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The development of two-photon microscopy and Ca2+ indicators has enabled

the recording of multiscale neuronal activities in vivo and thus advanced the

understanding of brain functions. However, it is challenging to perform automatic,

accurate, and generalized neuron segmentation when processing a large

amount of imaging data. Here, we propose a novel deep-learning-based neural

network, termed as NeuroSeg-II, to conduct automatic neuron segmentation

for in vivo two-photon Ca2+ imaging data. This network architecture is

based on Mask region-based convolutional neural network (R-CNN) but has

enhancements of an attention mechanism and modified feature hierarchy

modules. We added an attention mechanism module to focus the computation

on neuron regions in imaging data. We also enhanced the feature hierarchy

to extract feature information at diverse levels. To incorporate both spatial and

temporal information in our data processing, we fused the images from average

projection and correlation map extracting the temporal information of active

neurons, and the integrated information was expressed as two-dimensional (2D)

images. To achieve a generalized neuron segmentation, we conducted a hybrid

learning strategy by training our model with imaging data from different labs,

including multiscale data with different Ca2+ indicators. The results showed that

our approach achieved promising segmentation performance across different

imaging scales and Ca2+ indicators, even including the challenging data of

large field-of-view mesoscopic images. By comparing state-of-the-art neuron

segmentation methods for two-photon Ca2+ imaging data, we showed that our

approach achieved the highest accuracy with a publicly available dataset. Thus,

NeuroSeg-II enables good segmentation accuracy and a convenient training and

testing process.
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1. Introduction

The fast advances in two-photon microscopy (Helmchen and
Denk, 2005; Grewe et al., 2010; Stringer et al., 2019) and various
Ca2+ indicators (Akerboom et al., 2013; Chen et al., 2013;
Dana et al., 2019) have enabled researchers to record individual
neurons in vivo at a large scale and high speed. Experiments
have been performed to study brain functions with activities from
many neurons in targeted brain regions. Accurately segmenting
neurons carrying biological information is an essential step for
analyzing the spatiotemporal data recorded by functional imaging
experiments. Manual neuron segmentation is accurate and can
screen out regions with unnecessary information, and thus, the
manual segmentation result is defined as ground truth (GT).
However, owing to the increasing amount of data (Harris et al.,
2016) generated by the large size of the imaging field and
the number of recorded neurons (Kim and Schnitzer, 2022),
human annotators encounter a considerable workload. In addition,
different annotators have their specific neuron labeling criteria,
which may generate inconsistent results.

In the last decade, neuron segmentation approaches have
continuously advanced in accuracy and computational speed.
Currently, the methods can complete processing with a
speed far exceeding that of human annotators and provide
segmentation accuracy that is close to that of human annotators
(Pnevmatikakis, 2019; Soltanian-Zadeh et al., 2019). The
neuron segmentation methods are currently divided into two
categories: unsupervised and supervised methods. For the first
category of neuron segmentation methods (unsupervised), they
typically identify pixels representing a neuronal structure and
integrate these pixels into a region of neurons by intensity.
This type of algorithm normally segments neurons with
component analysis, including principal component analysis
or independent component analysis (PCA/ICA) (Mukamel
et al., 2009), non-negative matrix factorization (NMF)
(Maruyama et al., 2014) and constrained non-negative matrix
factorization (CNMF) (Pnevmatikakis et al., 2016), or the
activity model (Pachitariu et al., 2017). For example, Suite2p
(Pachitariu et al., 2017) uses spatial region of interest (ROI)
shapes and neuronal activity traces from imaging data to
segment neurons.

For the second category of neuron segmentation methods
(supervised), they are trained to extract neuron features from
labeled two-dimensional (2D) data (images) or three-dimensional
(3D) data (videos). Convolutional neural networks (CNNs) are
typically designed for supervised learning. Based on different
types of data processing, CNNs can be divided into 2D CNN
and 3D CNN. 2D CNN extracts features with training on
manually labeled masks in image. For example, Mask region-
based convolutional neural network (R-CNN) (He et al., 2017)
is an instance segmentation algorithm and it can be applied for
segmenting neuron in an image. In contrast to 2D CNN, 3D CNN
is trained to extract features from labeled video data. For example,
STNeuroNet (Soltanian-Zadeh et al., 2019) was proposed to use a
3D CNN for neuron segmentation and exploit the spatiotemporal
information in two-photon Ca2+ imaging data. Shallow U-Net
Neuron Segmentation (SUNS) (Bao et al., 2021) uses shallow
CNN with U-shaped architecture to extract the spatial features

of neurons, realizing fast and accurate segmentation. The 2D
CNN and 3D CNN have their specific advantages and limitations.
Neuron segmentation algorithms with 2D CNN are flexible and
fast (Stoyanov et al., 2018). For this class of methods, the images
of the training dataset can cover various Ca2+ indicators, imaging
scales and imaging depths, which help this class of methods achieve
a certain extent of generalizability and robustness. However, the
temporal information of imaging data is lost when the video data
are converted into an image. By contrast, neuron segmentation
methods with 3D CNN can capture the temporal information of
neurons (Bao et al., 2021), particularly they can help recognize
overlapping neurons. However, this class of methods requires
long recording and highly active neurons. In addition, some
recent methods, e.g., CaImAn (Giovannucci et al., 2019), combine
these two kinds of machine learning algorithms by identifying
activity components using unsupervised learning and evaluating
these components using supervised learning. However, it is still
challenging for the existing methods to perform generalized neuron
segmentation with complex two-photon Ca2+ imaging data, so we
aim to develop a method that can accurately segment neurons in
various situations.

