
vetted to ensure all assumptions required by the program are met and 
that programs are used consistently with their documented intent.

3. Methods

The previous section contains information on how to think about 
planning QC for a dataset. The following examples on shared datasets 
show how some of these concepts work in practice. As already noted, 
a QC process checks both intrinsic quality measures and contextual 
measures that are often dependent on the scientific question that a 
researcher has in mind. Additionally, because the data have already 
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been collected, we do not demonstrate the phases of QC before and 
during data collection (though in the discussion we will note some 
operational steps that could have been taken with these data). Since, 
we do not know the intended purposes for these data, we can make 
some assumptions about context, but our attention will primarily 
focus on intrinsic QC. We are focusing our contextual QC on issues 
that might affect connectivity measures for rest data or task responses 
for task data, without making assumptions about regions of interest.

We classify data which we believe could answer such questions as 
“included,” data which could not answer common or basic questions 
as “excluded,” and data which may be suitable for some questions but 
not others as “unsure.” Automation scripts were used to ensure 
consistency across subjects; the full processing and figure generation 
code and instructions may be found in our GitHub repository.2 Each 
processing step was given its own script with the expectation that 
users could check results before proceeding.

Data were initially checked using a basic visual inspection to 
identify anything of concern in the data including missing 
information, artifacts, whether the image field of view included the 
whole brain (excluding the cerebellum and brain stem), and whether 
there were noticeable anatomical or image abnormalities. Concerns 
were noted, and screenshots were uploaded to a shared folder. 
Anything requiring additional discussion prompted either a message 
or a video chat between researchers to either (a) decide that the object 
of concern was inconsequential or (b) properly identify the problem 
and mark it.

For processing of the data after these inspections, T1 anatomical 
images were segmented using freesurfer’s recon-all (Fischl and Dale, 
2000), and a non-linear transformation for warping anatomical 
images to the MNI template space was calculated using AFNI’s  
@SSwarper (Cox, 1996). SSwarper’s output includes QC images, which 
were checked both to make sure that the brain mask had complete 
coverage and did not include skull, and that the individual brain had 
been properly aligned to the MNI template.

AFNI’s afni_proc.py program was used to perform slice timing 
correction, rigid-body motion correction, alignment of anatomical 
and echo-planar images, blurring to 6 mm full-width half-maximum, 
and regression of physiological-and motion-related signals. Volumes 
which contained more than 0.25 mm of head motion from 
neighboring volumes were censored. Voxels which were determined 
to be outliers by AFNI’s 3dToutcount were tallied and volumes which 
had more than 5% of voxels as outliers were censored.

For all data, the ANATICOR method (Jo et al., 2010) was used to 
compute regressors associated with scanner instabilities and 
physiological noise. In addition, we also regressed motion estimates 
and their first derivatives. For rest data (subjects 101–120), additional 
regressors were used to bandpass between 0.01 and 0.1 Hz, which 
significantly reduced the remaining DOF for the data. For task data, 
this step was omitted.

In the case of task data (subjects 001–030), tasks were modeled 
using the simplified task timings supplied with the data. The labeled 
task conditions were “control” and “task,” and each trial had an onset 
time and duration. We modeled task responses in our GLM with 

2 https://github.com/nimh-sfim/

SFIM_Frontiers_Neuroimaging_QC_Project

AFNI’s default double-gamma hemodynamic response function using 
both the onset and duration information.

For inspecting the outputs of all other steps, we relied primarily 
on afni_proc’s webpage-based QC report. Many figures in this 
manuscript use QC images that were automatically compiled in this 
report. Automatic motion correction and outlier censoring were used 
to see whether subjects exceeded 20% of volumes censored; in these 
cases, subjects were excluded.

The echo planar image (EPI) to anatomical alignment was checked 
by ensuring that anatomical edges matched the gyral shapes on the 
EPIs, that the ventricles were aligned, and that the brain was not 
distorted to the point of being displaced past the anatomical boundary.

Anatomical-to-template alignment was checked by ensuring 
subject-warped edges matched the template image’s edges, and, that 
the gyral shapes on both the anatomicals and the brain edges matched. 
The final EPI mask was checked to ensure it covered all likely areas of 
interest (i.e., those targeted by scientific inquiry).

