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Identification of biomarkers
co-associated with M1
macrophages, ferroptosis and
cuproptosis in alcoholic hepatitis
by bioinformatics and
experimental verification
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Xiaohuan Yuan2 and Qi Yuan2*

1Department of Life Science and Engineering, Jining University, Jining, China, 2College of Life
Science, Mudanjiang Medical University, Mudanjiang, China
Backgrounds: Alcoholic hepatitis (AH) is a major health problem worldwide.

There is increasing evidence that immune cells, iron metabolism and copper

metabolism play important roles in the development of AH. We aimed to explore

biomarkers that are co-associated with M1 macrophages, ferroptosis and

cuproptosis in AH patients.

Methods: GSE28619 and GSE103580 datasets were integrated, CIBERSORT

algorithm was used to analyze the infiltration of 22 types of immune cells and

GSVA algorithm was used to calculate ferroptosis and cuproptosis scores. Using

the “WGCNA” R package, we established a gene co-expression network and

analyzed the correlation between M1 macrophages, ferroptosis and cuproptosis

scores and module characteristic genes. Subsequently, candidate genes were

screened by WGCNA and differential expression gene analysis. The LASSO-SVM

analysis was used to identify biomarkers co-associated with M1 macrophages,

ferroptosis and cuproptosis. Finally, we validated these potential biomarkers

using GEO datasets (GSE155907, GSE142530 and GSE97234) and a mouse

model of AH.

Results: The infiltration level of M1 macrophages was significantly increased in

AH patients. Ferroptosis and cuproptosis scores were also increased in AH

patients. In addition, M1 macrophages, ferroptosis and cuproptosis were

positively correlated with each other. Combining bioinformatics analysis with a

mouse model of AH, we found that ALDOA, COL3A1, LUM, THBS2 and TIMP1

may be potential biomarkers co-associated with M1 macrophages, ferroptosis

and cuproptosis in AH patients.

Conclusion:We identified 5 potential biomarkers that are promising new targets

for the treatment and diagnosis of AH patients.
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Introduction

Alcohol-associated liver disease (ALD) is a serious public health

problem worldwide (1). Alcoholic hepatitis (AH) is one of the

phenotypes of ALD, which is mainly caused by a long history of

excessive alcohol consumption and a recent history of severe

alcohol abuse (2). AH presents a clinical syndrome characterized

by jaundice and liver injury. In the past 50 years, corticosteroids are

still the main therapeutic drugs, and no effective new drugs have

been successfully developed (3). Although corticosteroids increase

short-term survival in AH patients, approximately 40% of patients

do not respond to treatment (4, 5). In recent years, the rapid

development of high-throughput sequencing technology has

promoted the understanding of AH (6, 7). Therefore, it is

urgently needed to identify new biomarkers in AH patients by

bioinformatics analysis, which will facilitate the development of

new treatment strategies.

The liver plays a major regulatory role in alcohol metabolism

and immune monitoring. Hepatocytes exposed to alcohol cause

damage and death due to oxidative stress, which in turn produces a

variety of inflammatory factors to activate the inflammatory

response and immune cells (8). Macrophages are important cells

of innate immune system. The complex functional variability and

adaptability of macrophages to different infection situations are

based on their extensive phenotypic plasticity. naive macrophages

(M0) can be polarized into classically activated macrophages (M1

macrophages) and alternately activated macrophages (M2

macrophages), which perform proinflammatory or anti-

inflammatory functions, respectively (9). Previous studies have

shown that damaged hepatocytes activate the NF-kB signaling

pathway under alcohol metabolism, which releases a series of

chemokines and inflammatory mediators, ultimately promoting

macrophage M1 polarization (10, 11). In addition, Cho et al.

revealed that G-CSF improved liver function by promoting

macrophage M2 polarization in alcohol-fed mice (12).

Ferroptosis is a unique type of cell death regulation, which is

caused by iron accumulation, excessive production of reactive

oxygen species (ROS) and excessive lipid peroxidation (13).

