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Human-robot collaboration with traditional industrial robots is a cardinal step
towards agile manufacturing and re-manufacturing processes. These processes
require constant human presence, which results in lower operational efficiency
based on current industrial collision avoidance systems. The work proposes a novel
local and global sensing framework, which discusses a flexible sensor concept
comprising a single 2D or 3D LiDAR while formulating occlusion due to the robot
body. Moreover, this work extends the previous local global sensing methodology to
incorporate local (co-moving) 3D sensors on the robot body. The local 3D camera
faces toward the robot occlusion area, resulted from the robot body in front of a
single global 3D LiDAR. Apart from the sensor concept, this work also proposes an
efficient method to estimate sensitivity and reactivity of sensing and control sub-
systems The proposed methodologies are tested with a heavy-duty industrial robot
along with a 3D LiDAR and camera. The integrated local global sensing methods
allow high robot speeds resulting in process efficiency while ensuring human safety
and sensor flexibility.
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1 Introduction

Traditional industrial robots better complement human workers with their large range and
high payload capabilities. These capabilities are required in multiple manufacturing processes.
Furthermore, Gerbers et al. (2018), Huang et al. (2019), Liu et al. (2019), and Zorn et al. (2022)
also proposed a human–robot collaborative disassembly as a means of sustainable production.
More than 95% of the total robots installed in the world between 2017 and 2019 are traditional
industrial robots (Bauer et al., 2016). Moreover, there is a gradual increase in the single
human–single robot collaborative processes (IFR, 2020).

Touchless and distance-based collision avoidance systems are required to enable traditional
industrial robots to collaborate efficiently with humans. Increased efforts toward e-mobility and
sustainability have opened new challenges in the waste disposal sectors. For example, the
shredding of batteries and cars decreases engineering production value. Disassembly, however,
can help further save engineering and energy costs while reducing carbon emissions. Full
automation of the disassembly would require a large amount of data for AI engines, which can
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be collected with an intermediate solution of a constant human–robot
collaboration. Ensuring operational efficiency and varied
requirements for disassembly processes requires new collision
sensing methodologies.

Current safety standards aim to completely stop the robot before
the human comes in contact. These standards enabled fenceless robot
cells, where safety sensors like the laser scanner/2D LiDAR sensor are
installed to ensure a protective separation distance (PSD) between the
human and robot as follows:

PSD t0( )≥C + Sh + Sr + Ss + ZR + ZS, (1)
where C is the linear intrusion distance inside the sensor field of view,
after which a detection is triggered. Sh& Sr are the distances covered by
the human and robot before the actuating system reacts to the signal
from the sensing system. Ss is the distance covered by the robot before
stopping while being controlled by the actuating system. ZR and ZS

are the inaccuracies in position estimation from the robot and sensor,
respectively. This strategy is termed speed and separation monitoring
(SSM) and is applicable for presence detection-based sensors with
occasional operator presence.

Eq. 1 can be used inversely (Byner et al., 2019) when the actual
separation distance (ASD) between the robot and human is known to
determine the maximum safety robot velocity of the robot (vsafer ) as
follows:

vsafer ≤
������������������������
v2h + Tras( )2 − 2as C − ASD( )

√
− Tras − vh , (2)

where Tr is the reaction time of the actuation system, as is the
maximum negative deceleration of the robot, and vh is the
expected human velocity. This approach is termed dynamic speed
and separation monitoring (DSSM).

The main focus of this work is to develop a novel sensing
methodology, which can be used in the context of traditional
industrial robots with constant human presence. The state of the
art is evaluated toward this goal with three main parameters, as shown
in Figure 1. Agile production requires a flexible sensor concept, which
can be adjusted to the need of the process. Furthermore, as each
process may require different levels of complexity and human
intervention, the sensing methodology should be flexible and
scalable while ensuring occlusion handling with minimum sensors.
Two main conditions are considered for efficiency. Previously set-up

robotic cells may have limited production space as resources.
Moreover, the operational efficiency of the process should be
achieved by high robot velocities. Finally, collision avoidance would
be ensured for the complete human body, which requires 3D sensing.