In our previous study (Guan et al., 2018; Shen et al.,
2018), NeuroSeg was developed to achieve unsupervised neuron
segmentation for in vivo two-photon Ca2+ imaging data by
using a generalized Laplacian of Gaussian filter to detect
neurons and weighting-based segmentation to separate individual
neurons. However, its model has the limitation of performing
neuron segmentation in two-photon Ca2+ imaging data of
different Ca2+ indicators. Hence this method demands further
development. To segment both active and inactive neurons
in imaging data across Ca2+ indicators, imaging scales, brain
regions and imaging depths, here we propose NeuroSeg-II, a
deep learning model based on an attention mechanism and
enhanced feature hierarchy, to perform neuron segmentation
in two-photon Ca2+ imaging with a 2D image processing
approach. As the sparsely firing neurons may be hardly visible
in the average or maximum projected images, the correlation
map can make these neurons visible (Pachitariu et al., 2017).
In preprocessing, we fused the average image with correlation
map to integrate the spatial and temporal information and
generate a new 2D image for neuron segmentation. To train
and validate NeuroSeg-II’s performance, we used the datasets
acquired from our lab and publicly available datasets. The results
show that NeuroSeg-II solved the problem of generalized neuron
segmentation in two-photon Ca2+ imaging data and achieved good
performance across different Ca2+ indicators (OGB-1, Cal-520,
and GCaMP6), multiple imaging scales, different brain regions
and imaging depths. NeuroSeg-II used spatiotemporal activity
information with fused images and successfully segmented active
and inactive neurons, indicating that it has good generalizability
for processing different types of imaging data. By comparing
the other methods for neuron segmentation with the publicly
available two-photon Ca2+ imaging dataset, we found that
our approach outperformed other competitors in accuracy.
Therefore, our deep learning approach is efficient in performing
generalized neuron segmentation in two-photon Ca2+ imaging,
which is complementary to NeuroSeg and may facilitate future
neuroscience research.
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2. Materials and methods

2.1. Functional two-photon imaging
datasets

2.1.1. Data acquisition in our lab
In this study, C57BL/6J mice (2–3 months old) were used for

two-photon Ca2+ imaging experiments. The mice were provided
by the Laboratory Animal Center at the Third Military Medical
University, and the experimental procedures were performed based
on protocols approved by the Third Military Medical University
Animal Care and Use Committee.

The two-photon Ca2+ imaging experiments were conducted
in the mouse auditory cortex (Li et al., 2017; Wang M. et al.,
2020). After we anesthetized the mouse with isoflurane, the mouse’s
skull was glued with a prefabricated plastic chamber. The auditory
cortex region was exposed by a small craniotomy (∼4 mm2) and
injected with indicator (OGB-1 AM, Cal-520 AM, or GCaMP6f).
After 2 h, Ca2+ imaging was performed with a mode-locked Ti:Sa
laser (Mai-Tai DeepSee, Spectra Physics, Santa Clara, CA, USA)
delivering two-photon excitation light. A custom-built two-photon
microscope system (LotosScan, Suzhou Institute of Biomedical
Engineering and Technology, Suzhou, China) was used to record
the imaging data (Jia et al., 2010, 2014).

This dataset consisted of 193 two-photon Ca2+ imaging videos,
comprising 61 data samples for expressing the OGB-1 indicator,
127 data samples for expressing the Cal-520 indicator, and five data
samples for expressing the GCaMP6f indicator. Three experienced
annotators labeled each neuron independently and then compared
their labeled results to produce a final consensus as the GT.

2.1.2. Allen brain observatory (ABO) dataset
The ABO dataset consists of neuronal population imaging

across different brain regions and layers with two-photon
microscopy. We used the ABO dataset consisting of 132 images
from ALLEN BRAIN ATLAS (Sessions A–C). This image dataset
includes six images recorded at a depth of 175 µm in the
rostrolateral visual cortex (VISrl), 12 images recorded at a depth
of 175 µm in the posterolateral visual cortex (VISpm), nine images
recorded at a depth of 275 µm in the VISpm, 16 images recorded
at a depth of 175 µm in the VISp, 25 images recorded at a depth
of 275 µm in the VISp, 12 images recorded at a depth of 175 µm
in the lateral visual cortex (VISl), 15 images recorded at a depth of
275 µm in the VISl, six images recorded at a depth of 175 µm in the
anteromedial visual cortex (VISam), 13 images recorded at a depth
of 175 µm in the anterolateral visual cortex (VISal), and 18 images
recorded at a depth of 275 µm in the VISal. All mice in the above
experiments expressed the GCaMP6f indicator. Three experienced
annotators labeled each neuron independently and then compared
their labeled results to produce a final consensus as GT.

2.1.3. Neurofinder challenge dataset
The Neurofinder dataset consists of neuronal population

imaging across different brain regions with two-photon
microscopy. The dataset was annotated in three different
laboratories, resulting in diverse sub-datasets. We used 10 imaging
data (videos) samples from this dataset. All mice expressed the
GCaMP6s indicator. We used the neuron GT from the work of

STNeuroNet (Soltanian-Zadeh et al., 2019). Each group of videos
contained one training data sample and one testing data sample.
To increase the number of images and improve image quality, we
used the preprocessing method to convert each video dataset into
seven corresponding images (six images from an evenly divided
video and one image from the whole video).

2.1.4. Large-field mesoscopic two-photon
imaging dataset

A single image data sample of mesoscopic large-field imaging
was recorded with a mouse expressing GCaMP6s under the thy-
1 promoter (Sofroniew et al., 2016). As the dimensions of the
image data are too large (1,792 pixels × 1,682 pixels) to fit the
neural network, the image data cannot be tested directly. Thus, we
segmented the original image into small images for testing. The
neuron GT is provided with this dataset.

2.2. Image preprocessing

First, the motion corrected imaging data (videos) were
converted into images by average projection (Stoyanov et al.,
2018) and correlation map (Foroosh et al., 2002; Alba et al.,
2015) to represent the spatiotemporal information of neurons. To
obtain the correlation map, we calculated the multidimensional
correlation of each pixel and its surrounding pixels to localize
the neurons. Here, we calculated a weighted multidimensional
correlation (Pachitariu et al., 2017) as

cw
(
f1, f2, · · ·

)
=
||
∑

i aifi||
2∑

i ai||fi||
2 , (1)

where cw is the calculation at each pixel for different dimensions,
fi is the traces of neighboring pixels, and ai is a Gaussian kernel
for weighting. The relatively large values of the correlation map
indicate the neuron locations. We finally fused the average images
with correlation maps to obtain new images. These new images
were used as inputs to the network for training and testing,
corresponding to the “Input” for NeuroSeg-II (Figure 1A).