Model fits for regressors of interest were examined to make sure 
that good fits were not spatially aligned with previously identified 
artifacts. A similar inspection was performed for seed-based 
correlation maps to make sure that the underlying correlation 
structure was free of artifactual patterns.

For the task data, while we do not know the expected patterns, the 
modeled task responses were examined to see if they presented a 
plausible design with a sufficient number of uncensored trials per 
task condition.

Lastly, the warnings automatically generated by afni_proc were 
checked: these include unusually high correlations with nuisance 
regressors, total percentage of censored volumes, pre-steady-state 
detection, possible left–right flips, and EPI variance line warnings. For 
likely left–right flips, without additional information, we  cannot 
ascertain whether the EPI or anatomical has the correct orientation; 
thus, such subjects are marked for exclusion. EPI variance line 
warnings are a marker of potential temporal artifact and instacorr was 
used to examine potential artifacts for severity.

4. Results

The task data contained numerous problems during the initial 
visual inspection process. Across the dataset, dropout and distortion 
were substantial in the unprocessed images. There were also very 
visible motion artifacts (e.g., Figures 1, 2). Four subjects were all 
automatically excluded because more than 20% of volumes 
exceeded motion and outlier censoring thresholds. Most subjects 
showed substantial dropout in the temporal lobe and some showed 
cerebellar dropout (Figure 3A). Several subjects showed atypically 
high correlations between a white matter ROI and gray matter 
voxels and areas of highest activation to the full F test for the task 
outside of the brain or in CSF (Figure 4). Based on EPI variance line 
warnings, visual inspection with instacorr identified several subjects 
with non-trivial artifacts (Figure  5A). Additionally, multiple 
subjects showed mild to moderate correlations between the task 
and control condition timing, which reduces that statistical power 
to independently estimate effect sizes for the two conditions. Since 
we  did not create the study design, we  did not exclude any 
participants solely because of this correlation. In total, 14 subjects 
were marked for inclusion, 12 were marked for exclusion, and 4 
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were marked unsure out of a 30-subject data set. An overview of our 
findings across both datasets are shown in Table 1.

For the rest data, more of the brain was consistently covered 
(Figure 3B). Two subjects were automatically excluded because more 
than 20% of volumes exceeded motion and outlier censoring 
thresholds. Areas of general concern in the rest data included 
correlations between gray matter and a white matter ROI, poor 
correlations to expected networks from ROIs like the posterior 
cingulate, and EPI variance line warnings followed by instacorr 
inspection of artifacts. In these data, instacorr often showed issues 
related to EPI variance warnings in the unprocessed EPIs, but when 
censored volumes were removed by processing, instacorr-observable 
artifacts were reduced, and the remaining data were usable. The 
threshold between inclusion and exclusion based on these criteria was 
subjective, and the decision to exclude was typically based on several 
borderline reasons for concern, such as more than 10% of volumes 
censored and signs of artifacts in the data. We  likely would have 
excluded more subjects if other subjects with this study were less noisy 
(Figure 6). Two subjects were excluded because the left and right sides 
of the brain were likely flipped between the anatomical and EPI data 
and an additional subject looked like the anatomical volume was from 

a different brain than the EPI (Figures 7A–D). Given 3 participants 
showed an EPI and anatomical mismatch, there is a risk of an 
underlying issue with file naming and organization in these data. If 
we were using these data as part of a study, we would try to identify 
the origin of the flipping to confirm the scope of the problem and 
possibly identify the true left vs. right so that these participants would 
not need to be  excluded. In total, 13 subjects were marked for 
inclusion and 7 for exclusion out of a 20-subject data set.

