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Introduction: As one of the staple foods for the world’s major populations, the 
safety of wheat is critical in ensuring people’s wellbeing. However, mildew is one 
of the prevalent safety issues that threatens the quality of wheat during growth, 
production, and storage. Due to the complex nature of the microbial metabolites, 
the rapid identification of moldy wheat is challenging.

Methods: In this research, identification of moldy wheat samples was studied 
using ultra-performance liquid chromatography - quadrupole time-of-flight mass 
spectrometry (UPLC-QTOF-MS) coupled with chemometrics. The non-targeted 
PCA model for identifying moldy wheat from normal wheat was established by 
using previously established compounds database of authentic wheat samples. 
The partial least squares-discriminant analysis (PLS-DA) was performed.

Results and discussion: By optimizing the model parameters, correct discrimination 
of the moldy wheat as low as 5% (w/w) adulteration level could be achieved. 
Differential biomarkers unique to moldy wheat were also extracted to identify 
between the moldy and authentic wheat samples. The results demonstrated that 
the chemical information of wheat combined with the existing PCA model could 
efficiently discriminate between the constructed moldy wheat samples. The study 
offered an effective method toward screening wheat safety.
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1. Introduction

Wheat is one of the major grains in the world. However, the frequent occurrence of wheat 
safety issues not poses a threat to the protection of food nutrition and health of the public, but 
greatly restricts the exportation of wheat, causing economic losses (Dong et al., 2012). Risks of 
food contamination exist at every stage of food production and processing, including biological, 
physical, and chemical pollution. During planting, harvesting, drying, milling, and 
transportation, the surface of wheat grain may be contaminated by harmful microorganisms 
such as typically fungi (Li et al., 2003). Additionally, improper storage of wheat grain may cause 
excessive reproduction of fungi, triggering safety incidents and threatening the safety of wheat 
and related products (Femenias et  al., 2020). Fungi may possess a series of strongly toxic 
metabolites (Sabillon and Bianchini, 2016). The common fungi in contaminated wheat are 
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penicillium and aspergillus, with the presence of typical mycotoxins 
such as aflatoxin, deoxynivalenol, ochratoxin, vomitoxin (Wei et al., 
2019). Mycotoxins are small but stable toxins, they are difficult to 
remove and easily enters the food chain by direct human consumption. 
These mycotoxins bring a huge threat to public wellbeing. Generally, 
different types of mycotoxins are produced according to different 
fungal species. For example, deoxynivalenol, also referred to as 
vomitoxin, is a toxin produced by Fusarium graminearum, commonly 
found in wheat and wheat products. Deoxynivalenol is a common 
hepatotoxic toxin in wheat with different approaches (Li et al., 2016; 
Vidal et al., 2017; Cirio et al., 2019), with acute vomiting and may even 
be life-threatening (Gu et al., 2019) symptoms after consumption. 
Therefore, the development of efficient and feasible early-warning 
approaches to ensure the safety of wheat and its products is required.

Metabolomics can depict actual physiological metabolic state of 
the sample by comprehensively profiling its metabolites (Rana et al., 
2020). Microbiological contamination can have corresponding 
impacts on a specific food system (Creydt and Fischer, 2018). 
Especially, mycotoxins produced by fungi have a great threat to life 
and health and have always been one of the main factors for wheat 
safety in fungal-contaminated wheat (Ramadhaningtyas et al., 2017). 
As a result, metabolomics in food products, usually be referred to as 
foodomics, can be a suitable approach for a series of food quality 
identification applications, including detecting possible microbial 
contamination (Cifuentes, 2009; Herrero et al., 2012).