2.3. Neural network architecture

The realization of neuron segmentation requires the accurate
detection and segmentation of objects in the image. NeuroSeg-
II is implemented with a combination of object detection and
segmentation, with Mask R-CNN (He et al., 2017) being the
backbone of our network model. To perform prediction for
neurons in imaging data, the architecture uses ResNet (He et al.,
2016) to extract features and the feature pyramid network (FPN)
(Lin et al., 2017) as the feature hierarchy within the network
(Figure 1A). FPN is an important network component for
detecting objects at different scales. FPN is taking the advantages
of both strong semantic information from the top layers and high-
resolution information from the bottom layers. This approach
allows the network to have good semantic and high-resolution
information at different scales and enhances the performance of
object segmentation. Based on this advantage, FPN enables efficient
neuron detection and segmentation at different scales.
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FIGURE 1

The NeuroSeg-II architecture. (A) The two-photon Ca2+ image is input to the network. ResNet uses the down-sampling structure of the backbone,
and we added one more down-sampling layer after the C5 layer. Feature pyramid network (FPN) uses each layer of the ResNet output feature to the
input corresponding to the up-sampling structure. The channel attention mechanism module efficient channel attention (ECA) was added to lateral
connections. (B) FPN+ uses the additional down-sampling structure to obtain input from FPN. The channel attention mechanism module ECA was
added between lateral connections. (C) Region selection and feature aggregation subnetwork. Region proposal network (RPN) uses the FPN to
extract the feature map, score the front and back scenes, and select the target region. Region of interest (ROI) Align matches the original image with
the feature image for feature aggregation. (D) Head network consists of a parallel mask segmentation branch and a classification/regression branch.
(E) Neuron segmentation result by NeuroSeg-II [data from allen brain observatory (ABO) dataset, experiment ID: 511510945]. (F) The convergence of
the proposed network in the training and validation datasets is demonstrated over the course of 200 epochs using TensorBoard. Loss values were
normalized to better visualize trends. Training dataset, orange; validation dataset, blue.

As attention mechanisms have been reported to increase
the power of emphasizing important objects and suppressing
the background, we added an attention mechanism module to

the lateral connection in the model to improve the feature
extraction ability. Here, efficient channel attention (ECA) (Wang
et al., 2019) is used to add lateral connections. The ECA consists
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of global average pooling (GAP) and fast one-dimensional (1D)
convolutions (Figure 2A). The GAP is used to process the obtained
aggregated features, and fast 1D convolution is used to generate
channel weights. ECA is a modification of squeeze-and-excitation
networks (Hu et al., 2018), which augment appropriate cross-
channel interactions and eliminate dimensionality reduction to
improve channel attention.

To propagate features with stronger semantics, we added a
down-sampling path to shorten the information path between
the top and bottom layers (Liu et al., 2018), and we enhanced
the feature hierarchy to localize objects in the bottom layers
(Figure 1A). Briefly, based on the four times down-sampling in
ResNet, we added one down-sampling after ResNet-C5 (the last
layer of ResNet), which changes the original four feature outputs
into five feature outputs (Figure 2B). Following ResNet, the up-
sampling and down-sampling paths also increase the input and
output features, respectively. This modification reduces the loss of
information and increases the utilization of feature information
at diverse levels, thus enriching the feature information of small
objects. To disseminate features in the network, two kinds of
feature integration approaches are used (Figure 2C), “Add” (He
et al., 2017) and “Concatenate” (Bochkovskiy et al., 2020), for
each layer’s transverse connection paths. The “Add” increases the
number of image features but does not increase the description
image dimension. The “Concatenate” increases the features of
the image, enriching the features of the image and reducing the
redundancy of information (Huang et al., 2017). A cross-stage
partial layer (CSPLayer) (Wang C.-Y. et al., 2020) was added after
the “Concatenate” (Figure 2C), which strengthens the learning
ability of the network. It also eliminates the computing bottleneck
and reduces the memory cost of using “Concatenate” multiple times
(Huang et al., 2017).

To further strengthen the object localization capability for
the feature hierarchy, and combine the response of higher-level
neurons to the whole of objects and the response of lower-level
neurons to local textures, we added a new information path from
the top to bottom layers connected to FPN, which we call “FPN+”
(Figure 1B). The “FPN+” performs step-by-step down-sampling
to generate new feature maps and obtain higher-resolution feature
maps and coarser maps through lateral connections. Hence, the
“FPN+” generates the new feature maps from Y2 to Y6. The
input image was combined with the feature map to prepare for
the subsequent image segmentation (Figure 1C). The following
Head network was used to classify and segment the original image
(Figure 1D) and generate the output result (Figure 1E). The loss
function of network model combines the losses of classification,
regression and segmentation mask. The region selection, feature
aggregation, and Head network are the same as those in Mask
R-CNN.

2.4. Data augmentation

To enhance the training effect, we used the imgaug tool to
expand the training sample. In the training process, the original
image was flipped horizontally (50% probability), flipped vertically
(50% probability), rotated (90, 180, 270◦), scaled (0.8–1.5 times),
and added with Gaussian noise (intensity from 0.0 to 5.0). We

randomly used zero to five items, as mentioned above, in the
training network.

2.5. Model training strategies

2.5.1. Model training with hybrid dataset
This training strategy was used to perform the model training

and the performance testing of the attention mechanism module,
the enhanced feature hierarchy, and the improvement from Mask
R-CNN to NeuroSeg-II. The dataset from our lab and the ABO
dataset were used, including 325 images (193 images from our
lab and 132 images from the ABO dataset). It was divided into
three sub-datasets: the training dataset (223 images), the validation
dataset (51 images), and the testing dataset (51 images). Using a
transfer learning approach, we used this hybrid dataset to train
the ResNet based on the model parameters pre-trained on the
ImageNet dataset. We trained NeuroSeg-II for 200 epochs. The
training process was divided into three stages. The first stage froze
all layers except the Head network and consisted of 50 epochs
running at a learning rate of 1× 10−3. The second stage thawed the
global network and consisted of 100 epochs running at a learning
rate of 2 × 10−4. The third stage reduced the learning rate to
1 × 10−4 and consisted of 50 epochs. Each epoch consisted of 500
steps with a batch size of two. By using the above strategy to train
our network, it shows that the loss was decreased clearly at the
initial learning stage (before 50 epochs), and was converged at the
end of the learning process (Figure 1F).