5. Discussion

We outlined priorities for QC of fMRI studies and then 
demonstrated them on two datasets. While priorities are best 
organized around conceptual goals, QC steps are ordered by when 
potentially serious problems are noticed. For the exemplar data, 
high motion, non-trivial distortion or dropout, and warnings signs 
for artifacts were rapidly apparent and dominated our focus. 
We highlight TSNR and several other measures as important QC 
metrics in our priorities, but we did not highlight them in practice. 
This is because some data did have low TSNR and artifacts that were 

FIGURE 1

Subject 017 had a high number of censored volumes due to motion. This figure depicts several volumes in which the motion artifact is very clear. 
Banding due to the magnitude of head motion during acquisition are visible on the sagittal and coronal slices. Within the axial slice, this motion makes 
part of the lateral ventricles disappear because of displacement during acquisition. Such a large motion artifact should be visible on the console even in 
an axial-only view. Operationally, it would be useful to note this during acquisition and consider collecting an additional run while the subject is 
present.
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clearly visible in TSNR maps, but these were in runs that were 
already rejected for other reasons. For these data, TSNR measures 
might have improved understanding of the effect of motion 
artifacts, but TSNR did not add value to decisions of what to include 
or exclude. In other datasets, TSNR has been the first place where 
something problematic is noticed.

This emphasizes a critical point of QC protocols. Datasets can 
have unique quirks, and the most useful QC checks for fMRI data are 
not universal across all studies. We’ve interacted with researchers who 
had a bad experience with head motion in a study and prioritized 
checks for head motion above all else. In fact, when the Organization 
for Human Brain Mapping put together a consensus statement on 
results reporting, it included a general recommendation to document 
QC measures, but only specified motion and incidental findings for 
fMRI data (Nichols et al., 2017). Reporting on alignment quality, MRI 
artifacts, degrees of freedom available, and consistency of the imaging 
field of view were not mentioned. For QC to become an intrinsic part 
of data acquisition, processing, and sharing, guidelines should 
be updated to include at least these valuable QC metrics.

A good QC process is designed to identify and address issues as 
soon as possible. The shared task data had many problems that were not 
addressable by the stage we received them. With the goal of improving 
the quality of shared data, we want to highlight QC steps that could have 
helped avoid collecting a dataset with such problems. Some problems, 
like the artifacts from extreme motion depicted in Figure 1, should have 
been observable during data acquisition. Real-time motion tracking, 
would identify high motion runs during scanning and potentially create 
an opportunity for additional acquisitions. Additional real-time 
monitoring of peripheral data, like eye tracking, behavioral responses, 
or cardiac and respiratory traces would identify drifts in consciousness 
or attention to the task. Once data are collected, rapidly running some 
subject-level analyses may identify correctable problems. For example, 
many of the acquisition issues in the rest data that might cause the 
spatio-temporal artifacts we  saw would have been visible early in 
collection and might have been fixable through changes in acquisition. 
We reiterate that it is imperative to run analyses as early as possible to 
avoid acquiring large amounts of data with problems that do not arise 
until the study is analyzed months or years after acquisition began.

FIGURE 2

Subject 029 had a more subtle motion artifact than depicted for subject 017. The banding is visible during the period with the most motion but is 
otherwise more subtle and would be less likely to be noticed during acquisition without automated QC metrics.
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Between the original and revised submission of this manuscript, 
we noticed a serious error in our processed data that we missed even 
while using a detailed QC protocol. For a subset of task subjects, the 
skull stripped anatomical volumes were mis-labeled and we aligned 
fMRI data to the wrong anatomicals. This created an unintentionally 

good case-study on the limits of QC and how we could have caught 
this error earlier. We introduced this work by stating the purpose of 
QC is to identify whether data is of sufficient quality to be used for its 
intended purpose. In this case, we observed bad EPI to anatomical 
alignments, and wrote that the data would be not usable for their 

A

B

FIGURE 3

EPI coverage maps in MNI space for (A) task and (B) rest data sets. More yellow indicates that more subjects retained usable data for a given voxel. 
More purple indicates voxels where fewer subjects have usable data. The black outline surrounds voxels where all subjects have useable data. While 
both datasets show dropout in orbitofrontal and inferior temporal areas, the dropout is less consistent and more pervasive in the task data where much 
of the temporal lobe does not have usable data in a non-trivial fraction of subjects. The black line in (A) also highlights that not all subjects have 
cerebellar coverage.
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intended purpose until alignment was fixed. If we planned to use these 
data for a larger study, we would have tried to fix the alignment, but 
for this demonstration, we ended by noting the alignment issues. This 

occurrence highlights how human interpretation is a fundamental 
part of QC and understanding why data are low quality is sometimes 
more important than merely identifying low quality data. Even while 