The complexity of the compounds brought by the metabolomics 
made the identification of contamination a challenging task. Therefore, 
it is common to apply techniques such as liquid chromatography-mass 
spectrometry (LCMS) with high sensitivity and selectivity over a wide 
range of concentrations. Keskin et al. quantified mycotoxins in bee 
products of Turkey (KesKin and Eyupoglu, 2023). Sulyok et  al. 
quantified more than 500 mycotoxins by liquid chromatography 
coupled with tandem mass spectrometry (LC–MS/MS) on nuts, wheats 
and raisins (Sulyok et  al., 2020). However, the targeted approach 
requires specific standard for every analyte compound to establish 
calibration curves prior to sample analysis, which is time-and cost-
consuming. The validation of matrix effects from complicated food 
matrices is also needed by proper reference materials (Gab-Allah et al., 
2023). Additionally, the targeted analysis is not suitable when the 
standard is not commercially available. The situation is even more 
difficult when the exogenous sources of microorganisms is unknown. 
The emergence of non-targeted detection strategy offers new 
opportunities for food safety and screening of samples, as well as 
discovering possible markers (Yu et al., 2016; Gao et al., 2019; Sun et al., 
2021). Non-targeted detection focuses on all the chemical information 
in the entire sample being analyzed, rather than quantitively studying 
limited number of markers of interest. In a broader sense, non-targeted 
detection mainly refers to screening unknown chemical substances and 
identifying chemical components in mixed systems according to omics 
methods (Kunzelmann et al., 2018), while non-targeted detection in 
the narrow sense can be  understood as relying on the established 
chemical hazard factor database to identify the correctness of unknown 
samples and filter out intentional adulteration or contaminants 
(Hakme et  al., 2017). Different from the targeted approaches, 
non-targeted methods have been widely practiced in detecting food 
fraud and quality in recent years. It has been proven to be capable of 
clearly differentiate a large set of samples and of efficiently identify 
abnormal samples without standards. Combining with chemometric 

data processing, non-targeted detection aims to find abnormal signals 
in the sample without a priori knowledge. Consequently, it is suitable 
for rapid screening of food contamination, because prior investigation 
of compounds is not required.

This study attempts to rapidly identify authentic and moldy 
wheat, and to achieve non-targeted screening model of moldy wheat 
without any specific identification of spectral peaks. In this work, the 
moldy wheat is simulated and analyzed by ultrahigh performance-
liquid chromatography-quadrupole time-of-flight-mass spectrometry 
(UPLC-QTOF-MS). The entire LCMS profile is then directly applied 
based on non-targeted metabolomics to achieve chemometrics 
analyses. Distinguishing abnormal samples spiked with different 
proportions of moldy wheat from normal wheat samples, and the 
parameters of the non-targeted detection model were further 
optimized to achieve a good screening effect of abnormal wheat 
samples. Finally, the differences in the chemical composition of small 
molecules between the mildew-contaminated wheat and the 
authentic wheat samples were obtained, thus discovering differential 
compounds in wheat that caused mildew. This work can provide 
valuable insight toward non-targeted detection without the need of 
standardized compound information.

2. Materials and methods

2.1. Materials and chemical reagents

Fourteen wheat grains were gifted by local breeding institutes in 
2018 and stored at –4°C before analyses. The samples were from eight 
provinces in China, including Anhui, Fujian, Guizhou, Guangdong, 
Hubei, Henan, Gansu, and Shaanxi. Two samples were collected for 
each province, except that one sample were collected from Guizhou 
and Guangdong province. Each sample were prepared and tested in 
triplicates. Methanol, acetonitrile, isopropanol, and formic acid were 
in LCMS grade and purchased from Merck KGaA (Darmstadt, 
Germany). HPLC grade dichloromethane used for extraction was 
purchased from Sigma-Aldrich (St. Louis, MO, United States). Water 
was purified by a Milli-Q 10 ultrapure water system (Millipore 
Laboratory, Bedford, MA, United States).