2.5.2. Model training with the neurofinder dataset
To compare the neuron segmentation performance of

NeuroSeg-II with other methods, we used the Neurofinder dataset
for evaluation. All the methods were trained and tested by two-
round hybrid cross validation. Through the evaluation of the
methods using video data for training and testing, we trained
the models, including SUNS (Bao et al., 2021), STNeuroNet
(Soltanian-Zadeh et al., 2019), and CaImAn (Giovannucci et al.,
2019), or ROI classifiers in Suite2p (Pachitariu et al., 2017). Five
groups of video datasets (01.00–04.01) were trained together to
generate one model. We used the trained models to test the five
corresponding video data (01.00.test–04.01.test) and obtained
the result, that is, the second round of cross validation of the
training dataset and testing dataset interchange. We obtained the
testing result of all 10 groups of the Neurofinder dataset. For the
evaluation of the methods used image data for training and testing
(NeuroSeg-II), we replaced the training dataset with 35 images
(five groups of video datasets with seven images per dataset) and
the testing dataset with five images (five groups of video dataset
with one global image per dataset). We obtained the testing result
of all 10 groups of the Neurofinder dataset. All the above methods
were optimized according to their papers (Pachitariu et al., 2017;
Giovannucci et al., 2019; Soltanian-Zadeh et al., 2019; Bao et al.,
2021). We used the model provided by CITE-On (Sità et al., 2022)
for training and testing. To adapt to the CITE-On neuron detection
function, we converted the annotated neuron edges into bounding
boxes. The training process of NeuroSeg-II was as follows: The
network model pre-trained with the hybrid dataset was trained
with the Neurofinder dataset for a total of 150 epochs, including
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FIGURE 2

Attention mechanism and path augmentation modules. (A) Diagram of efficient channel attention (ECA) module. GAP, Global average pooling. ⊗:
The output is combined with the input feature map. (B) Illustration of the structure of ResNet down-sampling path augmentation. (C) Left top: “Add”
is used as the fusion method of up-sampling and lateral connection. Left bottom: “Concatenate” is used as the fusion method of down-sampling
and the lateral connection. Right: Illustration of the structure of the CSPLayer.

two stages. The first stage froze all layers except the Head network
and consisted of 20 epochs running at a learning rate of 1 × 10−3,
and the second stage thawed the global network and consisted of
130 epochs running at a learning rate of 1 × 10−3. Each epoch
consisted of 50 steps with a batch size of two.

To verify the rationality of two-round hybrid cross validation,
we also used a 10-round single cross-validation procedure for
training and testing NeuroSeg-II. In the 10-round (one-to-one)
cross-validation procedure, we used each of the 10 groups in the
dataset as the training data only once. In each round of cross
validation, we used seven preprocessed images (evenly divided part
in video) as the training dataset and one image (whole video) as

the test dataset (e.g., 01.00 training, 01.00.test test). NeuroSeg-II’s
training process was the same as that of the two-round hybrid cross
validation. Each epoch consisted of 20 steps with a batch size of two.

2.6. Evaluation metrics

To evaluate segmentation methods, we compared the results
with the GT (Soltanian-Zadeh et al., 2019). We performed the
evaluation with three metrics (i.e., precision, recall, and F1-score),
defined as follows:

Recall =
NTP

NGT
, (2)
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Precision =
NTP

Ndetected
, (3)

F1− score = 2×
Recall× Precision
Recall+ Precision

, (4)

where NTP is the number of true-positive neurons, NGT is the
number of manually labeled neurons, and Ndetected is the number
of detected neurons. The intersection-over-union (IoU) metric and
the Hungarian algorithm were applied to calculate the degree of
overlap between the detected neuron masks and the GT (Soltanian-
Zadeh et al., 2019). The IoU was measured with two binary masks,
m1 and m2:

IoU(m1, m2) =
|m1 ∩m2|

|m1 ∪m2|
. (5)

Then, the distance (Dist) between a pair of masks is measured as

Dist
(
mGT

i ,Mj

)

=


1− IoU(mGT

i ,Mj), IoU(mGT
i ,Mj) ≥ 0.5

0, mGT
i ⊆ Mj or Mj ⊆ mGT

i
∞, otherwise

, (6)

wheremGT
i is the mask i for the GT, andMj is mask j for the detected

neuron. After that, the Hungarian algorithm was used to generate
the true-positive neuron masks.

2.7. Statistical analysis

In this study, all summary data were expressed as the
mean± SEM. For all statistical tests, a two-sided Wilcoxon signed-
rank test was applied with MATLAB 2018b (MathWorks, USA)
(∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; and ns, not significant).
The results were deemed statistically significant when P < 0.05.
Statistical parameters, including the definitions and exact values
of n, were reported in the text and figure legends. No data was
considered an outlier and removed from statistical analyses.

3. Results

The data preprocessing, network model training, and testing
were conducted using Ubuntu 20.04.4 LTS, Intel Xeon Gold 6152
CPU, 256 GB RAM, NVIDIA Tesla V100 GPU.