A

B

FIGURE 4

The full F stat map shows the decile of voxels with the highest F values for the full task GLM. The correlation to the white matter ROI shows voxels that 
correlated to white matter after the task design is regressed from the data. (A) For sub-001\u00B0F stat peaks are large and mostly in gray matter. (B) For 
sub-016, the F values are smaller, and the peaks are in lateral ventricles, CSF, and outside of the brain. The white matter correlation maps are harder to 
identify as clearly good or bad, but more pervasive correlations to gray matter as in (B) are an additional warning of a problem. Notably, both subjects have 
relatively little head motion (1.7% of volumes censored for sub-001 and 3.7% of volumes for sub-016) but AFNI also flagged sub-016 as having the task 
condition and not the control condition mildly correlated to motion. These maps provide evidence that task-correlated motion affected data quality.

A B

FIGURE 5

After seeing warnings due to “extent of local correlation” and “EPI variance lines” in AFNI’s automatic QC, instacorr was used to examine more closely. 
(A) For the correlation seed at the crosshair, Sub-018, shows an artifactual pattern of correlations (p < 0.001) across large portions of the posterior 
cortex and cerebellum. Time series shows that some of this follows several large jumps in motion. (B) For Sub-002, an unusually large hypointensity 
was noticed in the unprocessed EPI that was alarming during the initial review. Anatomical viewing of the same slices shows a slightly large superior 
cistern and 4th ventricle. Correlations to the cross hairs on the unpressed image (p < 0.001 with translucency below threshold) shows slightly larger 
correlations to CSF in the interhemispheric fissure. This observation will likely not cause problems for univariate statistical tests, but it could cause 
analysis issues if ROIs include this larger area of CSF that contains some internal correlations.
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TABLE 1 QC Classifications for all subjects.

Subject ID Status Notes

sub-001 Include Dropout in temporal lobe

sub-002 Include Dropout in temporal lobe

sub-003 Unsure Dropout in temporal lobe; larger corr between white matter ROI & gray matter; 10.3% vols censored; instacorr showing potentially serious 

motion artifacts

sub-004 Include Dropout in temporal lobe

sub-005 Unsure Dropout in temporal lobe; larger corr between WM & GM; Instacorr shows several widespread artifacts, possibly respiratory

sub-006 Include Dropout in temporal lobe; larger corr between WM & GM

sub-007 Include Dropout in temporal lobe

sub-008 Include Dropout in temporal lobe

sub-009 Exclude 35% vols censored; very large corr between WM & GM; activation hotspots outside of brain

sub-010 Include Dropout in temporal lobe; larger corr between WM & GM

sub-011 Include Dropout in temporal lobe

sub-012 Exclude Instacorr showing some artifacts; 12.8% vols censored; Full F stat map hotspots outside of brain and speckled inside brain; Dropout in 

temporal lobe

sub-013 Exclude 10.3% vols censored, task vols more censored than control; Full F stat map hotspots outside of brain and speckled inside brain; instacorr 

showing some artifacts; Dropout in temporal lobe

sub-014 Include Dropout in temporal lobe; larger corr between WM & GM

sub-015 Include Larger corr between WM & GM

sub-016 Exclude Dropout and distortion in temporal and frontal lobes affecting alignment; activation hotspots in CSF; task correlation to motion

sub-017 Exclude 40% vols censored; Dropout in temporal lobe

sub-018 Exclude Instacorr showed nontrivial MRI artifact correlations

sub-019 Include Dropout in temporal lobe; larger corr between WM & GM

sub-020 Include Dropout in temporal lobe

sub-021 Include 12.4% vols censored; Dropout in temporal lobel and cerebellum

sub-022 Exclude Instacorr showed nontrivial MRI artifact correlations; 17.8% vols censored; Full F stat map speckled inside brain; Dropout in temporal 

lobe

sub-023 Exclude Hotspots of activity outside of brain and little robust in-brain hotspots; very large corr between WM & GM; radial corr map shows 

probably artifacts; 14.9% vols censored; Dropout in temporal lobe

sub-024 Exclude 33.5% vols censored

sub-025 Exclude 15.3% vols censored; task-correlated motion; more motion censoring in task vs. control; very large corr between WM & GM

sub-026 Unsure 19.4% vols censored; larger corr between WM & GM; Dropout in temporal lobe; slightly more censored vols in task vs. control

sub-027 Exclude 19.4% vols censored; Hotspots of activity outside of brain and little robust in-brain hotspots; very larger corr between WM & GM; 