The main contribution of this work is the methodologies proposed
in the design and implementation of the sensor concept for a
human–robot collaboration with traditional industrial robots. These
contributions are highlighted as follows:

1) Co-existence cell design, which discusses the LiDAR-based sensor
concept with limited resources, variable need for shared space, and
utilization of the entrance area for prior detection.

2) An efficient method to estimate the intrusion distance and reaction
time parameters of a collision avoidance system for speed and
separation monitoring.

2 State of the art

2D LiDAR-based sensing approaches have been discussed. This
approach approximates the human position based on a cylindrical
model (Som, 2005). The safety approach implemented here is based
on Tri-mode SSM (Marvel, 2013), which includes not only PSD
(the stop area) but also slow and normal speed areas. Nevertheless,
the approach results in low operational efficiency due to the
constant presence of humans in the slow area. Byner et al.
(2019) ensured higher efficiency by proposing dynamic speed
and separation monitoring. Nevertheless, the 2D LiDAR
approach limits the applicability in the constant operator
presence scenario, where the upper limbs are not detected.
Human upper limbs can move at twice the speed of the
estimated human velocity (Weitschat et al., 2018). The 3D
LiDAR approach with a higher vertical field of view and
accuracy than the 2D LiDAR approach and fixed field of view
(FOV) 3D depth cameras. Moreover, fixed FOV-based 3D depth
cameras require additional production space to capture the
complete robot workspace area, as discussed by Morato et al.
(2014).

Flacco et al. (2012) proposed efficient and high robot velocities
for a limited workspace area. The depth camera is installed outside
of the robot body, looking toward the human workspace area. The
approach, however, suffers from occlusion from a large traditional
robot. Moreover, no method is proposed to ensure compliance with
the safety standards as no intrusion distance measurements are
provided.

The single sensor-based approach by Kuhn and Henrich.,(2007)
projected an expanding convex mesh from a virtual robot model on
images. The minimum distance was estimated by performing a binary
search until an unknown object intersects the projected hull. Similar to
Flacco, the approach is not applicable for large traditional industrial
robots as the sensor concept would require additional space to ensure
covering the large robot body.

Two important research problems have been identified:

1) A generic sensor concept needs to be proposed, which discusses the
2D or 3D LiDAR sensor concept from the aspects of flexibility and
occlusion handling.

2) Furthermore, means to measure the intrusion distance for 3D
cameras on the robot body need to be discussed.

FIGURE 1
Research target.
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Sensor concept and design aspects have been proposed by Flacco
and De Luca (2010), addressing presence and detection-based sensors.
Nevertheless, they are not applicable for 2D LiDAR with a large
traditional robot causing the main occlusion. Moreover, the intrusion
distance measurement for sensors on the robot body is extended from
our previous work (Rashid et al., 2022).

3 Flexible and efficient sensor concepts
for LiDAR and 3D camera

The work proposes a novel local global sensing framework, which
comprises 1) a flexible global (LiDAR-based) sensor concept and 2) an
efficient local (3D cameras) intrusion distance measurement method.
The integrated approach provides an efficient and flexible collaboration
with traditional industrial robots using the novel local global sensing
methodology. The local-global sensing in the previous work used a
stationary LiDAR and camera sensor (Rashid et al., 2021). This work
further introduces co-moving cameras as local sensors to ensure safety
from grippers and objects gripped, as illustrated in Figure 2.

3.1 Flexible global sensor concept

This section discusses an occlusion-aware sensor concept
applicable to 2D and 3D LiDAR. The sensor concept is discussed
by proposing a standardized co-existence cell model in 2D based on
three parameters. These parameters are maximum robot reach r, space
available toward the entry area e, and the number of entry sides n.

Occlusion with a single LiDAR sensor can be caused due to static
objects in the field of view or a dynamic robot body. For the LiDAR
sensor placed without any orientation, the robot base link results in the
most evident occlusion in the cell. The green circle represents the
LiDAR sensor, and the robot base link is represented with a rectangle
withmaximum length and width (l xw). The base rectangle is placed at
the center of the robot workspace, which is enclosed by three sides (n =
1) with safety fences. The entrance area e is assumed to be free from
any static occlusions. A ray from LiDAR, represented by a dotted red
line, which when intercepted, results in entry occlusion, is termed a
boundary ray, as shown in Figure 3.

