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Preeclampsia is a pregnancy-specific condition and a leading cause of maternal
and fetal morbidity and mortality. It is thought to occur due to abnormal placental
development or dysfunction, because the only known cure is delivery of the
placenta. Several clinical risk factors are associated with an increased incidence of
preeclampsia including chronic hypertension, diabetes, autoimmune conditions,
kidney disease, and obesity. How these comorbidities intersect with preeclamptic
etiology, however, is not well understood. This may be due to the limited number
of animal models as well as the paucity of studies investigating the impact of these
comorbidities. This review examines the current mouse models of chronic
hypertension, pregestational diabetes, and obesity that subsequently develop
preeclampsia-like symptoms and discusses how closely these models
recapitulate the human condition. Finally, we propose an avenue to expand
the development of mouse models of preeclampsia superimposed on chronic
comorbidities to provide a strong foundation needed for preclinical testing.
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Introduction

Preeclampsia is a life-threatening condition that complicates 2%–7% of all pregnancies
(Roberts and Lain, 1998; Sibai, 2006; Abalos et al., 2013; Albers et al., 2019; Poon et al., 2019;
Chappell et al., 2021; Waker et al., 2021). It is one of the leading causes of maternal and fetal
morbidity and mortality (Poon et al., 2019; Chappell et al., 2021). The pathological features
of preeclampsia were historically defined as rapid-onset, pregnancy-specific hypertension
with accompanying proteinuria and parturitional resolution. Recent reclassification,
however, now includes maternal renal, hepatic, pulmonary, or neurological involvement
in the absence of proteinuria (Rana et al., 2019; Obstetrics and Gynecology, 2020; Garovic
et al., 2022). Abnormal placental development or dysfunction is thought to be the root cause
of the condition, as the only known cure is delivery of the placenta (Hladunewich et al., 2007;
Roberts and Escudero, 2012; Ilekis et al., 2016; Schneider, 2017).

While preexisting comorbidities are a common occurrence in preeclamptic pregnancies,
there is a paucity of information on how they impact the development, progression, or
severity of the condition. Clinically, preexisting conditions such as prior preeclampsia,
chronic hypertension or kidney disease, pregestational diabetes, and autoimmune disease are
associated with a high risk of developing preeclampsia (Figure 1). Why women with certain
comorbidities have an increased risk of preeclampsia is unknown and it is unclear if specific
treatment plans should be implemented based on a particular comorbidity. Preeclamptic

OPEN ACCESS

EDITED BY

Stephen C. Land,
University of Dundee, United Kingdom

REVIEWED BY

Lisa Akison,
The University of Queensland, Australia
Ramón A. Lorca,
University of Colorado Anschutz Medical
Campus, United States

*CORRESPONDENCE

Thomas L. Brown,
thomas.L.brown@wright.edu

SPECIALTY SECTION

This article was submitted to Clinical and
Translational Physiology,
a section of the journal
Frontiers in Physiology

RECEIVED 04 January 2023
ACCEPTED 17 March 2023
PUBLISHED 06 April 2023

CITATION

Waker CA, Hwang AE, Bowman-Gibson S,
Chandiramani CH, Linkous B, Stone ML,
Keoni CI, Kaufman MR and Brown TL
(2023), Mouse models of preeclampsia
with preexisting comorbidities.
Front. Physiol. 14:1137058.
doi: 10.3389/fphys.2023.1137058

COPYRIGHT

© 2023Waker, Hwang, Bowman-Gibson,
Chandiramani, Linkous, Stone, Keoni,
Kaufman and Brown. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Review
PUBLISHED 06 April 2023
DOI 10.3389/fphys.2023.1137058

https://www.frontiersin.org/articles/10.3389/fphys.2023.1137058/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1137058/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1137058&domain=pdf&date_stamp=2023-04-06
mailto:thomas.L.brown@wright.edu
mailto:thomas.L.brown@wright.edu
https://doi.org/10.3389/fphys.2023.1137058
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1137058


pregnancies associated with comorbidities have a higher rate of
caesarian section birth and are delivered earlier than
preeclampsia pregnancies that do not have preexisting
comorbidities (Tanner et al., 2022). In addition, neonates from
preeclamptic pregnancies that have preexisting comorbidities
also experience an increase in respiratory distress syndrome,
neonatal sepsis, and neonatal intensive care unit admissions
(Tanner et al., 2022).

Recent reports have identified early-onset (<34 weeks) or late-onset
(>34 weeks) as distinct subtypes of preeclampsia, based on the
gestational time of diagnosis (Raymond and Peterson, 2011; Roberts
and Escudero, 2012; Redman et al., 2014; Gathiram andMoodley, 2016;
Staff and Redman, 2018; Waker et al., 2021). This raises the possibility
that preeclampsia may have distinct subtypes due to the influence of the
preexisting comorbid condition. As the prevalence of obesity, chronic
hypertension, and diabetes continues to increase worldwide,
understanding how these comorbidities increase the risk of
developing preeclampsia is paramount to understanding the genesis
of the condition and developing effective treatment regimens.