2.2. Sample preprocessing and extraction

Wheat samples were milled by an A11 laboratory grinder (IKA, 
Staufen, Baden-Württemberg, Germany). A total of 2 g of each sample 
was mixed to make quality control (QC) sample. The mildew 
conditions of wheat were performed according to the previous work 
(He et al., 2019), with wheat severely mildewed in a short time. Five 
grams of each sample was placed in a 50 mL Petri dish. Then the 
samples were incubated at 40°C and 50% humidity for 5 d. Afterward, 
the wheat samples were dried at 40°C and grounded into powder. Fifty 
milligrams of powder made from each sample were weighed and 
mixed to obtain mixed QC. To simulate different degree of mildew of 
authentic wheat, the mixed QC samples were mixed into normal QC 
wheat samples at 5, 10, 20, 30, 40, 50, and 80% (w/w) levels.

Sample extraction was adapted from the previous work (Righetti 
et al., 2016; Jin et al., 2021). A total of 50 mg wheat flour was accurately 
weighted and extracted by 1.5 mL 7:3 ethanol/dichloromethane (v/v) 
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in a 2 mL polypropylene centrifugation tube. After vortexing for 60 s, 
the mixtures were placed in an ultrasonic water bath (Hechuang 
Ultrasonic, Shanghai, China) with the power consumption at 400 W 
and ambient temperature for 30 min. The analyte was then centrifuged 
at 13,000 g and kept at 4°C for 10 min. Afterwards, the supernatants 
were extracted and filtered through a 0.22 μm syringe filter for analysis.

2.3. UPLC-QTOF-MS analyses

The analyses were carried out by an ACQUITY ultra-performance 
liquid chromatograph hyphenated with a Xevo G2 quadrupole time-of-
flight mass spectrometer (UPLC-QTOF-MS) (Waters, Milford, MA, 
United States). A Waters Acquity UPLC BEH C18 column (2.1 × 150 mm 
i.d.; 1.7 μm) with the column temperature maintained at 45°C were 
applied during analysis. The gradient elution was carried out at a 
constant flow rate at 0.3 mL/min with 0.1% formic acid (solvent A) and 
0.1% formic acid in 4:6 isopropanol/acetonitrile (v/v, solvent B). One 
aliquot of 2 μl analytes were injected. The linear gradient was performed 
as follows: 0–1 min, 10–50% B; 1–2 min, 50% B; 2–5 min, 50–80% B; 
5–8 min, 80–90% B; 8–14 min, 90–91% B; 14–16 min, 91–95% B; 
16–18 min, 95–96.5% B; 18–22 min, 96.5–97% B; 22–25 min, 97–100%; 
25–28 min, 100% B; 28–28.1 min, 100–10% B; 28.1–30 min, 10% B. The 
electrospray ionization (ESI) source was applied and set in the positive 
ionization mode, with the source and desolvation temperature at 120°C 
and 450°C. The voltages for capillary, sampling and extraction cones 
were 2.5 kV, 40 V, and 4.0 V, respectively. The flow rates of cone and 
desolvation gasses were 100 and 800 L/h, respectively. The mass-to-
charge ratio was 100–1,200 m/z with the collision energy of 6 eV in MS1 
function, while the fragment signals were in the same m/z range in MS2 
scan with the collision energy ramping from 20–35 eV.

2.4. Data processing

A customized in-house workflow is implemented to achieve a 
fully-automated chemometric processing for LCMS data set. 
Specifically, the acquisition of the raw data was performed using 
MassLynx version 4.2 (Waters). Raw spectra were transformed to 
mzXML format using “msconvert” tool in ProteoWizard software 
library (version 3.0.22099.89, 64-bit, Center for Applied Molecular 
Medicine, University of Southern California, Los Angeles, CA, 
United States). The LCMS peaks were further identified and extracted 
by pyOpenMS module (version 2.7.0) running on Python version 3.9 
(Python Software Foundation, http://www.python.org). pyOpenMS is 
an interface for the OpenMS library for computational mass 
spectrometry (Röst et al., 2016). All mass spectra were extracted at the 
retention time tolerance of 0.1 min and the 500 most intensive peaks 
were extracted in MS1 function of each LCMS spectrum. The peaks 
with mass error less than 10 ppm were considered to be the same 
compound across different LCMS runs. The intensity for each 
exported mass spectrum is summed to represent the intensity of the 
corresponding compound in a mass spectrum, rather than the 
intensities of every fragments from a series of peaks in each spectrum. 
Finally, 11,519 peaks were subjected to chemometrics modelling.