3.1. Image fusion to represent neuronal
spatiotemporal activity

The 2D image generated from functional imaging data can
represent the temporal information in the whole video by average
projection (Stoyanov et al., 2018), maximum projection (Shen et al.,
2018), or correlation map (Spaen et al., 2019; Bao et al., 2021).
In the average image, the neurons often have a “donut” structure
(Pachitariu et al., 2013; Apthorpe et al., 2016; Figure 3A) because
Ca2+ indicators are normally expressed in the cytoplasm of a
neuron (Chen et al., 2013). However, this criterion is insufficient

because sparsely firing neurons are invisible (Figure 3B) in the
average image (Stringer and Pachitariu, 2019). In contrast, they
are visible in the correlation map of each pixel with its near pixels
(Smith and Hausser, 2010; Portugues et al., 2014; Figures 3A, B).
Moreover, the opposite is also true: Many neurons visible in the
average image are invisible in the correlation map, suggesting
that their fluorescence only reflects the baseline Ca2+ in these
neurons (Stringer and Pachitariu, 2019). Hence, the previous
neuron segmentation methods with 2D images had unsatisfactory
recognition accuracy for overlapping and sparsely firing neurons
(Soltanian-Zadeh et al., 2019). We propose image fusion as the
preprocessing method to tackle this problem. We used image fusion
as the preprocessing method to enhance the representation power
in 2D image data. The fusion of the two kinds of images enriched
the neuron spatial features in 2D images and recovered some
lost temporal information in the average image (Figures 3A, C).
Therefore, we used the preprocessed images as the training and
testing dataset for NeuroSeg-II.

3.2. The attention mechanism and
modified feature hierarchy improved the
neuron segmentation performance

For the neuronal population imaging data, the uneven
background can generate some neuron-like structure and thus
affect the segmentation task (Figure 4A). To focus the neurons
and exclude the background influence, we added an ECA-based
attention mechanism module to the lateral connection process in
our network model (Figure 1A). Here, each channel of the module
plays the role of a feature detector to focus on significant parts
of the input image. To observe the regions that are important
for detecting neurons, we visualized how the attention module
emphasizes features (Figure 4). The figure shows that the attention
mechanism could concentrate on multiple objects instead of on
a single object. We can also clearly see that the masks from
ECA (Figure 4D) covered the neuron regions better than the
method without using an attention mechanism (Figure 4B) for
different numbers of neurons (n = 5, 8, 18, 30 and n > 30)
in the field of view (FOV). That is, the ECA-integrated network
learns well to exploit information in neuron regions and aggregate
features from them. The observations confirm that the feature
refinement process of ECA eventually leads networks to use
the given features well. The method without using an attention
mechanism only focuses on a few neurons, leading to a significant
loss of object information. In contrast, unlike channel attention,
the spatial attention module screens the input image location
information. Hence, we compared ECA with the convolutional
block attention module (CBAM) (Figure 4C; Woo et al., 2018)
and the model without using an attention mechanism (Figure 5A).
The CBAM uses a combination of channel attention and spatial
attention mechanisms. The comparison results show that the ECA
in NeuroSeg-II achieved a significantly higher F1-score than that
of the other two methods (P < 0.001, two-sided Wilcoxon signed-
rank test, n = 51 images). Hence, augmenting spatial attention
mechanism did not screen the location information of neurons
well, so ECA was better than CBAM and the method without using
an attention mechanism for neuron segmentation.
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FIGURE 3

Image fusion to improve spatiotemporal information representation. (A) The images are the average image and correlation map over the recording
of one dataset, 02.00 test, from Neurofinder data. Scale bars, 50 µm. (B) Some invisible, sparsely firing neurons are in the average image, and the
correlation map can make these neurons visible. The GT is from STNeuroNet. The yellow outlines indicate the GT neurons. Scale bars, 20 µm.
(C) The average image and the correlation map were fused and supplemented with the spatiotemporal information of the 2D image. The GT is from
STNeuroNet. The yellow outlines indicate the GT neurons. Scale bars, 50 µm.

In two-photon imaging experiments, the recorded neurons
could be small and dense in a large FOV, so neurons contain
too few discriminative features owing to the few pixels

FIGURE 4

Visualization of attention mechanisms on different numbers of
neurons. (A) The input two-photon images with different numbers
of neurons. (B–D) The difference in image feature focusing
between no attention module (B), convolutional block attention
module (CBAM) (C), and efficient channel attention (ECA) (D). We
use Grad-CAM for the visualization of attention effects (n is the
number of neurons in each image).

(Kisantal et al., 2019). A small object is defined as an object
with pixel values of less than 32 × 32 (Bosquet et al., 2018), and
the diameter of neurons from ABO and Neurofinder datasets
being 10–30 pixel values. A previous study (Zeiler and Fergus,
2014) reported that higher-level objects were activated entirely. In
contrast, lower-level objects were activated locally. This indicates
that it is necessary to augment the top-down information path
to propagate features and enhance feature extraction capability
in FPN. To enhance feature extraction at multi-scales, we added
“FPN+” and path augmentation to the feature hierarchy in the
network model (Figures 1A, B).

To further validate the path augmentation effect, we compared
NeuroSeg-II with Mask R-CNN and Mask R-CNN FPN+ (a
modified version with adding “FPN+” to Mask R-CNN) for
neuron segmentation (Figure 5B). The results demonstrate that
the precision and F1-score of NeuroSeg-II were significantly higher
than those of the other two methods (P< 0.05, two-sided Wilcoxon
signed-rank test, n = 51 images). The recall rate of NeuroSeg-
II (0.917 ± 0.014) was slightly lower than that of Mask R-CNN
FPN+ (0.928 ± 0.014; P = 0.0665, two-sided Wilcoxon signed-
rank test, n = 51 images) and significantly higher than that of
Mask R-CNN (P < 0.001, two-sided Wilcoxon signed-rank test,
n= 51 images).

Our network mode uses “Add” as the up-sampling and
“Concatenate” as the down-sampling fusion approach (Figure 2C).
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FIGURE 5

Attention mechanism, FPN+, and path augmentation increase neuron segmentation accuracy. (A) The efficient channel attention (ECA) module
within our model was superior to other approaches for neuron segmentation (**P < 0.01, ***P < 0.001; n = 51 images; and error bars are SEM).
(B) NeuroSeg-II’s neuron segmentation score was superior to those of Mask region-based convolutional neural network (R-CNN) and Mask R-CNN
FPN+ (adding FPN+ to Mask R-CNN) (*P < 0.05, **P < 0.01, ***P < 0.001, and n = 51 images; ns, not significant; and error bars are SEM). The results
were obtained using hybrid training. (C) The neuron segmentation score of using “Add” for up-sampling and “Concatenate” for down-sampling was
superior to those of other methods (*P < 0.05, **P < 0.01, and ***P < 0.001; n = 51 images; ns, not significant; and error bars are SEM). The results
were obtained using hybrid training. (D) The ablation study for testing the network components including attention module, path augmentation and
“FPN+” (**P < 0.01; n = 10 images; ns, not significant; and error bars are SEM). The results were obtained using two-round hybrid cross validation
with the Neurofinder dataset. All P-values were calculated with a two-sided Wilcoxon signed-rank test. The gray dots represent the scores for each
testing image.