Dropout in temporal lobe

sub-028 Include 7.9% vols censored

sub-029 Exclude 20.2% vols censored

sub-030 Unsure Instacorr and local corr maps showed localized artfacts that might require exclusion depending on areas of research interest

sub-101 Exclude Likely Left/right flip; 20.5% vols censored

sub-102 Include 5.8% vols censored

sub-103 Include 2.6% vols censored; instacorr correlations not great, but nothing clearly exclusionary

sub-104 Include 16% vols censored; instacorr correlations not great, but nothing clearly exclusionary

sub-105 Include 11.5% vols censored; instacorr correlations not great, but nothing clearly exclusionary

sub-106 Exclude 13.5% vols censored; Very large global correlations to seeds

sub-107 Include 19.2% vols censored

sub-108 Include 4.5% vols censored

sub-109 Include 3.8% vols censored

(Continued)
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emphasizing the importance of human interpretation, we leaned too 
heavily on an automated summary image to reject an alignment. This 
is a critical point since, as study sample sizes increase and data 
rejection is automated and not followed up by human interpretation, 
the more likely usable data will be  automatically rejected and 
systematic issues underlying data rejection will be overlooked.

Automated measures combined with human interaction and 
judgement were essential to the QC process. While automated 
measures such as correlations to a white matter ROI, statistical result 
maps, and line variance warnings mandated closer attention, it was 
direct inspection of volumes and time series, including with using 
instacorr, that became essential for identifying wide-spread issues that 
warranted data exclusion. Our initial error with mismatching 
anatomicals and EPIs also highlights the importance and limits of 
automated QC for registration. The alignment measures showed bad 
alignments, but not why. For several subjects, the mismatched 
volumes were subtle even with a close inspection. AFNI’s warning for 
left–right flips is an example where automation can highlight a serious 
alignment problem that is also subtle. More innovation in automated 
metrics to assess alignment quality, such as the demonstrated left/right 
flipping test, is needed. For example, a post hoc analysis of our 
mismatched processing showed that while the cost functions used for 
alignment are sensitive to the precise contrasts of the EPI and 
anatomical volumes, since the anatomicals and EPI images had similar 
contrasts across the dataset, the cost function values for the 
mismatched fits were clearly higher than the good fits in comparison 
to other subjects in each dataset (Figure 7E). This is a potential new 
automated metric that could flag concerning alignments for follow-up 
by human inspection.

At many points in this project, it was clear that hands-on training 
was essential. The two authors who conducted most of the visual 
inspect of results have been working with fMRI data for slightly more 
than a year. Though the more experienced authors gave consistent 
instructions, it was impossible to give them comprehensive written 
instructions that covered the range of issues they observed solely 
within these datasets. For example, there were several cases where 
anomalies in images, like a line of CSF that was unusually visible in a 
single slice caused serious concerns during the initial review, but 

expert feedback showed it was not a serious problem (Figure 5B). 
Improving the training of novice neuroimagers was an interactive and 
iterative process, where they presented concerning observations and 
the more experienced neuroimagers helped them understand what 
issues were or were not actual concerns. Over time, they were able to 
more independently make appropriate QC judgements. Therefore, 
such training needs to go beyond a lecture and involve mentored 
examination of actual datasets.