The list of identified peaks was then delivered to MATLAB 
R2021b (MathWorks, Natick, MA) for chemometrics modelling, 
including PCA and PLS-DA analysis. PCA and PLS-DA were 

performed using the built-in functions from the Statistics Toolbox in 
MATLAB. Autoscaling, i.e., mean-centering and scaling to unit 
variance were applied before PCA. All other MATLAB routines were 
written in-house. Their application performances for non-targeted 
screening of wheat were evaluated and compared. The PLS-DA model 
was used to distinguish the normal wheat samples from the 
contaminated wheat samples in a supervised approach.

3. Results and discussion

3.1. Morphological characteristics of moldy 
wheats

The morphology characteristics of wheats was first observed for 
preliminary visual confirmation of molds. The wheat samples before 
and after mildew treatment are shown in Figure 1. It is speculated that 
there may have been mold contamination. Overall, the molds growing 
on the surface of the abnormal samples by visual inspection were all 
fluffy objects with gray-green, yellow-green, black, or white colors. 
The possible molds in wheat includes Aspergillus niger, Aspergillus 
oryzae, Penicillium, etc., all with different visual characteristics (He 
et  al., 2019). The result is relevant with previous studies which 
reported wheat is more prone to mildew under high temperature and 
humidity during storage (Huang et al., 2010; Zhou et al., 2010). It is 
also worth noting that samples had an inconsistent appearance, 
indicating a different mildew degree. For instance, it is manifested that 
sample No. 27 from Guizhou was less mildew than other samples in 
morphological observations. Due that the differences in the degree of 
mildew and in the mold species, visual confirmation is not suitable for 
actual screening application. As a consequence, non-targeted 
screening by mass spectrometric fingerprints was carried out further.

3.2. Unsupervised non-targeted screening 
of wheats by PCA

PCA scores plot was applied to examine whether there were 
differences between MS fingerprints of normal wheats and their 
moldy counterparts. PCA can indicate the clustering situation of all 
the original information (Cordewener et  al., 2009). The results 
indicated that PCA, as an unsupervised approach, could generally 
provide efficient classification characteristics for the moldy wheat 
samples (Figure 2). Specially, the PCA scores plot of the two largest 
principal components indicated that normal wheat samples are all 
clustered in the center of the scores plot. Most of the normal samples 
were inside the 95% confidence ellipse, except two normal wheat 
samples from Anhui and Guizhou falls outside. The moldy wheat 
samples were widely apart to each other compared to their normal 
counterparts. Most of the moldy samples were outside of the 95% 
confidence ellipse of the normal samples, but there were still several 
moldy samples fell within the confidence ellipse that might 
be misidentified as normal samples according to PCA scores alone. 
These moldy samples were misclassified as normal, possibly due that 
the degree of mildew such as Guizhou-27 is inconsistent according to 
previous morphological studies, leading to a mild difference in 
chemical composition compared with the normal samples. Although 
separation can be observed to some extent, overall, the confidence 
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ellipse of moldy wheat is far larger than that of the normal samples 
and completely wrapped around the normal samples, indicating a 
statically unsuccessful separation of the two classes. Two samples were 
especially apart from all other samples, i.e., two samples from Hubei 
and Henan. The inconsistency of the degree of separation is possibly 
due to the degree of mildew which needs to investigate further. There 
still exist false results in the current model. PCA is an unsupervised 
pattern recognition method, i.e., when modelling by PCA the 
classification information between the model samples is not given in 
advance. Therefore, unsupervised pattern recognition may be weak in 
terms of the classification power for the current research. Additionally, 
PCA scores plot only generates a brief overview of the samples, but it 
could not provide direct and fully-automated information about 
contamination. Therefore, it was necessary to further evaluate by other 
chemometrics models to achieve better performance. The research of 
differential substances between moldy wheat and normal wheat 
requires supervised approach. Consequently, PLS-DA was tested 
further for predicting the presence of moldy wheat.