To validate the performance of this integration approach, we
compared it with the other three combination options (Figure 5C).
The results show that the combination of “Add” as the up-sampling
method and “Concatenate” as the down-sampling method had
the highest performance to carry out feature integration. This
method’s precision was significantly higher than that of the other
three approaches (P < 0.05, two-sided Wilcoxon signed-rank test,
n = 51 images). The recall rate (0.917 ± 0.014) was lower than

those of the other three methods (0.924 ± 0.016, 0.926 ± 0.014,
and 0.922 ± 0.013; P < 0.05, P = 0.1449, and P = 0.6879;
two-sided Wilcoxon signed-rank test, n = 51 images). The F1-
score (0.882 ± 0.010) was significantly higher than “All-Add” and
“All-Concatenate” (0.863 ± 0.013 and 0.870 ± 0.011; P < 0.05,
two-sided Wilcoxon signed rank test, n = 51 images), and higher
than “Up-Concatenate/Down-Add” (0.872 ± 0.010; P = 0.1190,
two-sided Wilcoxon signed-rank test, n = 51 images). The
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improvement of the effect of this combination method is due to
richer image features during up-sampling that was used to increase
the number of features by “Add.” Thus, the higher semantic
information of features during down-sampling was used to enrich
features by “Concatenate.”

In addition, we conducted ablation study to examine the
effects of the attention mechanism and the modified feature
hierarchy including path augmentation and “FPN+” (Figure 5D).
The results show that all the network components affected precision
and recall rate. In particular, the addition of FPN+ had an
obvious effect on the recall rate. The precision of NeuroSeg-II
(0.731 ± 0.029) was at the same level as that of ablating FPN+
(0.738 ± 0.030; P = 0.9219, two-sided Wilcoxon signed-rank test,
n= 10 images) and was higher than other ablation results (attention
ablation: 0.708 ± 0.033, P = 0.2754; path augmentation ablation:
0.710 ± 0.030, P = 0.0781; two-sided Wilcoxon signed-rank test,
n = 10 images). The recall rate (0.591 ± 0.036) and F1-score
(0.644± 0.022) of NeuroSeg-II were significantly higher than those
of ablating FPN+ (P = 0.002 for both recall rate and F1-score, two-
sided Wilcoxon signed-rank test, n = 10 images) and higher than
other ablation results (recall rate: attention ablation, 0.586± 0.044,
P= 0.6523; path augmentation ablation, 0.579± 0.032, P= 0.4258;
F1-score: attention ablation, 0.624 ± 0.025, P = 0.1055; path
augmentation ablation, 0.627 ± 0.017, P = 0.1055; two-sided
Wilcoxon signed-rank test, n = 10 images). Therefore, the results
indicate that the ablation of network components resulted in lower
accuracy, all network components contributed to efficient neuron
segmentation.

3.3. NeuroSeg-II achieved accurate and
generalized neuron segmentation

Based on the attention mechanism and enhanced feature
hierarchy, we trained our NeuroSeg-II with a hybrid dataset and
tested it for a generalized neuron segmentation task. As the training
dataset contains image features from different Ca2+ indicators,
imaging scales, neuron activation, brain regions, imaging depths,
and labs, NeuroSeg-II performed comprehensive learning and
achieved generalized neuron segmentation ability. After hybrid
training, we tested two-photon imaging datasets, including three
Ca2+ indicators (OGB-1, Cal-520, and GCaMP6) and various
imaging scales. The results show that the NeuroSeg-II model
achieved good performance across three Ca2+ indicators and
imaging scales (Figure 6A) (Cal-520: F1-score = 0.9524; OGB-1:
F1-score= 0.8536; and GCaMP6f: F1-score= 0.9171). In addition,
we investigated the activities of the segmented neurons. The results
(Figures 6B–D) exhibit that both the active and inactive neurons
were recognized by our model, which suggests that the image
fusion preprocessing integrates spatiotemporal information and
contributes to the improvement of segmentation performance.

Furthermore, we tested the neuron segmentation capability of
the learned NeuroSeg-II model with the large-field mesoscopic
two-photon imaging data to demonstrate the generalizability of
our trained model, the enhancement of the segmentation effect
for small objects, and the dataset advantage of the 2D image
processing approach. As the imaging data are too large to deal
with the current methods, we first split the data into 306 small
images and then recombined the segmentation results from small

images to reconstruct the entire FOV. We obtained the final
performance by comparing the segmented results with the GT
(Figure 7A). We achieved an F1-score of 0.80 (precision: 0.84;
recall: 0.76). The result shows that the NeuroSeg-II model obtained
by hybrid training could deal with the large-field imaging data
with small neurons (Figure 7B), which is challenging for a neuron
segmentation task. Moreover, the result also demonstrates that
our model maintained reliable performance for untrained images.
Therefore, the learned NeuroSeg-II model integrates various
neuron characteristics in imaging data and lays a foundation for
generalized cell recognition and segmentation.

3.4. Comparison of NeuroSeg-II with
other neuron segmentation methods

To further validate our proposed network model, we compared
NeuroSeg-II with other methods by testing a publicly available two-
photon Ca2+ imaging dataset (the Neurofinder Challenge dataset).
We converted the video data from the Neurofinder dataset into
images and used the datasets for training and testing the different
methods. Owing to the difference between the image and video
for training and testing, we conducted preprocessing and data
augmentation on Neurofinder image data to compensate for the
information from the videos.