We have endeavored to provide some points of discussion when 
devising ways to train people in QC and provide a stable framework 
for creating a process tailored to individual researchers’ needs. 
Teaching best practices for quality control is far beyond the scope 
of a single manuscript. Since we focus on QC, rather than what to 
do after QC, we do not substantively discuss MRI artifacts nor ways 
to reduce certain artifacts through changes in acquisition or 
analysis. There are existing reviews on fMRI noise and noise 
reduction (Liu, 2016; Caballero-Gaudes and Reynolds, 2017), but 
we are not aware of any published reviews or even book chapters 
that specifically focus on MRI artifacts for fMRI. While recorded 
lectures and blog posts cover MRI artifacts, learning to understand 
and interpret fMRI artifacts remains heavily dependent on 
hands-on training.

Automation remains essential to QC. Appropriate use of 
automation can be a very important part of both analysis and quality 
control when paired with human interpretation and rigorous 
inspection. When steps are properly automated, human induced 
errors can be reduced, resulting in more consistent and reproducible 
results across subjects or analyses. Automated pipelines are also more 
likely to be neatly organized and understandable, with notes integrated 
into the scripts that run them rather than scattered across an entire 
project. This can drastically ease the burden of finding important data 
or tables to inspect. For the QC metrics demonstrated here, head 
motion, temporal outlier detection, DOF counts and accompanying 
censoring and warnings were automatic and appeared robust. Flagging 
of left–right flipping, while only partially automated, proved invaluable 
as it is a very difficult problem to spot. Additionally, having a report 
which organizes much of the relevant information in one place to 
systematically review, saved many personnel hours during the data 

TABLE 1 (Continued)

Subject ID Status Notes

sub-110 Include 4.5% vols censored

sub-111 Exclude 7.7% vols censored; Very large global correlations to seeds

sub-112 Include 6.4% vols censored

sub-113 Include 0.6% vols censored

sub-114 Exclude 4.7% vols censored; Very large global correlations or anti-correlations to seeds

sub-115 Exclude Likely left/right flip

sub-116 Exclude Neither left–left nor left/right flip is great. With close inspection, unclear if anatomical is same brain as EPI

sub-117 Include 1.9% vols censored

sub-118 Exclude 30.1% vols censored

sub-119 Include 10.9% vols censored

sub-120 Include 1.3% vols censored; instacorr correlations not great, but nothing clearly exclusionary

Task subjects are 001–030, rest subjects are 101–120. Notes explain why a subject was excluded or unsure or highlight something worth continued monitoring in included subjects.
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review process and made it possible for the human review to efficiently 
focus on actual issues.

We used and benefitted from many automated QC measures that 
are now built-in defaults when AFNI’s afni_proc.py command is run. 
Automation is a work in progress and each tool has strengths and 
weaknesses. We  note some places where AFNI’s automation can 
improve under the assumption that these may benefit other tools as 
well. In particular, connections between reports and the underlying 
data that generated them could be improved so that it could be easy 
to quickly navigate to from a concerning image, such as an image of a 
few slices with questionable alignment, to explore the full alignment 
in more depth. Another gap in AFNI’s automated measures is that 
there are few automated summaries of QC measures 
across participants.

The publication describing MRIQC tools discusses potential 
inconsistencies by basing too many decisions on human judgements 
and recommends a push toward more automated measures (Esteban 
et al., 2017). While we agree automated measures are essential and 
they acknowledge human judgement is still important, we think there 

can be dangers from over automation or excessive trust in automated 
thresholds for QC metrics. Automated measures can suffer biases of 
omission. For example, the lack of automated measures for alignment 
quality is paired with the lack of a field-wide discussion on the noise 
and reproducibility issues due to sub-optimal alignments. Automated 
measures that reject data without human interpretation can also mask 
underlying and solvable issues.

We believe it is imperative to continue discussing QC priorities, 
processes, standards, and tools. Moreover, discussions of 
reproducibility and reliability of fMRI data need to go beyond 
concerns over head motion and precise yet arbitrary statistical 
thresholds. Focusing just on one QC concern, like head motion, is like 
a building inspector looking for signs of water damage. Water damage 
can be a serious issue and expertise is required to know how to look 
for such damage, but there is a risk to over-focusing on water damage 
and missing signs that the floor is about to collapse. Good quality 
control requires a more comprehensive assessment. The neuroimaging 
community can do more to understand the full range of problems that 
exist in data today, so that we  can get better at identifying and 