Mouse models are a widely used and well-accepted tool to study
preeclampsia because of their extensive genetic characterization and
high homology to humans, as well as similar hemochorial blood flow
(Maltepe and Fisher, 2015; Soncin et al., 2015; Soares et al., 2018; Hu
and Zhang, 2021; Waker et al., 2021). To investigate the effects of
preexisting comorbidities on the development of preeclampsia,
mouse models have been developed using gene knockout,
transgenic overexpression, dietary supplementation, and selective
inbreeding. The goal of this review is to provide researchers with an
analysis of mouse models that have preexisting conditions and
develop preeclampsia-like symptoms during pregnancy (Table 1).

Chronic hypertension

In the United States, chronic hypertension affects 45% of adults
and up to 10% of all pregnancies (Muntner et al., 2018; Topel et al.,

2018; Battarbee et al., 2020). Patients with chronic hypertension
have an increased risk of adverse health conditions such as coronary
artery disease, stroke, heart failure, and renal disease (Elliott, 2007).
Preexisting hypertension is associated with additional complications
during pregnancy such as preterm birth, fetal growth restriction, and
preeclampsia; with preeclampsia being themost prevalent (Seely and
Ecker, 2014). Chronic hypertension is high blood pressure that
occurs prior to pregnancy or before 20 weeks of gestation.
Preeclampsia is the rapid elevation of blood pressure, above
preexisting stable hypertensive levels, after the 20th week of
pregnancy accompanied with other systemic involvement.

A study of 822 pregnant women with chronic hypertension
found that 22% of these patients developed preeclampsia (Chappell
et al., 2008). Notably, nearly 50% of those with preexisting chronic
hypertension developed early-onset preeclampsia (Chappell et al.,
2008). In contrast, preeclampsia in the general population occurs in
2%–7% of pregnancies, with early-onset cases comprising about 16%
(Abalos et al., 2013; Ananth et al., 2013; Lisonkova and Joseph, 2013;
Fingar et al., 2017; Mayrink et al., 2019). The substantially increased
prevalence of preeclampsia and early-onset cases in pregnancies
complicated by chronic hypertension suggest that preexisting
maternal hypertension is a significant predisposition in the
development of the condition.

Mouse models that eliminate matrix
metalloproteinase-9 (MMP-9)

Matrix metalloproteinases comprise a family of zinc-dependent
proteases that degrade extracellular matrices. Specifically, matrix
metalloproteinase-9 (MMP-9) degrades type IV, V, and IX
collagens, gelatin, and elastin and is involved in numerous
processes, including implantation, placentation, and
embryogenesis (Vu et al., 1998; Silvia and Serakides, 2016;
Espino et al., 2017; Quintero-Fabián et al., 2019; Timokhina
et al., 2020). During pregnancy, MMP-9 has been shown to be

FIGURE 1
Clinical risk factors for the development of preeclampsia (SMFM Patient Safety and Quality Committee et al., 2020; Obstetrics and Gynecology,
2020). Created with BioRender.com.
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involved in endometrial remodeling and the invasion of placental
extravillous trophoblasts (Zhang et al., 2020). Conversely, decreased
levels of MMP-9 are associated with impaired trophoblast invasion
(Staun-Ram et al., 2004; Chen and Khalil, 2017).

The data demonstrating an association of MMP-9 in human
preeclampsia are variable. Some reports have shown reduced levels
of circulating MMP-9 in maternal plasma from preeclamptic
pregnancies; however, other studies have found elevated levels or
no significant differences (Montagnana et al., 2009; Plaks et al., 2013;
Eleuterio et al., 2015; Laskowska, 2017; Timokhina et al., 2020). In a
study looking at the association of MMP-9 in severe preeclampsia,
mild preeclampsia, and normal pregnancies; MMP-9 expression was
reduced in severely preeclamptic patients, but was not different
between mild preeclampsia and normal pregnancies (Wang et al.,
2015; Zhang et al., 2019). Some of these discrepancies may be
attributable to MMP-9 levels in pregnancy, as MMP-9 have been
shown to be positively correlated with gestational age (Montagnana
et al., 2009).