Here, we used two-round hybrid cross validation for
comparison with other methods. For all other methods, we
optimized them using the algorithmic parameters mentioned in
the relevant literatures (Pachitariu et al., 2017; Giovannucci et al.,
2019; Soltanian-Zadeh et al., 2019; Bao et al., 2021; Sità et al.,
2022). The representative image (Figure 8A) with segmented
neurons and the GT demonstrate that our network achieved
promising performance for this challenging dataset. Based on
the 10 videos in the dataset (Figure 8B), NeuroSeg-II achieved
higher but statistically insignificant precision (0.731 ± 0.029)
than SUNS (0.633 ± 0.067) and STNeuroNet (0.589 ± 0.043),
and significantly higher than Suite2p (0.548 ± 0.046) CaImAn
(0.539 ± 0.045) and CITE-On (0.519 ± 0.022) (P < 0.01, two-
sided Wilcoxon signed-rank test, n = 10 images). NeuroSeg-II’s
recall rate (0.591 ± 0.036) was lower than those of the other
methods (SUNS: 0.660 ± 0.031; STNeuroNet: 0.669 ± 0.049;
Suite2p: 0.598 ± 0.042; CaImAn: 0.5970 ± 0.049; CITE-On:
0.724 ± 0.030, P = 0.0195, two-sided Wilcoxon signed-rank
test, n = 10 images). NeuroSeg-II’s F1-score (0.644 ± 0.022)
was higher, but statistically insignificantly, than those of SUNS
(0.619 ± 0.039, P = 0.4922), STNeuroNet (0.598 ± 0.012,
P = 0.1602), Suite2p (0.552 ± 0.031, P = 0.0645), and CITE-On
(0.602 ± 0.022, P = 0.2324), and significantly higher than that
of CaImAn (0.537 ± 0.027) (P = 0.0059, two-sided Wilcoxon
signed-rank test, n = 10 images). These comparison results again
demonstrate the good generalization capability of NeuroSeg-II, as
the high performance was consistent for segmenting neurons in
the imaging data acquired from different labs.

In addition, we compared the two-round hybrid cross-
validation strategies with a 10-round single cross-validation
strategy. The results (Figure 8C) show that the two-round hybrid
cross-validation strategy achieved higher performance than the 10-
round single cross-validation strategy (precision: P= 0.0645; recall:
P = 0.1309; F1-score: P = 0.002; two-sided Wilcoxon signed-rank
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FIGURE 6

Results of NeuroSeg-II performing generalized neuron segmentation. (A) Examples showing the neuron segmentation results for Cal-520
(precision = 0.9677, recall = 0.9375, and F1-score = 0.9524; the dataset from our lab), OGB-1 (precision = 0.875, recall = 0.8333, and
F1-score = 0.8536; the dataset from our lab), and GCaMP6f (precision = 0.9779, recall = 0.8634, and F1-score = 0.9207; the dataset from ABO
dataset, experiment ID: 536323956). The yellow outlines indicate the GT neurons, and the red outlines indicate the neurons detected by
NeuroSeg-II. Cal-520: scale bar, 20 µm. OGB-1: scale bar, 50 µm; GCaMP6f: scale bar, 50 µm. (B–D) Examples showing the neuron segmentation
of active and inactive neurons in the imaging data for (B) Cal-520 (precision = 1.0, recall = 1.0, and F1-score = 1.0; data from our lab), (C) GCaMP6f
(precision = 0.9779, recall = 0.8634, and F1-score = 0.9171; data from ABO dataset, experiment ID: 536323956), and (D) GCaMP6s
(precision = 0.6490, recall = 0.7967, and F1-score = 0.7153; data from Neurofinder dataset, experiment ID: 01.01test). The left side is the
segmentation result, and the right side is the activities of three representative neurons (scale bar, 10 µm). The yellow outlines indicate the GT
neurons, and the red outlines indicate the neurons segmented by NeuroSeg-II. Cal-520: scale bar, 20 µm. GCaMP6f: scale bar, 50 µm. GCaMP6s:
scale bar, 50 µm.

test, n= 10 images). Although the 10-round single cross validation
was targeted for the same laboratory image features and labels
(Soltanian-Zadeh et al., 2019; Bao et al., 2021), the two-round

hybrid cross validation integrated all data information to enrich
the image feature for network learning and improve the neuron
segmentation performance.
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FIGURE 7

Neuron segmentation in mesoscopic two-photon Ca2+ imaging with NeuroSeg-II. (A) Segmentation results overlaid on the imaging data of
GCaMP6s expressing neurons [mesoscopic data from the study of Sofroniew et al. (2016)]. The yellow outlines indicate the ground truth (GT)
neurons, and the red outlines indicate the neurons segmented by NeuroSeg-II. Two regions are highlighted by the white squares and shown at an
expanded spatial scale. Scale bar, 1 mm. (B) The effect of neuron segmentation at different scales. B1 scale bar, 20 µm. B2 scale bar, 50 µm.

4. Discussion

Here, we presented an automated, accurate, and efficient
neuron segmentation method for two-photon Ca2+ imaging
data. The proposed network model was developed based on
Mask R-CNN and modified with an attention mechanism
and feature hierarchy. We used image fusion preprocessing
to integrate spatiotemporal information into 2D images. Our
method accurately segments both active and inactive neurons
across Ca2+ indicators, imaging scales, brain regions, and
imaging depths with different experimental setups. Our method
was also successfully applied to a large-field mesoscopic image
dataset, which is challenging for neuron segmentation. For
testing with the Neurofinder dataset, our approach surpassed the
performance of the state-of-the-art methods (SUNS, STNeuroNet,
Suite2p, CaImAn, and CITE-On) and achieved the highest
precision and F1-score.

As the attention mechanism has been reported to be efficient
in learning what and where to refine features, we added an
ECA-based attention module in our model to focus on neurons
properly and thus enhance the feature extraction ability. Guided
with the loss function of network, the integrated attention module
efficiently helps the whole network by learning which information
to emphasize or suppress for distinguishing neurons. In the
visualization results (Figure 4D), we saw how the module exactly
focused on the targeted neuron regions in a two-photon image.
The attention mechanism within a neural network is often used
to identify a single and significant object (Hu et al., 2018; Woo
et al., 2018; Wang et al., 2019) by emphasizing pivotal features
and suppressing background. Our results show that the attention
mechanism can also concentrate on multiple objects instead of
a single object. The comparison results (Figure 5A) reveal that

the ECA module performed well for neuron segmentation. The
comparison results indicate that the ECA module had significantly
higher accuracy than the network without an attention module, and
outperformed the CBAM module. This may be because ECA can
achieve more gains for detecting small objects. The ablation study
also suggests that using ECA-based attention module produced
higher accuracy (Figure 5D), particularly about the precision.
These results confirm that the ECA-based network has good
generalization ability for neuron segmentation, so the ECA-based
attention module makes a significant improvement to our model
performance.