For the sensor position in scenario A, illustrated in Figure 3,
occlusion is constrained by the safety fence, thus having a lower risk of
possible human collision. Moreover, for scenario B, the occlusion is
unconstrained toward the entrance area and is at higher risk of a
possible collision. Unconstrained occlusions are avoided by allowing
LiDAR placement only on the adjacent entrance walls. Furthermore,
the boundary ray polar coordinates are used to set constraints on robot
motion. These measures allow safety by design. The constrained
occlusion caused by the robot base requires to be mathematically
formulated.

In the 6D pose for the 360° HFOV LiDAR, no orientations are
assumed to exist for the robot reference frame. Any yaw or pitch
orientations would result in non-uniform coverage of the production
area. Moreover, 3D LiDAR comprises multiple 2D laser channels,
which rotate at a certain orientation, as illustrated in Figure 4. The
height parameter has a direct relationship with the area of the circle
with the radius r1. The circle represents the blind spot in the 2D floor
space of the co-existence cell and can be expressed as follows:

r1 � h* tan α( ), (3)
thus lowering the height of LiDAR results in a decreased blind spot

area. On the other hand, increasing the height of the LiDAR, to a
specific extent, results in increasing the number of rays falling inside
the robot cell. The higher number of rays corresponds to a higher
accuracy of human localization estimations. An optimal height would
be related to average worker heights and sensor vertical resolution.
The risks from the blind spot area can be reduced by ensuring that the
human is localized minimum by the 0° measuring plane. This leaves
the XY plane, on which the Y-axis is constrained to avoid
unconstrained occlusion. Thus, only 1D degree of freedom is
available for the LiDAR sensor concept. Nevertheless, this 1D is
enough to cover a variety of process requirements, while incurring
no additional production space.

Let the LiDAR sensor be placed at A, representing the middle of
the safety fence. Maximum occlusion is caused when the robot base is
perpendicular to the global sensor. This occlusion area is represented
by an area of polygon IHFEDC, as illustrated in Figure 5. The occluded
area, in this configuration, can be computed in robot parameters, by
drawing perpendicular OP on AC and joining OC, as shown in
Figure 5. The occluded area CPEFHI is computed by first
computing its half area, constituting the area of Δ AOC and sector
BOC. Then, removing half of the base rectangle and Δ AGD gives a
symmetric one-sided constrained occlusion area.

The sector BOC inscribes the same arc BC as that of BAC. This
results in the angle (α) at the sector BOC, being twice the angle (θ) at
the sector BAC. Using this, the area of the sector BOC can be defined
as follows:

AreaBOC � 2θ
360

*πr2 , (4)

where r represents the maximum reach of the robot used.
Furthermore, the area of ΔAOC can be computed as follows:

ΔAOC � 1
2

OP*AC( ). (5)

Using the property of isosceles triangle ΔAOC,

AC � 2AP . (6)
Sides AP and OP can be expressed as follows:

FIGURE 2
Different types of occlusions.
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AP � PC � r* cos θ, (7)
OP � r* sin θ. (8)

Substituting Eqs 6, 7, and 8 in Eq. 5, we obtain the following
equation:

ΔAOC � 1
2

r* sin θ( )*2 r* cos θ( )( ). (9)

Using Eqs 4 and 9, the area of BAC can be defined as follows:

Area ofBAC � 2 θ( )
360

*πr2 + 1
2

r* sin θ( )*2 r* cos θ( )( ). (10)

The symmetric half occlusion area can be computed using Eq. 10,
by removing the area of the robot body and ΔAGD as follows:

Area ofBJEDC � AreaBAC − 1
2

Area ofRectangle EFHD( ) − AreaΔAGD.

(11)

Using Eqs 9–11, we get

Area ofBJEDC � 2 θ( )
360

*πr2 + 1
2

r* sin θ( )* 2r* cos θ( )( )
−1
2

l*w( ) − 1
2

l

2
* r − w

2
( )( ). (12)

Eq. 12 can be used to compute the overall occlusion area IHFEDC
as follows:

Area of IHFEDC � 2 Area ofBJEDC( )
� 2(2 θ( )

360
*πr2 + 1

2
r* sin θ( )* 2r* cos θ( )( )

− 1
2

l*w( ) − 1
2

l
2
* r − w

2
( )( )).