3.3. Supervised evaluation of the 
untargeted screening model for abnormal 
wheats

The supervised models that highlight the differences between 
samples are applicable for ascertaining differential substances in 
moldy and normal wheats, as grouping information was given prior 
to modelling. In the previous section, PCA did not completely 
separate the two class of samples. In comparison, the PLS-DA 

algorithm constructs a regression model and removes interference 
information through orthogonal correction. Figure 3 depicted the 
PLS-DA scores plot of authentic and moldy wheat. It was clearly 
observed from Figure 3A that there was significant discrimination of 
the two types of wheat samples, with each sample group clustered 
closely. All suspected samples were outside the 95% confidence 
interval, indicating the significant differences in the chemical 
compositions of the two types of wheat. It is worth to mention that the 
degree of separation on only the largest latent variable (PLS1) already 
yielded the good separation. A further investigation of a 10-fold cross 
validation yielded 95.24% correct prediction with only 1 latent 
variable for PLS modelling. Based on the Occam’s razor rule, further 
PLS-DA studies in this work will only use only one latent variable. The 
results demonstrated that the extraction method of wheat samples and 
the non-targeted screening model constructed in this study could 
correctly identify mildew-contaminated abnormal wheat under a 
supervised learning model. The current methods can attain complete 
screening of wheat with different degrees of mildew constructed by 
simulation. Therefore, PLS-DA with LCMS profiling could potentially 
be used to detect the molds at levels 5% and above.

Besides the scores plot, the supervised PLS-DA model seek the 
variables in the loading plot and obtains differential compounds between 
the two types of wheat samples. The loading plot of PLS-DA (Figure 3B) 
displayed the potential chemical information that may differentiate the 
two types of samples. Although no clear tendency can be discovered 
between the overall compound m/z and the loading, some useful 
information still can be observed from the loading. First, differential 
compounds that had a major impact on the classification performance 
of the model were from both the normal and moldy wheat samples, with 

A

B

FIGURE 1

Appearances of wheat samples before and after mildew treatment. (A) Normal wheat samples; (B) Wheat samples after mildew treatments.
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corresponding negative and positive loadings. The number of 
compounds with positive and negative loadings were close, indicating 
the balanced ability for this model to extract marker information from 
both normal and moldy wheats. Second, it can be  seen that a large 
number of unknown new abnormal compounds appeared in the mildew 
process, probably due to a mold-induced change in endogenous 
substances in wheat or a mold metabolite. Meanwhile, the inspection of 
raw mass spectra confirmed that most of the differential compounds 
screened out were not present in the normal samples, suggesting the 
existence of a large amount of abnormal information.

The representative marker compounds may present useful 
information for potential marker discovery. Table 1 listed potential 
discriminant marker for both endogenous and exogenous chemicals, 
respectively. It can be  observed that of all 62 typical endogenous 
compounds identified in our previous work (Jin et al., 2021), 59 were 
successfully detected in the present model, indicating a good 
repeatability of the non-targeted mass spectral fingerprints. Thirty-
four endogenous markers were with negative loadings, most of them 
were triacylglycerols (TG) such as TG (16:0/18:1/18:1) and TG 
(16:0/16:0/16:0), indicating a probable loss of nutrition due to the 
mildew process. However, 25 other compounds, especially 
lysophosphatidylcholine (16:0) showed positive loadings, indicating a 
potential increase in the corresponding substances in moldy samples. 
Overall, the results showed that the endogenous compounds were 
significantly altered due to the mildew process. However, there is no 
clear tendencies for each individual compound, which showed that 
the effect of microbial metabolism is complicated.