Cuproptosis is a recently discovered type of cell death caused by

the direct binding of copper to the lipidized proteins of the

mitochondrial tricarboxylic acid cycle (TCA) (14). Alcohol

metabolism in hepatocytes affects mitochondrial function and

produces a large number of ROS, leading to elevated lipid

peroxidation. Thus, the progression of AH is closely related to

ferroptosis and cuproptosis. As recently reported, intestinal sirtuin1

(SIRT1) deficiency protects mice from alcohol-induced

inflammation by mitigating hepatic ferroptosis (15). Melatonin

inhibits ferroptosis by activating Nrf2-ARE signaling pathway,

thus alleviating alcohol-induced liver injury (16). Copper

metabolism in the liver is still being explored. Cuproptosis

regulates immune cell infiltration and is used to construct risk

assessment models for hepatocellular carcinoma (HCC) (17, 18).

However, the role of ferroptosis and cuproptosis in AH patients

needs to be further explored.

In this study, we downloaded and integrated transcriptome data

from AH patients. Potential biomarkers of AH patients were
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identified based on the M1 macrophages, ferroptosis and

cuproptosis scores, and these biomarkers were validated using

public datasets and a mouse model of AH. Finally, we identified 5

potential biomarkers: aldolase A (ALDOA), Collagen type III alpha

1 (COL3A1), lumican (LUM), thrombospondin-2 (THBS2) and

tissue inhibitor of metalloproteinase-1 (TIMP1). These potential

biomarkers could provide new targets for the diagnosis and

treatment of AH patients.
Materials and methods

Data set download and evaluation

Gene expression data were downloaded from the Gene

Expression Integrated Database (GEO)(http://www.ncbi.nlm.

nih.gov/geo/) with accession numbers GSE28619 (19), GSE103580

(20), GSE155907 (21), GSE142530 (7) and GSE97234 (22), the basic

information of our selected samples is shown in Supplementary Table

S1. The batch effect between GSE28619 and GSE103580 was

corrected using the “sva” R package (23). The intersected genes

between GSE28619 and GSE103580 were obtained via online Venn

Diagram analysis (jvenn, http://jvenn.toulouse.inra.fr/

app/index.html).
Analysis of immune cells

The CIBERSORT algorithm was used to calculate the

proportion of 22 types of immune cells with normalized gene

expression data (24). Correlations between immune cells were

evaluated using the “corrplot” R package. Based on the

characteristics of immune cells, principal component analysis

(PCA) was to cluster the normal liver samples and AH samples.

Specifically, the “stats” R package was used for PCA analysis. Firstly,

z-score was performed on the expression profile, and then prcomp

function was used for dimension reduction analysis to obtain the

matrix after dimension reduction.
Gene set variation analysis

The “GSVA” R package (25) was used to calculate the scores of

ferroptosis gene set and cuproptosis gene set. A total of 64

ferroptosis-related genes were obtained from MigDB

(Supplementary Table S2). The 16 cuproptosis-related genes were

collected from previous literature (26) (Supplementary Table S3).
Weighted gene co-expression
network analysis

WGCNA is an algorithm for constructing gene clustering

modules based on similar gene expression patterns. We used the

“WGCNA” R package (27) to construct a co-expression network of

genes from normal liver samples and AH samples. The concrete
frontiersin.org

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://jvenn.toulouse.inra.fr/app/index.html
http://jvenn.toulouse.inra.fr/app/index.html
https://doi.org/10.3389/fimmu.2023.1146693
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hou et al. 10.3389/fimmu.2023.1146693
steps are as follows: First, the optimal soft-thresholding power was

calculated and selected. Second, the adjacency matrix was

constructed based on the selected soft-thresholding power and

transformed into a topological overlap matrix. Third, hierarchical

clustering tree was established to cluster high-coexpression genes

into the same module. Finally, M1 macrophages, ferroptosis and

cuproptosis scores were used as characteristics to calculate the

correlation between module genes and traits. In this study, we

screened hub genes based on threshold weight > 0.2, and Cytoscape

software (version 3.9.1) was used to visualize the gene networks.
Functional enrichment analysis