(13)

Eq. 1 gives a generalized equation to compute the occlusion area,
with the distance between the sensor and robot r, robot base link
dimensions, and occlusion angle (2θ) with the robot body.

FIGURE 3
Proposed flexible and efficient sensor system.

FIGURE 4
LiDAR sensor concept.
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For a specific sensor position on the safety fence in a co-existence
cell model, the overall occlusion area can also be defined by
representing the value of angle ∠GAD (θ) as follows:

θ � tan−1 GD

AG
( ) � tan−1

l
2

r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

Substituting Eq. 13 into Eq. 14, the overall generalized calculation
of the occlusion area, with the sensor at the middle point of the co-
existence cell fence, as shown in Figure 5, is given by the following:

Area of IHFEDC � 2*

2 tan−1
l

2

r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
360

*πr2+

1
2

r* sin tan−1
l

2

r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠*

2r* cos tan−1
l

2

r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

1
2

l*w( ) − 1
2

l

2
* r − w

2
( )( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Similarly, for the sensor placed at the entrance corner start
position, as illustrated in Figure 6, the radius r2 can be computed
as half of the length of the diagonal of the square as follows:

r2 � �
2

√
r . (16)

The aforementioned Eq. 16 is substituted in 13, resulting in the overall
occluded area (Area of IHFEDC) at the start position as follows:

� 2 *

2 tan−1
l

2�
2

√
r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
360

*πr2

+1
2
⎛⎝ r* sin tan−1

l

2�
2

√
r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠* 2r* cos tan−1
l

2�
2

√
r − w

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎠

−1
2

l*w( ) − 1
2

l

2
*

�
2

√
r − w

2
( )( )
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where w and l represent the width and length of the base link. It is evident
that the constrained occlusion for the scenariowith LiDAR at the entrance is
minimum. Nevertheless, the optimal position of the LiDAR (global) sensor
could be adjusted based on process requirements and available resources.

The 1Dvariation of LiDARbetween the start andmidpoint of the fence
fulfills varied perception requirements for varied processes. The final
placement of LiDAR would divide the overall workspace into 1)
constrained occlusion and 2) shared workspace. The occupancy of these
workspaces is checked in the real-time collision avoidance system, using
polar coordinate limits. Extrinsic calibration between the robot and LiDAR
is assumed to be known (Rashid et al., 2020). Finally, the constrained
occlusion area can further be covered using a local 3D camera on the robot
body, facing toward the shadow area. The local collision avoidance setup is
already discussed in our previous work (Rashid et al., 2021).

3.2 Intrusion distance and reaction time
estimation for co-moving local sensors

The proposed method provides the intrusion distance estimation
for co-moving local sensors on the robot body. This method comprises

FIGURE 5
Constrained occlusion with the sensor at the middle of the fence.

FIGURE 6
Constrained occlusion with the sensor at the entrance.
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three main steps. The first step involves setting up an external
intruding object, which can be detected from the presence
detection algorithm for local sensing. This is followed by multiple
controlled robot experiments at a defined angular velocity. The data
coming from the robot joints and sensing detections are recorded in an
external processing system. The final step involves offline processing
of the recorded data, with some a priori data as input to provide safety
parameters as output. These sub-steps are discussed in detail in
Section 3.2.2.