Dubois et al. initially reported impaired reproduction inMMP-9
null mice. In these mice, MMP-9 deficiency was associated with a
decrease in the number of pregnancies as well as a reduction in litter
size (Dubois et al., 1999; Dubois et al., 2000). Plaks and
Rinkenburger also investigated the role of MMP-9 in pregnancy
using MMP-9 deficient mice and found these mice are sub-fertile
with decreased implantation and increased fetal demise (Plaks et al.,
2013). In pure or mixed backgrounds with homozygousMMP-9 null
crosses (129SV/J on CD1 or Swiss black backgrounds), there was up
to a 20% reduction in litter size; however, on a C57BL/6J mouse

background, MMP-9 null homozygous crosses exhibited a 50%
reduction in litter size (Plaks et al., 2013). The variation in litter
size among different strains of mice suggests that genetic
background may be a contributing factor in the varying effects
observed.

When embryos from MMP-9 null homozygous crosses were
analyzed at E10.5, 18.4% exhibited fetal growth restriction when
compared to heterozygous control. Additionally, of the embryos that
were growth restricted, it was reported that they were in a “twisted”
and “constrained” state. Homozygous MMP-9 knockout mice had
reduced and malformed ectoplacental cones, surrounded by blood
pools at E7.5, impaired trophoblast differentiation, and reduced
invasion (Plaks et al., 2013). The MMP-9 null placentas exhibited
altered morphology with an increased number of trophoblast giant
cells and diminished spongiotrophoblast and labyrinth layers (Plaks
et al., 2013). Interestingly, it was reported that normal placental
development required both maternal and fetal MMP-9 expression
(Plaks et al., 2013).

When compared to non-pregnant controls, non-pregnant
homozygous MMP-9 knockout mice were reported to have an
elevated mean systolic blood pressure (Plaks et al., 2013).
Importantly, pregnant homozygous MMP-9 knockout mice
with viable fetuses exhibited a prolonged decrease in blood
pressure as gestation progressed, compared to controls (Plaks
et al., 2013). Kidneys from pregnant and non-pregnant MMP-9
null homozygous mice were also assessed. During pregnancy, the
percentage of “open” glomerular capillaries in MMP-9 null mice
was significantly reduced and proteinuria was present, which

TABLE 1 Current mouse models with preexisting conditions that develop PE.

Advantages (Pros) and limitations (Cons) of mouse models with preexisting conditions that exhibit pathological features of preeclampsia, namely, hypertension and proteinuria. Abbreviations

used: PE (preeclampsia), MMP-9 (matrix metalloproteinase-9), KO (knockout), RAAS (renin-angiotensin-aldosterone system), eNOS (endothelial nitric oxide synthase), NOD (non-obese

diabetic), HFD (high fat diet), BPH/5 (blood pressure high/5). Created with BioRender.com.
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may indicate a pathology similar to glomerular endotheliosis
(Plaks et al., 2013). While MMP-9 knockout mice have
preexisting hypertension, the use of these mice as a comorbid
model that develops preeclampsia-like symptoms requires
consideration due to the uncharacteristic lack of elevated
blood pressure during pregnancy.

Mouse models that overexpress factors in
the renin-angiotensin-aldosterone system

The renin-angiotensin-aldosterone system (RAAS) maintains
blood pressure by regulating sodium, potassium, and fluid volume.
Dysregulation of the renin-angiotensin-aldosterone system leads to
the development of chronic hypertension (Santos et al., 2012; Carey,
2015; Te Riet et al., 2015). Activation of renin-angiotensin-
aldosterone system occurs when the precursor, prorenin, is
converted to renin by the juxtaglomerular cells of the kidney
(Hsueh & Baxter, 1991; von Lutterotti et al., 1994). Renin
proteolytically cleaves angiotensinogen and subsequent processing
results in the generation of angiotensin I and II. Angiotensin II, the
predominant end-product of the renin-angiotensin-aldosterone
system, binds to the angiotensin II type 1 receptor 1 (AT1) and
results in the activation of downstream signaling pathways that
ultimately lead to vasoconstriction and increased retention of
sodium and water by the kidney (Spaan & Brown, 2012).
Furthermore, angiotensin II stimulates release of aldosterone
from the adrenal glands to promote blood volume expansion.
The physiological response to vasoconstriction, sodium
reabsorption, and volume expansion is increased blood pressure
(Spaan & Brown, 2012).

In a normal healthy pregnancy, the levels of renin,
angiotensinogen, angiotensin I and II, and aldosterone are
elevated compared to non-pregnant women, but a vasodilatory
state is present such that hypertension does not typically occur
(Brown et al., 1963; Brown et al., 1997). The increased level of
progesterone during pregnancy decreases the sensitivity to
angiotensin II and changes the state of AT1 receptor binding so
that twice as much angiotensin II is required to elicit an elevation in
blood pressure that would typically occur while not pregnant (Assali
& Westersten, 1961; Gant et al., 1973; AbdAlla et al., 2001). Thus,
increased levels of angiotensin II are required during pregnancy to
maintain a normotensive blood pressure (Irani & Xia, 2008). In
patients with preeclampsia; however, the maternal levels of plasma
renin, angiotensin II, and aldosterone have been shown to be lower
than normotensive pregnancies (Weir et al., 1973; Gant et al., 1980;
Brown et al., 1997; Irani and Xia, 2008; Leaños-Miranda et al., 2018).