With respect to exogenous contaminations, compounds were 
searched by an in-house mycotoxin database built according to a 
previous work (Sulyok et al., 2020). A total of 379 mycotoxin markers 
were tentatively identified (Supplementary Table S1). Among all the 
compounds, 353 were with positive PLS loadings, which suggested 
reasonable suspicion for the presence of various mycotoxins in moldy 
wheats. For example, among the differential compounds identified in 
the current study, compound m/z = 315.0868 [M + H]+ (PLS1 
loading = 1.792) was consistent with the molecular formula of aflatoxin 
B2 with a mass error of 0 ppm, and only recognized in moldy wheat 
samples. Figure 4 is the comparison of intensities by the identified 
mycotoxin markers, in which the intensities were averaged by different 
class of samples. It can be observed that most of the exogenous marker 
compounds were in small amounts. In fact, 265 out of all 379 markers 
were even not present in normal wheats. In comparison, 368 out of 
379 identified markers were presented in the moldy samples, most of 
them were in large amounts. Figure 5 is the PCA scores plot of wheat 
samples by mycotoxin markers only. The class distribution and degrees 
of separation were consistent with previous modelling in Figure 2. The 
PLS-DA result (data not shown) also showed no significant differences 
between the complete data set from the selected subsets by mycotoxin 
markers. Although the identification of mycotoxin markers was 
preliminary and pending further investigation such as multiple 
reaction monitoring (MRM) by LC–MS/MS with reference standards, 
the results indicated suitability of UPLC-QTOF-MS for large-scale 
marker screening. Furthermore, the large number of mycotoxins 
identified by UPLC-QTOF-MS indicated that quantification with a 
limited amount of toxins may not be suitable for wheat contamination 
due to the complicate variety of exogenous substances. Other peaks 
were remained to be unidentified and future studies based on in-depth 

A

B

FIGURE 2

PCA scores plot of wheat samples. (A) includes all samples and (B) is 
the zoomed view of the central area for better visual presentation. 
The 95% Hotelling’s T2 confidence ellipse is plotted for each class.  
o: normal samples; x: moldy samples.

A

B

FIGURE 3

PLS-DA X-scores plot (A) and loading plot (B) of abnormal wheat 
screening. o: normal samples; x: moldy samples.
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TABLE 1 Potential endogenous markers.