3.2.1 Controlled experiments’ overview from
illustrations

A simplistic concept for the estimation of the parameter for
local sensing can be understood in Figure 7. The intruding object of
height I is placed in the robot work cell at a distance of a vector. A
3D camera is mounted on the robot body with reference frame S
and a field of view Θ, as illustrated in Section 1 of Figure 7. A robot
trajectory with the tool center point velocity of vj is performed,
ensuring that the intruding object is piercing almost
perpendicularly into the sensor field of view, as illustrated in
section II of Figure 7. The known system and intruding object
features ensure the pre-estimation of the expected detection (d_x),
where the sensor field of view first touches the intruding object.
However, the sensor data being processed in an external system
results in a delay. Thus, the actual detected (d_a) is flagged at the
future position, giving an estimate for intrusion distance (C), as
illustrated in part III of Figure 7. The flagged detection issues a stop
signal from the external processing system to the robot controller.
The stopping trigger (tr) is perceived by the start of unplanned
deceleration in the external system capturing the robot velocities,
as illustrated in part IV of Figure 7. The delay in communication to
an external processing system is assumed to be negligible.
Moreover, most robot manufacturers provide communication
interfaces running at 250–1000 Hz. Finally, the motion of the
sensor is assumed to result in linear displacement of the
intruding object into the field of view.

3.2.2 Setting up of the intruding object
A simple cardboard box placed on a stand is used as an intruding

object. The setup of this intruding object requires positioning the
intruding object at a known position with respect to the robot

reference frame. The second step of the robot experiment is
illustrated in Figure 7. The detection of the intruding object, which
is not part of the environment with respect to a moving sensor on the
robot body, requires unknown object detection based on local sensing
(Rashid et al., 2021).

3.2.3 Offline data processing method for intrusion
distance and reaction time measurements

This step involving the offline post-processing of the recorded
data is detailed in the following algorithm. The developed software
tool parses through multiple iterations at a specific robot velocity.
The expected detection (d_x) for a specific set of positions is taken
and processed sequentially. In a single iteration for a known
intruding object position, the robot position is searched in
angular joint coordinates, where the detection flag is active. The
corresponding joint angular position JointAngle_(d_a)̂i is
compared to the actual detection (∝_(d_x)) to estimate the
intrusion distance. The time stamp at the position of the
flagged detection is recorded (t_(d_x)). The joint angular
velocities are searched for a deceleration trigger for which the
corresponding time stamp is captured (t_tr). The difference
between the two time stamps provides an estimate of controller
reaction time.

Input: Time-stamped Joint Angles, Joint Angular velocity,

and Detection Flag over multiple iterations (i) and over a

complete set represented by j,k,l,orevent

{timei
t,JointAngle

i
j,Joint%age

i
k, , ∝ d x}

Output: Reaction time (B) of robot in ms;

Intrusion distance ∝ in in mm

Algorithm:

A

←{(timei
t,JointAngle

i
j,Joint%age

i
k,ΘeventExpected)}

B ← ∅

While A ≠ ∅ do//Search for the event expected position

if JointAnglei
j ≥ ∝ d x

td x ← timei
te//Save time stamp

if eventDetect � 1//Actual event detected

∝ in � JointAnglei
d a − ∝ d x

While Joint%agei
n ≠ ∅//Search for deceleration trigger

if Joint%agei
k−9 >

Joint%agei
k−8 >. . . Joint%agei

k

ttr ← timei
ta

B ← ttr – td x

return B; ∝ in

Algorithm. Reaction time and Intrusion distance

4 Experimental setup for efficient
intrusion distance estimation

The experimental setup comprises a stereo camera connected to a
processing system over a USB3 connection. The processing system is
connected over Ethernet to a robot controller. In this work, ZED1 from
Stereo Labs is used as a 3D camera. A heavy-duty industrial robot Kuka
KR180 with a range of 2.9 m is used, as illustrated in Figure 8. The
KRC4 robot controller is used, which allows 250 HzUDP communication
with an external computer. Joint angular displacement along with a tool

FIGURE 7
Data capturing experiment for safety parameter estimation.
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center point (TCP) in the base coordinate is provided at the external
processing system. In order to compare the intrusion distance of local
sensing (Schrimpf, 2013) with that of global sensing (Morato et al., 2014),
an identical processing system is used with Intel i7-6700K CPU, Nvidia
TITAN Xp GPU, and 12 GB GDDR5 memory.

At 4 ms, as for Kuka communication speed, the robot joint values
are used to estimate the position of the local sensor on the robot. A
cardboard box is placed in a robot cell of 4 x 4 m. The position of the
intruding object is estimated by moving the TCP to the top of the
object. More accurate estimations can be performed by using ArUco
markers (Garrido-Jurado et al., 2014) on the intruding object. The
intruding position for the known sensor is estimated with a ±10 mm
precision.