Falcao et al., sought to investigate the occurrence of
preeclampsia-like features in a hypertensive mouse model
during pregnancy using double transgenic mice that
overexpress the genes for human renin (REN, R+) and
human angiotensinogen (AGT, A+) (R+A+ mice) (Sigmund
et al., 1992; Falcao et al., 2009). Non-pregnant R+A+ mice
have significantly elevated angiotensin II and mean arterial
pressure compared to non-transgenic, non-pregnant control
mice (Falcao et al., 2009). Pregnant R+A+ mice had
significantly elevated blood pressure above mean arterial
pressure levels on gestational days 5 and 17, compared to

non-pregnant R+A+ mice (Falcao et al., 2009). The mean
arterial pressure at gestational day 18 for R+A+ mice was
significantly higher than non-transgenic mice, indicating that
in R+A+ mice, pregnancy further exacerbates their hypertensive
state (Falcao et al., 2009). The R+A+ mice MAP decreased 24 h
after birth but did not completely return to prepregnant levels.

Pregnant R+A+ mice developed proteinuria by the end of
gestation but did not have signs of glomeruloendotheliosis or
other renal pathology (Falcao et al., 2009). In addition, pregnant
and non-pregnant R+A+ mice exhibited cardiac hypertrophy.
Placental pathology included increased necrosis and loss of
labyrinthine trophoblast structure. Although no differences in
litter size were observed, fetal and placental weights were both
significantly reduced, compared to non-transgenic mice.

The Falcao et al. model is similar to one generated by Takimoto
et al., who analyzed AGT overexpressing female mice crossed with
REN overexpressing male mice (Takimoto et al., 1996). Takimoto
reported that female AGT mice became hypertensive after day 14 of
gestation and had glomerular enlargement and increased urinary
protein, coinciding with the development of the placental renin
overexpression. This indicates that these transgenic mice exhibit a
pregnancy-specific increase in blood pressure, a hallmark of
preeclampsia. These pregnant mice also developed myocardial
concentric hypertrophy with only 38% surviving pregnancy
(Takimoto et al., 1996). In addition, 15% of these transgenic
hypertensive mice had generalized convulsions late in pregnancy.
Placental analysis indicated necrotic cell death in the
spongiotrophoblasts and decidual cells and chorionic congestion
(Takimoto et al., 1996).

Both models show that the excess secretion of renin and other
renin-angiotensin-aldosterone system proteins or angiotensin-like
peptides by the placenta can lead to the development of
preeclampsia-like symptoms during mouse pregnancy (Takimoto
et al., 1996; Shah et al., 2000; Falcao et al., 2009; Denney et al., 2017).
The paradox between overexpression of renin and angiotensinogen
creating preeclampsia-like symptoms in mice and the reduced levels
observed in humans with preeclampsia suggests that renin-
angiotensin-aldosterone system may be a downstream effect of
other dysregulated systems. Additionally, most currently available
therapeutic inhibitors of renin-angiotensin-aldosterone system are
teratogenic and fetotoxic, precluding their use to treat preeclampsia
(Alwan et al., 2005; Alwasel et al., 2010; Ferreira et al., 2010).

Mouse models that eliminate endothelial
nitric oxide synthase (ENOS)

Nitric oxide synthases [NOS I (nNOS), NOS II (iNOS), and
NOS III (eNOS)] are a family of enzymes that create nitric oxide
(NO) via the reduction of L-arginine to L-citrulline (Moncada
and Higgs, 1993; Hefler et al., 2001; Förstermann and Sessa, 2012;
Qian and Fulton, 2013). In the endothelium, the primary
function of NO is to relax vascular smooth muscle tissue and
it serves as an important regulator of arterial blood pressure
(Shesely et al., 2001; Endres et al., 2004; Chen and Zheng, 2014;
Guerby et al., 2021). Nitric oxide and the NOS enzymes play an
important role in cardiovascular remodeling during development
and are involved in the synthesis of vascular endothelial growth
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factor (VEGF), stimulation of endothelial progenitor cell activity,
and angiogenesis via hypoxia inducible factor 1 alpha (HIF-1α)
(Shesely et al., 2001; Endres et al., 2004; Chen and Zheng, 2014;
Guerby et al., 2021). In a healthy normotensive pregnancy, nitric
oxide levels spike early in gestation and gradually increase
through the third trimester (Owusu Darkwa et al., 2018). In
contrast, the levels of nitric oxide reported in preeclamptic
women are conflicting; with reports showing increased,
decreased, or no differences, compared to control (Seligman
et al., 1994; Lyall et al., 1995; Smárason et al., 1997; Choi
et al., 2002; Marshall et al., 2018).