No. RT* (min) Compound 
name*

Chemical 
formula

Adduct Calc. m/z Exptl. m/z* PLS1 
loading

1 4.79 Linolenic acid C18H30O2 H 279.2324 279.2324 −1.313

2 5.7 Lyso PC (18:3) C26H48NO7P H 518.3247 518.3246 −0.933

3 6.21 Lyso PC (18:2) C26H50NO7P H 520.3403 520.3403 1.503

4 6.57 Linoleic acid C18H32O2 H-H2O 263.2375 263.2375 1.208

5 6.73 Lyso PC (16:0) C24H50NO7P H 496.3403 496.3403 2.028

6 6.85 Lyso PC (18:1) C26H52NO7P H 522.3560 522.356 0.205

7 7.24 Oleic acid C18H34O2 H-H2O 265.2531 265.2529 (1) 0.982

8 7.71 Lyso PC (18:0) C26H54NO7P H 524.3716 524.3716 −1.504

9 9.59 13-Docosenamide C22H43NO H 338.3423 338.3423 −1.264

10 10.53 DGDG (18:3/18:2) C51H86O15 Na 961.5864 961.5864 −0.049

11 10.56 PC (18:2/18:3) C44H78NO8P H 780.5543 780.5543 −0.812

12 10.9 β-Sitosterol C29H50O H-H2O 397.3834 397.3834 1.231

13 11.21 MGDG (18:3/18:2) C45H76O10 Na 799.5336 799.5336 1.257

14 11.54 PC (18:2/18:2) C44H80NO8P H 782.5700 782.5700 −0.367

15 11.72 PC (16:0/18:3) C42H78NO8P H 756.5543 756.5543 −1.308

16 11.72 DGDG (16:0/18:3) C49H86O15 Na 937.5864 937.5860 −1.599

17 11.99 PE (18:2/18:2) C41H74NO8P H 740.5230 740.5230 0.748

18 12.36 MGDG (18:2/18:2) C45H78O10 Na 801.5493 801.5493 −1.437

19 12.88 DGDG (18:2/18:1) C51H90O15 Na 965.6177 965.6177 −0.905

20 12.94 PC (18:2/18:1) C44H82NO8P H 784.5856 784.5856 1.569

21 13.00 DGDG (16:0/18:2) C49H88O15 Na 939.6021 939.6019 −0.519

22 13.04 PC (16:0/18:2) C42H80NO8P H 758.5700 758.5700 −0.274

23 13.68 PE (16:0/18:3) C39H74NO8P H 716.5230 716.5228 1.308

24 14.02 MGDG (18:2/18:1) C45H80O10 Na 803.5649 803.5649 0.640

25 14.09 DG (18:2/18:2) C39H68O5 Na 639.4964 639.4964 1.536

26 14.14 MGDG (18:2/16:0) C43H78O10 Na 777.5493 777.5493 −2.008

27 14.82 Cer (d18:0/16:0) C34H69NO3 Na 562.5175 562.5175 0.952

28 14.86 PC (18:1/18:1) C44H84NO8P H 786.6013 786.6013 −1.777

29 14.88 DGDG (18:1/16:0) C49H90O15 Na 941.6177 941.6213 (4) 1.803

30 14.98 PC (16:0/18:1) C42H82NO8P H 760.5856 760.5856 −0.808

31 15.08 PC (16:0/16:0) C40H80NO8P H 734.5700 734.5700 0.160

32 15.13 DGDG (18:0/18:2) C51H92O15 Na 967.6334 967.6333 −1.023

33 15.84 DG (18:1/18:2) C39H70O5 H-H2O 601.5196 601.5196 −1.500

34 15.91 DG (18:2/16:0) C37H68O5 H-H2O 575.5039 575.5039 0.187

35 16.21 DG (18:2/18:1) C39H70O5 Na 641.5121 641.5121 0.514

36 17.57 DG (18:1/18:1) C39H72O5 H-H2O 603.5352 603.5352 0.299

37 17.64 DG (16:0/18:1) C37H70O5 H-H2O 577.5196 577.5196 1.208

38 18.90 TG (18:3/18:2/18:2) C57H96O6 H 877.7285 877.7285 −1.994

39 20.17 TG (18:2/18:2/16:1) C55H96O6 H 853.7285 853.7285 1.085

40 20.59 TG (18:2/18:3/18:3) C57H94O6 NH4 892.7394 892.7393 −1.736

41 21.43 TG (16:1/18:1/18:2) C55H98O6 H 855.7442 855.7431 (1) 0.227

42 21.87 TG (18:3/18:2/18:2) C57H96O6 NH4 894.7551 894.7549 0.169

43 22.27 TG (16:0/18:3/18:3) C55H94O6 NH4 868.7394 868.7395 1.308

44 23.42 TG (18:3/18:1/18:2) C57H98O6 NH4 896.7707 896.7706 −1.231

(Continued)
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database searching and experimental validation is still needed. 
Nevertheless, the non-targeted metabolomics can provide useful 
evidence for the selection of candidate markers for further 
development of rapid targeted screening approach.