4.1 Experimental results

The real-time experiment with more than five iterations for a
single robot velocity is captured for statistical variations. The robot
velocities need not be running at a constant velocity before an

event, compared to the state of the art (Rashid et al., 2022). This can
be challenging for achieving a high robot velocity with a large
sensor field of view. This work rather uses a constant accelerating
profile, with specific top velocities. An important aspect here is to
capture linear robot velocities, which are comparable to or higher
than the nominal human speed (1.6 m2). A constant acceleration
profile can be seen in Figure 9. The figure gives a dual vertical graph
for joint angular velocity and a detection flag for A2 joint-based
motion. The approx. linear velocity for the sensor mounted on A3
amounts to be

vl � r*φ/t, (17)
where r is the approximate length of the A2 link, which is 1.35 m for Kuka
KR180. φ is angular displacement in radians, and t is the total time
duration in seconds, Thus, the linear velocity was found to be 1.12 m/s2.

Figure 9 gives a zoomed-in view into the recorded velocity profile
for the experiment data from Figure 10, with a target speed of 87% of
A2 joint speed. The sensing flag and deceleration trigger are observed
at 81,228 and 81,276 timestamps, respectively. The intrusion distance
and reaction time is measured in spatial and temporal dimensions.

FIGURE 8
Simplified co-existence cell.

FIGURE 9
Complete trajectory for collision sensing and stop trigger for a single iteration.
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The implementation of local sensing is discussed in Mandischer
et al. (2022). The multiple iterations on three robot velocities are
processed to estimate the worst-case intrusion distance and reaction
time, as illustrated in Figure 11. The worst-case reaction time is
calculated as 60 ms, which is comparable to the state-of-the-art
calculation of 56 ms and 40 ms (Schrimpf, 2013) for different robot
controllers. The worst-case intrusion distance captured at multiple
iterations and velocities equals to be 502 mm.

4.2 Discussion on the efficient and flexible
constant human–robot collaboration with
traditional industrial robots

The method proposed allows safety distance measurement for co-
moving or dynamic local sensors on the robot body. The method can
be used by system integrators or safety sensor developers, aiming to
use distance-based sensors for an efficient collaborative system.

FIGURE 10
Zoomed in trajectory for intrusion distance and reaction time estimation.

FIGURE 11
Box plot on multiple iterations at multiple robot velocities.
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Plotting the worst-case intrusion distance of local sensing with global
sensing in Eq. 2, we obtain two different relations between the
separation distance and maximum allowed robot velocity, as
illustrated in Figure 12. The co-moving local sensor or dynamic
local sensing is more efficient, allowing higher robot speed within
the proximity human operator. However, the co-moving local sensor
is only relevant for the safety of the tool or object in the robot’s hand.
The LiDAR sensor on the wall, acting as a global sensor, ensures safety
from the complete robot body without the constrained occlusion area.
This occlusion area can be constantly monitored based on the LiDAR
sensor concept. Furthermore, safety from design can be implemented
using the LiDAR sensor concept by allotting human workspace away
from the constrained occlusion. Future steps would include
determining an optimal combination of different local (co-moving/
dynamic (Mandischer et al., 2022) or static (Rashid et al., 2021)) and
global sensing (Rashid et al., 2021) systems for a given agile or
disassembly process in a safety digital twin.

5 Conclusion

The work proposes a method for not only utilizing distance-
based sensors for an efficient and flexible collision avoidance system
for a human–robot collaboration. The global sensor concept with

LiDAR addresses a minimalistic and reduced complexity approach
while addressing the occlusion from the robot body. Furthermore, an
efficient method is proposed that simultaneously determines the
intrusion distance and reaction time for 3D cameras on the robot
body and robot controller, respectively. The work proposed can be used
to compute safety parameters for a wide variety of distance-based
sensors on robot bodies. These methodologies can be implemented
for lightweight industrial robots or co-bots. Increased efforts toward
resource efficiency and sustainability will require human–robot
collaboration. The methodologies proposed will enable the
development of close-proximity human–robot collaboration.
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