Several groups have investigated the effect of eNOS knockout
on blood pressure and the generation of preeclampsia-like
symptoms in mice, following reports that chronic non-specific
pharmacologic inhibition of NOS recapitulates some symptoms
of preeclampsia (Baylis & Engels, 1992; Yallampalli & Garfield,
1993; Shesely et al., 1996; Hefler et al., 2001; Shesely et al., 2001;
Kusinski et al., 2012). Three independent studies have reported
that non-pregnant eNOS knockout mice have elevated blood
pressure compared to controls (Huang et al., 1995; Shesely et al.,
1996; Kusinski et al., 2012).

Hefler et al. examined pregnant eNOS homozygous knockout
mice and reported reduced fetal weights; however, no placental
abnormalities were noted. In that study, blood pressure and
proteinuria were not reported, but severe limb abnormalities
were identified (Hefler et al., 2001). Shesely et al., found that
non-pregnant homozygous eNOS knockout mice had
significantly increased blood pressure compared to control mice;
however, blood pressure did not significantly increase during
pregnancy (Shesely et al., 1996; Shesely et al., 2001). Similarly,
Kusinski et al., observed that eNOS knockout mice had elevated
blood pressure before and during pregnancy at gestational day
17.5, when compared to wild type mice (Kusinski et al., 2012).
However, there was no significant increase in blood pressure
between pregnant eNOS knockout mice and non-pregnant
eNOS knockout mice (Kusinski et al., 2012). Investigations into
placental structure determined that spiral artery remodeling was
dysregulated, the labyrinth zone was reduced, uteroplacental
hypoxia was present, and placental nutrient transport was
reduced in eNOS knockout mice (Kulandavelu et al., 2012;
Kusinski et al., 2012; Kulandavelu et al., 2013). Levels of VEGF
were reduced and HIF-1α protein was increased in eNOS knockout
placentas; whereas, levels of souble fms-like tyrosine kinase-1
(sFLT-1) in maternal plasma were not different between eNOS
knockout and control (Kulandavelu et al., 2012; Kusinski et al.,
2012; Kulandavelu et al., 2013).

Litter size was also reduced in eNOS knockout compared to
control mice (Kulandavelu et al., 2013). Additionally, maternal and
fetal weights were reduced in eNOS knockout mice compared to
control at gestational day 17.5, but placental weights were not
different (Kulandavelu et al., 2012; Kusinski et al., 2012;
Kulandavelu et al., 2013). eNOS null mice have consistently been
reported to be small and could serve as a model of fetal growth
restriction; however, these mice have not been shown to exhibit a
significant elevation in blood pressure during gestation that is
characteristic of the preeclamptic condition (Medica et al., 2007;
McCarthy et al., 2011; Kulandavelu et al., 2012; Kusinski et al., 2012;
Qi et al., 2013; Alpoim et al., 2014).

Diabetes

Type 1 diabetes mellitus is an autoimmune disease that causes
endogenous insulin insufficiency (Chen et al., 2018; Sugrue and
Zera, 2018). Type 2 diabetes mellitus is generally characterized by
increased insulin resistance, rather than insulin insufficiency, as a
result of chronically elevated serum levels of glucose and
triglycerides (Salzer et al., 2015; Sugrue and Zera, 2018;
Echeverria et al., 2020). In an uncomplicated pregnancy,
peripheral insulin resistance increases approximately three-fold,
compared to the non-pregnant state, in order to accommodate
the developing fetus (Salzer et al., 2015; Kanasaki, 2018). This
insulin resistance and subsequent hyperglycemic state create a
diabetogenic environment (Kanasaki, 2018). Individuals with
preexisting diabetes, however, have insufficient production or an
inadequate response to insulin, thus impairing their ability to adapt
to the metabolic demands of pregnancy.

Diabetes mellitus is strongly associated with the development of
preeclampsia (Scioscia et al., 2009; Burke et al., 2011; Gutaj et al.,
2017; Sugrue and Zera, 2018). Pregnancies complicated by
pregestational Type 1 diabetes mellitus developed preeclampsia in
18% of cases, compared to 2.6% in the control population identified
in this study (Jensen et al., 2004). Additional studies have reported
that 11% of pregnancies with preexisting Type 2 diabetes later
developed preeclampsia (Jensen et al., 2004; Groen et al., 2013).
How pregestational Type 1 and Type 2 diabetes increase the risk of
developing preeclampsia is not well understood and requires further
investigation.