To further clarify biological functions and signaling pathways of

candidate genes, we used the “clusterProfiler” R package (28) for

functional enrichment analysis, including gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The

result of functional enrichment analysis was visualized using the

“GOplot” R package (29).
Analysis of differentially expressed genes

We used the “limma” R package (30) to calculate differentially

expressed genes (DEGs) between normal liver samples and AH

samples. DEGs were obtained by threshold standard |log2(FC)| > 1,

p-value < 0.05. The volcano and heatmap plots were visualized via

the “ggplot2” and “pheatmap” R packages.
Machine learning

By intersecting DEGs and WGCNA hub genes, 27 candidate

genes associated with AH patients were identified. For these 27

candidate genes, two machine-learning techniques were used to

further screen potential genes in AH patients. The least absolute

shrinkage and selection operator (LASSO) is an algorithm used for

regularization to improve prediction accuracy and model

comprehensibility, and to select variables. We utilized the LASSO

algorithm to screen potential biomarkers in AH patients by

“glmnet” R package (31). Support vector machines (SVM) is a

powerful method whose goal is to establish a threshold between two

classes that allows label prediction based on single or multiple

feature vectors. We used SVM method to screen potential

biomarkers in AH patients by “kernlab” R package (32). The

intersection of the results between the two methods were

obtained via online Venn Diagram analysis (jvenn, http://

jvenn.toulouse.inra.fr/app/index.html). To further assess the

ability of biomarkers to distinguish AH samples from normal

liver samples, we performed receiver operating characteristic

(ROC) analysis using the “pROC” R package (33).
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A mouse model of AH

As previously mentioned, a mouse model of chronic alcohol

plus single binge drinking was established (34). The alcoholic diet

was purchased from TROPHIC (Nantong, China). Ten male mice

aged 6-8 weeks were fed a liquid control diet for 5 days, then mice

were randomly divided into two groups (ethanol-fed group and

pair-fed group, n = 5 per group). The ethanol-fed group was fed a

Lieber DeCarli liquid diet containing 5% ethanol for 10 days. Then

mice were given a single dose of 20% ethanol (5g/kg body weight)

by gavage. The pair-fed group was fed with ethanol-free, isocaloric

control liquid diet for 10 days. Then mice were given a single dose of

dextrin maltose (5g/kg body weight) by gavage. Euthanasia was

performed 9 hours after gavage. All animal experiments were

performed with the approval of the Experimental Animal Ethics

Committee of Mudanjiang Medical University.
Blood biochemical assays

Blood samples of mice were centrifuged at 1000×g for 10 min to

obtain serum. Serum alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) levels were detected by kits of Nanjing

Jiancheng Bioengineering Institute (Nanjing, China).
Content analysis of malondialdehyde
(MDA) and glutathione

Liver tissues were homogenized according to the instructions,

and MDA and GSH levels were detected by kits of Nanjing

Jiancheng Bioengineering Institute (Nanjing, China).
Histology and immunofluorescence

Paraffin or cryostat sections were prepared as described

previously (35). Paraffin sections were stained with hematoxylin

and eosin (H&E). For fluorescence double staining, cryostat

sections were incubated with anti-iNOS antibody (Santa Cruz

Biotechnology, Santa Cruz, CA, USA) and anti-F4/80 antibodies

(BioLegend, San Diego, CA, USA), followed by incubation with

Alexa Fluor 488- or 594-conjugated secondary antibodies (Jackson

ImmunoResearch, West Grove, PA, USA). Sections were evaluated

under a microscope (DP71, OLYMPUS) of both bright-field and

fluorescence microscopy (200 × magnification).
Real-time quantitative PCR

Total RNA was isolated from liver tissues using TRIzol reagent

(TransGen Biotech, Beijing, China), and cDNAs were synthesized
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using FastKing RT Kit (TIANGEN, Beijing, China). RT-qPCR