4. Conclusion

The research successfully detected the simulated moldy wheat 
samples based on a non-targeted metabolomics with the established 
chemical information database of endogenous small molecules in 

TABLE 1 (Continued)

No. RT* (min) Compound 
name*

Chemical 
formula

Adduct Calc. m/z Exptl. m/z* PLS1 
loading

45 23.87 TG (18:3/18:2/16:0) C55H96O6 NH4 870.7551 870.7551 1.287

46 25.12 TG (18:1/18:2/18:2) C57H100O6 NH4 898.7864 898.7864 −0.604

47 25.37 TG (16:0/18:2/18:2) C55H98O6 NH4 872.7707 872.7709 −0.933

48 26.46 TG (20:1/18:2/18:2) C59H104O6 NH4 926.8177 926.8176 −1.285

49 26.59 TG (18:2/18:1/18:1) C57H102O6 NH4 900.8020 900.8019 −0.746

50 26.81 TG (18:2/18:1/16:0) C55H100O6 NH4 874.7864 874.7864 −0.148

51 27.00 TG (18:2/16:0/16:0) C53H98O6 NH4 848.7707 848.7707 −0.751

52 27.66 TG (18:2/22:1/18:2) C61H108O6 NH4 954.8490 954.8489 −0.937

53 27.79 TG (18:2/18:1/20:1) C59H106O6 NH4 928.8333 928.8334 −0.641

54 27.97 TG (20:1/16:1/18:1) C57H104O6 NH4 902.8177 902.8176 0.129

55 28.23 TG (16:0/18:1/18:1) C55H102O6 NH4 876.8020 876.8020 −1.668

56 28.49 TG (18:1/16:0/16:0) C53H100O6 NH4 850.7864 850.7863 −1.425

57 28.84 TG (16:0/16:0/16:0) C51H98O6 NH4 824.7707 824.7707 −1.512

58 29.04 TG (24:1/18:2/18:2) C63H112O6 NH4 982.8803 982.8803 −1.356

59 29.38 TG (18:1/18:1/20:1) C59H108O6 NH4 930.8490 930.8489 −1.288

*RT, retention time; TG, triacylglycerols; DG, diglyceride; PC, phosphatidylcholine; Lyso PC, lysophosphatidylcholines; DGDG, digalactosyldiacylglycerol; MGDG, 
monogalactosyldiacylglycerol; Cer, ceramide; Calc. m/z: calculated m/z; Exptl. m/z: Experimental m/z. When the mass error is greater than 1 ppm, the mass errors in ppm is indicated in 
parentheses following the experimental m/z.

FIGURE 4

Averaged intensities of identified mycotoxin markers by different 
class of samples. For demonstration purpose, negative intensities 
were plotted for moldy samples.

A

B

FIGURE 5

PCA scores plot of wheat samples by mycotoxin markers only. 
(A) includes all samples and (B) is the zoomed view of the central 
area for better visual presentation. The 95% Hotelling’s T2 confidence 
ellipse is plotted for each class. o: normal samples; x: moldy samples.
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wheat. The moldy wheat samples possibly contaminated by fungi were 
prepared, and compared with their normal counterparts. The 
differences between these two sample classes were characterized 
preliminary study by visual appearances and PCA modelling, followed 
by supervised PLS-DA. While visual identification depends on human 
experience and PCA could only partly identify the moldy wheat from 
the LCMS spectra, the PLS-DA were successfully used to distinguish 
them from normal wheat both in the scores plot and in a fully 
automated fashion. The results proved the non-targeted modelling 
advantages in processing a complex data set collected from high-
precision analytical instruments such as from the high-resolution 
mass spectrometry. The PLS loading reflect plenty of information that 
related to compositional changes during the mildew process, as 
demonstrated by the corresponding loadings of both 59 endogenous 
and 379 exogenous potential marker compounds. The result showed 
that the non-targeted approach combined with high-resolution mass 
spectrometry is advantageous for foodborne microbial contamination 
to rapidly identify a large number of potential marker compounds 
without the need of certain standards. Particularly, mycotoxin markers 
presented positive changes toward moldy samples, which may 
be further used as candidates for application-specific rapid targeted 
screening. To a greater extent, in-depth research on such potential 
hazard factors would help to find and identify trace metabolites of 
fungal infection in wheat, and laid a foundation for the subsequent 
construction of typical markers of wheat fungal infection.
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