Mouse models of type 1 diabetes mellitus

Non-obese diabetic (NOD) mice are an inbred strain
characterized by the spontaneous development of autoimmunity
and Type 1 diabetes mellitus. These mice have a mutation that
results in depletion of regulatory T-cells and leads to the death of the
pancreatic islet beta cells (D’Alise et al., 2008). NODmice are widely
used to study the pathophysiology of Type 1 diabetes mellitus, as
they demonstrate autoimmune cell infiltration into pancreatic islet
beta cells characteristic of the disease (Chen et al., 2018). Notably,
not all non-obese diabetic mice will develop hyperglycemia in their
lifetime, as the degree of pancreatic immune cell infiltration
determines whether NOD mice will develop diabetes (Chen et al.,
2018). Non-obese diabetic mice with mild pancreatic autoimmune
cell infiltration can maintain normal blood glucose levels and never
progress to a Type 1 diabetic phenotype; whereas, non-obese
diabetic mice that have extensive insulitis develop a phenotype
more severe than what occurs in the human condition.
Nevertheless, the NOD mouse model most closely mirrors the
spontaneous onset of Type 1 diabetes mellitus (Burke et al., 2011;
Chen et al., 2018).

Pregnant non-obese diabetic mice are reported to have
significantly increased proteinuria as gestation progresses with
accompanying renal histopathology indicative of acute kidney
injury (Burke et al., 2011). Pregnant non-obese diabetic mice also
exhibit progressive bradycardia and reduced blood pressure from
gestational day 10 through gestational day 18, compared to pregnant
non-obese nondiabetic mice (Burke et al., 2011). The placentas in
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pregnant non-obese diabetic mice demonstrated impaired spiral
artery remodeling, as a reduction in the number of spiral arteries and
decreased luminal diameters (Burke et al., 2007; Burke et al., 2011).
Placental weights from non-obese diabetic pregnancies were
significantly increased; whereas, pup weights at birth were
significantly lower compared to non-diabetic controls (Burke
et al., 2007). Pregnant non-obese diabetic mice do exhibit kidney
dysfunction and proteinuria in the diabetic animals, compared to
the non-diabetic non-obese diabetic mice; however, the variability in
the generation of a diabetic phenotype and unexpected cardiac
features indicate further work is needed to model this
comorbidity. Additionally, the decrease in blood pressure in
pregnant non-obese diabetic mice is not representative of the
preeclamptic condition in humans with pregestational Type
1 diabetes mellitus (Burke et al., 2011; Shub, 2020; Shub and
Lappas, 2020).

Obesity

The prevalence of obesity has reached epidemic proportions
(Barnes, 2011; Olson et al., 2019). Obesity is a condition in which
an individual has excess adipose tissue (body fat) and is clinically
characterized by body mass index (BMI). This condition is
associated with low grade inflammation and is often
accompanied by dyslipidemia, decreased insulin sensitivity,
and cardiovascular disease; collectively known as metabolic
syndrome (Roberts et al., 2011; Kim et al., 2014; Howell and
Powell, 2017; Olson et al., 2019). In particular, obesity has
dramatically increased in women by more than 65% over the
last 40 years (Wang and Beydoun, 2007; Barnes, 2011; Jeyabalan,
2013; Olson et al., 2019). According to the National Institute for
Diabetes and Digestive and Kidney Diseases, the incidence of
overweight (BMI: 25–29.9) and obese (BMI: ≥30) adult females in
the United States is a striking 67% (Flegal et al., 2010; Fryar et al.,
2020). Obesity is the leading risk factor for the development of
Type II diabetes (Barnes, 2011).

Obesity is associated with an increased risk of developing
complications during gestation and has been reported to be
present in ~30% of all pregnancies in the United States (Roberts
et al., 2011; Driscoll and Gregory, 2020). Obesity during pregnancy
is associated with numerous complications such as gestational
hypertension, gestational diabetes, preterm birth, stillbirth, and
preeclampsia (Yogev and Catalano, 2009; Roberts et al., 2011;
Myatt and Maloyan, 2016; Lopez-Jaramillo et al., 2018; Kelly
et al., 2020; Dumolt et al., 2021). Additionally, maternal obesity
is associated with alterations in fetal weight, as neonates have an
increased risk for growth restriction, but more commonly,
macrosomia (Ornoy, 2011; Kanda et al., 2012; Tenenbaum-
Gavish and Hod, 2013). The impact of obesity on fetal
development can lead to potential life-altering cardiovascular,
metabolic, and neurocognitive conditions for offspring later in
life (Howell and Powell, 2017; Cirulli et al., 2020; Kelly et al.,
2020; Dumolt et al., 2021).