To enhance the feature extraction capability, we also modified
the model with a path augmentation strategy, including adding
an additional down-sampling module and deepening the network
structure, and we added “FPN+” path in the network model.
The modifications in NeuroSeg-II improve the feature extraction
effectively (Figures 5B, C). This strategy enhances the high-level
semantic information in the network and enriches various layers
of image features in the network. The localization ability of the
whole feature hierarchy is further enhanced by combining the
activation of the whole object by the high-level network and
the activation of the local texture by the low-level network. The
receptive field of the feature extraction network is then expanded.
Hence, these improvements also contributed to NeuroSeg-II’s
good performance. The ablation study also suggests that path
augmentation and “FPN+” both contributed the segmentation
performance enhancement (Figure 5D), and “FPN+” is particularly
useful to improve the recall rate. Some other strategies include
(1) augmenting small objects directly to increase the feature
information of those objects (Kisantal et al., 2019) and (2) detecting
objects on multiscale images to ensure the consistency of scales
in ImageNet (Singh et al., 2018). However, these strategies are
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FIGURE 8

NeuroSeg-II outperformed other neuron segmentation methods in accuracy on the Neurofinder dataset. (A) Top: Examples from the Neurofinder
dataset (video 02.00) showing the neuron segmentation results of NeuroSeg-II (precision: 0.8272; recall: 0.6054; F1-score: 0.6991), SUNS (precision:
0.7482; recall: 0.6341; F1-score: 0.6865), STNeuroNet (precision: 0.5096; recall: 0.7669; F1-score: 0.6124), Suite2p (precision: 0.7014; recall: 0.3633;
F1-score: 0.4787), CaImAn (precision: 0.5301; recall: 0.6978; F1-score: 0.6025), and CITE-On (precision: 0.5191; recall: 0.8395; F1-score: 0.6415),
where the segmented neurons are overlaid on the fused image data. Scale bar, 50 µm. The yellow outlines indicate the GT neurons, and the other
colors indicate the neurons found by the methods. Bottom: Examples of segmented neurons zoomed in on the white-boxed regions. Scale bar,
5 µm. (B) Statistical comparison of NeuroSeg-II with other methods (*P < 0.05, **P < 0.01; n = 10 images or videos; ns, not significant; and error
bars are SEM). (C) Statistical comparison of two-round hybrid cross validation with 10-round single cross validation by NeuroSeg-II (**P < 0.01;
n = 10 images; ns, not significant; and error bars are SEM). All P-values were calculated with a two-sided Wilcoxon signed-rank test. The gray dots
represent the scores for each testing image.
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not suitable for our task owing to the characteristics of neurons
in two-photon Ca2+ imaging data: (1) The neurons need not
be augmented because of the large number in each FOV (the
Neurofinder and the ABO datasets contain∼100–400 neurons); (2)
the targeted objects are neurons in images, so there are no different
object classes as there are in the general object segmentation task.

The results indicate that NeuroSeg-II enables good
segmentation accuracy along with a convenient training and testing
process. This approach can avoid misidentification due to out-of-
focus fluorescence [termed “neuropil” (Peron et al., 2015)] near
neurons. Compared with spatiotemporal methods, our method is
also able to use spatiotemporal activity information. The network
model with attention mechanism and enhanced feature hierarchy
provided accurate neuron segmentation across different datasets
and had achieved higher F1-score than spatiotemporal methods,
e.g., STNeuroNet. The results of the ablation study confirm that
combining components of attention module, path augmentation
and “FPN+” provided the best performance, and that is the
reason why the proposed network model outperformed the state-
of-the-art methods (SUNS, STNeuroNet, Suite2p, CaImAn, and
CITE-On). In training by a hybrid imaging dataset, NeuroSeg-
II can perform the neuron segmentation task with robustness
and generalization ability. NeuroSeg-II was trained with images
of various neuron characteristics simultaneously, and then it
successfully segmented neurons from multiple datasets, including
different Ca2+ indicators, brain regions, or depths acquired
by independent labs (Figures 5–8). This training strategy also
enables NeuroSeg-II to transfer the learned neuron features to
new ones, which can quickly and conveniently meet the needs
of experimental targeted neurons. The convenience of using
NeuroSeg-II is also reflected in the fact that it does not need
to adjust the parameters for various types of two-photon Ca2+

imaging data. In contrast, the other four methods compared in
this paper have specific requirements and adjustments on the
parameters of the Neurofinder datasets (Pachitariu et al., 2017;
Giovannucci et al., 2019; Soltanian-Zadeh et al., 2019; Bao et al.,
2021). As a result, if the dataset is changed and the parameters are
not adjusted, the segmentation performance will be degraded. We
can make the network learn more neuronal features through the
continuous accumulation of datasets and achieve the purpose of
rapid training through a small amount of retraining.

Future work should extend the current network to increase
processing speed and learning ability for attention-guided multiple
sources and small-sample. To achieve accurate and high-speed
neuron segmentation, improvements of network architecture (e.g.,
a light-weight network model) can potentially overcome the
tradeoff between accuracy and running speed. It will be helpful
to perform fast neuron segmentation and may facilitate large-
scale imaging experiments (Fan et al., 2019). For two-photon Ca2+

imaging data, the attention mechanism of multiple source domains
can extract more image features and reduce image information
loss. Small-sample learning can reduce the amount of data required
for network learning, improve the training speed, and reduce the
time cost of image data processing at the early stage. In addition,
using machine learning methods to enhance signal-to-noise ratio
of Ca2+ imaging data will also reinforce the accuracy of neuron
segmentation (Li et al., 2021; Zhuang and Wu, 2022). These
methods represent the future development of our work.
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