A
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FIGURE 6

Automated QC image from 3 rest data study subjects with low head motion (only 4%–6% of volumes censored). An atlas-based posterior cingulate 
(PCC) ROI is calculated and the correlation maps (r values), should highlight some default mode network (DMN) connections. Too much correlation 
between a white matter (WM) ROI and gray matter can be concerning. Local correlations are the correlations of each voxel to surrounding voxels in a 
2 cm sphere and can highlight scanner artifacts. EPI variance line warnings highlight lines of high variance that might be artifacts. (A) sub-109 has a 
plausible DMN from the PCC seed, no excessive correlations to white matter, no non-anatomical local correlations, and the variance warnings were 
checked with instacorr and did not show pervasive issues after preprocessing. (B) sub-102 was typical for these data. The DMN is present, but not as 
clean, there are more WM correlations in and out of the brain, and EPI variance warnings showed some issues with instacorr, but not enough to reject. 
If typical subjects in this dataset were cleaner, we might have rejected sub-102. (C) sub-114 is a clear rejection with non-anatomical anticorrelations to 
the PCC, large artifacts in WM correlations, a large local correlation, and EPI variance warnings paired with concerning artifacts visible with instacorr.
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documenting problems. Particularly as data sharing becomes the 
norm, the more we can do to improve QC processes today, the more 
likely our current data will still be useful for future research.

We have demonstrated a typical QC process for our research 
group. We have likely missed some data quality problems that other 
researchers may catch because processes vary and are often tailored to 
different research approaches. This is one of the reasons we highlight 
the importance of the underlying scientific questions and context for 
good QC. We hope more researchers will share their QC protocols, so 
that a wide array of approaches can be compared and used to improve 
the next generation of QC tools and processes.

6. Conclusion

Good data quality is essential for reproducible science. Quality 
control processes help validate data quality and ensure data are 
suitable to address experimental questions. Timely QC steps 
during the early stages of a study can improve data quality and save 
resources by identifying changes to acquisitions or analyses that 
can address problems that arise during QC. QC is an ongoing 
process that does not end after the early stages of a study. Shared 
data are not inherently quality-checked data, and even shared data 
that includes a documented QC process and output may not 

A B

C

C

D

FIGURE 7

Three subjects in the resting data triggered a left–right flip warning which happens when the cost function for anatomical to EPI alignment finds a 
better local minimum after flipping the anatomical. The grayscale EPI image used for alignment is shown with the edges of the aligned anatomicals. 
(A) The original alignment for sub-115 looks ok, but (B) shows the alignment for sub-115 with the anatomical image flipped and the gyral edges are 
clearly better matched. Sub-115 generated a “severe” left–right flip warning. Sub-116 does not have a great alignment for the original (C) or flipped 
(D) anatomical and generated a “medium” left–right flip warning. Since neither fits well, sub-116 may have been shared with the wrong anatomical 
image. (E) The cost function minimums for the successful alignments in the rest dataset were − 0.36 to −0.5 while the 3 flipped alignments were more 
than −0.13. Similarly, when the task data were unintentionally aligned to the wrong anatomicals, the cost functions were much higher. While cost 
functions are relative measures, the values may be useable as an intra-study alignment QC measure.
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be  sufficient since priorities for quality checks can be  study 
context-dependent.

A good QC process should be integrated into study planning. 
While automation should be  used wherever possible, human 
observations and interpretations are critical. Much discussion of QC 
focuses on the binarized decision of whether to keep or exclude data, 
but we  find that a key element of QC is to identify potentially 
correctable issues. Particularly, as fMRI studies increase in size or 
aggregate multiple datasets, good QC processes will require planning 
that includes decisions on what can be  automated and what will 
require peoples’ time.

Much public discussion about reproducible neuroimaging has 
focused on appropriate sample sizes, statistical tools, and thresholds. 
We posit that normalizing timely and rigorous QC is an equal if not 
more important step our field can take to improve reproducibility. 
While we present a framework for thinking about fMRI QC along 
with a demonstration of one existing QC pipeline on a couple of 
shared datasets, this is far from sufficient. Quality control priorities 
and methods deserve more attention, discussion, and innovation from 
the neuroimaging community.
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