Human and animal studies have reported that obesity can
alter placental function (Kim et al., 2014; Saben et al., 2014;
Spradley et al., 2015a; Spradley et al., 2015b; Olson et al., 2019;

Wallace et al., 2019; Hoch et al., 2020). Placental expression of
glucose, fatty acid, and amino acid transporters has been shown
to be increased in obese individuals during human pregnancy and
increased expression of placental nutrient transporters is strongly
correlated with fetal birth weight (Jansson et al., 2013; Acosta
et al., 2015; Lager et al., 2016; Howell and Powell, 2017; Vaughan
et al., 2021). Maternal obesity may also lead to excess lipid
accumulation in the placenta and could potentially interfere
with trophoblast invasion, nutrient transport, and
angiogenesis, which are often affected in preeclampsia (Saben
et al., 2014).

The risk of developing preeclampsia during pregnancy is
strongly correlated with maternal prepregnancy body mass index,
with the risk doubling for overweight individuals and tripling for
those clinically defined as obese (Bodnar et al., 2005; Robillard et al.,
2019). While obesity is clearly indicated as a risk factor for the
development of preeclampsia; the underlying mechanisms impacted
by this comorbidity or how it may contribute to the development of
preeclampsia remain unclear and warrant further study (Spradley
et al., 2015b).

Mouse models of obesity

Obesity is typically studied by feeding animals a diet high in fat to
increase body weight (Christians et al., 2019). Masuyama and
Hiramatsu studied the effect of obesity on pregnancy in adult, eight-
week-old ICR mice after being fed a high-fat diet (HFD) consisting of
62% of calories from fat for 4 weeks (Masuyama and Hiramatsu, 2012).
The prepregnancy weights of female ICRmice fed the high-fat diet were
not reported; however, at the end of gestation, pregnant female high-fat
diet mice were on average 16 g heavier than those on the control diet
(Masuyama andHiramatsu, 2012;Masuyama et al., 2016). High-fat diet
pregnant mice exhibited increased insulin resistance with poor glucose
tolerance, as well as increased serum levels of triglycerides and leptin,
but had decreased levels of adiponectin (Masuyama and Hiramatsu,
2012; Masuyama et al., 2016).

Pregnant high-fat diet mice developed significantly elevated
blood pressure at E18.5 accompanied by proteinuria (Masuyama
and Hiramatsu, 2012). Also present was a significant increase in
fetal weight, but no change in placental weight or litter size was
observed (Masuyama and Hiramatsu, 2012; Masuyama et al.,
2016). Placental morphology, lineage, immune, or angiogenic
markers were not assessed in these studies (Masuyama and
Hiramatsu, 2012). However, placental morphology was
reported to be altered in a different study using pregnant
obese mice (45% high-fat diet), where high-fat diet was
associated with decreased labyrinth thickness, compared to the
control diet (Kim et al., 2014).

A standard way to induce obesity in mice is to use a diet high in fat
content (i.e., ~60% of calories from fat). It should be noted; however,
that this percentage of calories to induce obesity is not generally
representative of typical Western diets, which is closer to ~35–45%
fat (Hintze et al., 2018). Also, not all strains of mice develop obesity on a
high-fat diet, which suggests that an underlying genetic predisposition
for obesity may be present in certain strains (Nishikawa et al., 2007;
Huang et al., 2020; Li et al., 2020). Overall, the high-fat diet mouse
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model exhibits some of the classical hallmarks of preeclampsia, but
further studies are required to better define inflammatory and
angiogenic factors in these obese mice that develop preeclampsia-
like symptoms.

Mouse models with multiple
comorbidites

Blood pressure high/5 (BPH/5)

Work by Davisson et al., led to the identification of a mouse line,
Blood Pressure High 5 (BPH/5), that is borderline hypertensive
throughout adult life and spontaneously develops the hallmarks of
preclampsia during pregnancy (Davisson et al., 2002). BPH/5 mice
are a substantially inbred subline, derived from >20 generations of
brother-sister matings of the more well-known, hypertensive BPH/
2 strain (Schlager and Sides, 1997; Davisson et al., 2002). BPH/
5 mice have significantly increased blood pressure prior to
pregnancy, compared to C57BL/6 mice, as well as a significantly
increased mean arterial pressure during pregnancy, beginning on
gestational day 14 through parturition. The blood pressure of BPH/
5 returned to the baseline “borderline hypertensive” levels after birth
(Davisson et al., 2002). Endothelial dysfunction was also noted in
pregnant BPH/5 mice and proteinuria as well as glomerulosclerosis
were observed. In addition, fetal weights were significantly reduced
and litter sizes were notably smaller (Davisson et al., 2002).

Analysis of BPH/5 pregnancies revealed that placental weights of
BPH/5 placentas were similar to controls in late gestation (Dokras
et al., 2006). All placental lineages were present; however, disruption
of placental structure was noted, as trophoblast layers were
disorganized and the expression of placental lineage markers
were significantly reduced at E14.5 (Dokras et al., 2006). Vascular
pathologies were also present in BPH/5 placentas, as blood spaces
and branching morphogenesis were reduced and decidual vessels
were characterized by thickened vessel walls, narrowed lumens, and
increased uterine artery resistance (Dokras et al., 2006). Decreased
VEGF and placental growth factor (PlGF) mRNA were observed in
BPH/5 placentas at E10.5, while sFLT-1 mRNA was significantly
increased, consistent with preeclampsia symptoms (Sones et al.,
2018).

The BPH/5 mouse model presents with borderline hypertension
and recapitulates several hallmarks of preeclampsia during
pregnancy (Sones and Davisson, 2016). Disruption of normal
placental development and smaller fetal weight at birth suggests
that this model may be similar to early-onset preeclampsia with fetal
growth restriction (Waker et al., 2021). Recent studies; however,
have changed the context of the BPH/5 model and expanded the
comorbidity beyond spontaneous chronic borderline hypertension
and to now include preexisting metabolic disease, obesity, and fatty
liver disease (Sutton et al., 2017; Reijnders et al., 2019; Johnston et al.,
2021; Sones et al., 2021).

In addition, the reproductive axis in these mice is disrupted as
the BPH/5 mice have reduced serum 17β-estradiol during estrous
(Sutton et al., 2017). During pregnancy these mice continue to
exhibit increased body weight and white adipose tissue with elevated
cholesterol and triglyceride levels compared to C57BL/6 control
mice, indicative of obesity (Reijnders et al., 2019). Caloric restriction

ameliorated some of these pathologies and suggests that the BPH/
5 phenotype might be linked to the metabolic disease, in addition to
being chronically borderline hypertensive (Reijnders et al., 2019;
Olson et al., 2020). The conjunction of these multiple
comorbidities may make it challenging to determine the
individual effects of chronic hypertension or obesity on the
generation of preeclampsia. However, women that are both
obese and hypertensive are a segment of the population at
high risk of developing the condition and a mouse model that
exhibits these preexisting conditions may be useful to study the
interaction and impact of both comorbidities on the development
of preeclampsia.

Conclusion

Several mouse models with comorbidities that exhibit
preeclampsia-like symptoms have been developed. These models
vary in the techniques used to create them and how closely they
recapitulate the human condition. Comorbidities such as chronic
hypertension, pregestational diabetes, and obesity increase the risk
of developing preeclampsia. As the prevalence of these conditions is
predicted to increase in coming years, so too will the number of
people that develop preeclampsia (Gortazar et al., 2020). The short-
term economic costs of preeclampsia are in the billions and are even
greater long-term, when the increased risk for chronic comorbidities
for mother and offspring are also considered (Martin et al., 2011;
Stevens et al., 2017; Burton et al., 2019; Rana et al., 2019;Waker et al.,
2021).

Preeclampsia is a heterogenous condition that differs in timing
and severity, indicating that many models may be needed to uncover
underlying mechanisms that are common and disparate. As
preeclampsia only spontaneously occurs in humans and a few
higher apes, mouse models are well-accepted to model the
condition preclinically. While several mouse models with
preexisting comorbidities exist, not all are representative of the
human condition, thus choosing which models to adapt to study
preeclampsia is of importance.

Although autoimmune diseases (systemic lupus erythematosus,
antiphospholipid syndrome) are significant risk factors for
preeclampsia, no mouse models currently exist that investigate
preeclampsia with these preexisting conditions prior to pregnancy.
Autoimmune antibodies administered during a normal mouse
pregnancy, such as antiphospholipid or agonistic angiotensin type
1 receptor autoantibodies, can induce preeclampsia-like symptoms;
however, this does not model a preexisting condition. In addition, no
reported mouse models of a previously preeclamptic pregnancy or
preexisting chronic kidney disease, which are high risk factors, have
been studied in relation to the development of preeclampsia. While
gestational diabetes with subsequent onset of preeclampsia does occur
in some patients, gestational diabetes generally only occurs after the first
trimester of pregnancy and therefore is not a preexisting condition.
Perhaps most challenging, but nonetheless important, are the lack of
complex mouse models with multiple preexisting conditions often
observed in the human population that are at high risk of
developing preeclampsia; such as: obesity with diabetes, chronic
hypertension with obesity, or chronic hypertension with obesity and
diabetes.
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There is an urgent need to increase the development of mouse
models of preeclampsia with preexisting conditions that recapitulate
the human patient population. The use of advanced techniques in
combination with preexisting comorbidity models, such as
trophoblast-specific gene transfer of HIF-1α in mice on a high fat
Western diet or sFLT1 in non-obese diabetic mice, may more
accurately reflect preeclampsia superimposed on a comorbidity
(Kaufman et al., 2014; Albers et al., 2019; Vaughan et al., 2021).
Future studies will improve our understanding of how preexisting
conditions impact the development, timing, and severity of
preeclampsia and will provide a much-needed foundation for
subsequent preclinical and translational studies.
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