analysis was performed using SuperReal PreMix Plus (TIANGEN,

Beijing, China). The primer sequences were listed in Supplementary

Table S4. Data were analyzed using the 2-DDCT method and

normalized to b-actin (Actb) expression.
Western blot

Total protein from liver tissue was extracted using RIPA lysis

buffer (Solarbio, Beijing, China) containing protease inhibitor

cocktail (MedChemExpress, Princeton, NJ, USA). The samples

were incubated at 99°C for 5 min and separated at 115 V by SDS-

PAGE for 1 h. The proteins were transferred to PVDF membranes

and incubated at 200 mA for 1 h. The membrane was plugged with

5% milk powder for 1 hour and incubated overnight at 4°C with the

following primary antibody: anti-FDX1 (Absin, Shanghai, China),

anti-GPX4, anti-ACSL4, anti-SLC31A1 and anti-b-actin (Affinity,

Cincinnati, OH, USA). HRP-conjugated goat anti-rabbit IgG was

used as secondary antibodies. All bands were quantified with an

automated digitizing system (ImageJ).
Statistical analysis

All data were presented as mean ± SD and analyzed using

GraphPad Prism (version 8.3.0) and R (version 4.2.1). Significant

differences in animal experiments were determined by three

independent experiments. Differences of continuous variables

between two groups were compared using Student’s t-test

analysis. P<0.05 was considered statistically significant.
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Results

Overview of study design

The overall design scheme of our current study is shown in

Figure 1. First, we combined and normalized data of GSE28619 and

GSE103580. Secondly, CIBERSORT method was used to analyze

immune cells, GSVA algorithm was used to calculate scores of

ferroptosis and cuproptosis, and WGCNA was used to screen hub

genes related to M1 macrophages, ferroptosis and cuproptosis.

Third, we analyzed DEGs using the “limma” package and

intersected DEGs with hub genes. Fourth, we identified

biomarkers of AH based on LASSO-SVM algorithm. Finally, we

used GEO data (GSE155907, GSE142530 and GSE97234) and a

mouse model of AH to validate potential biomarkers.
Normalization of dataset

Both GSE28619 and GSE103580 datasets are chip data. The

GSE28619 dataset was based on the GPL570 platform (Affymetrix

Human Genome U133 Plus 2.0 Array) and included 7 normal liver

samples and 15 AH samples. The GSE103580 dataset was based on

the GPL13667 platform (Affymetrix Human Genome U219 Array)

from which 13 AH samples were selected. The two datasets were

merged and batch removed. The results before and after

normalization are shown in Supplementary Figure S1A. As shown

in the Venn Diagram (Supplementary Figure S1B), 22,878 and

19,469 probes were identified in GSE28619 and GSE103580,

respectively, and 16,510 intersected genes were selected from two

datasets for subsequent bioinformatics analysis.
FIGURE 1

Overall schematic diagram of the study design. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Analysis of immune infiltration in normal
liver and AH samples

CIBERSORT, the deconvolution algorithm reported by

Newman et al., characterizes cell composition in complex tissues

based on normalized gene expression profiles (24). Based on this

algorithm, we calculated the infiltration of 22 types of immune cells

in normal liver samples and AH samples. The bar chart shows the

abundance of different immune cell subsets in each sample

(Figure 2A). We further analyzed the correlation between 22

immune cell subsets. As shown in the correlation heatmap

(Figure 2B), activated mast cells showed the most significant

positive correlation with eosinophils (r = 0.75), while CD8 T cells

showed the most significant negative correlation with CD4 memory

resting T cells (r = -0.61). Next, we analyzed the difference in

immune cells between normal liver samples (control group) and

AH samples (AH group). Compared with control group, M0

macrophages, M1 macrophages and resting mast cells were

significantly increased in AH group, while plasma cells, helper

follicular T cells, gamma delta T cells, activated mast cells and

eosinophils were significantly decreased in AH group (Figure 2C).

PCA analysis of control group and AH group and performed based

on 22 types of immune cells. As shown in Figure 2D, AH group was
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completely separated from control group, suggesting that activation

of immune cells could be a significant feature of AH patients.
Co-expression modules of M1 macrophages,
ferroptosis and cuproptosis in AH patients

We found that M1 macrophages were the most differentiated

immune cells between control and AH groups (Figure 2C). At the

same time, the GSVA algorithm was used to calculate scores of

ferroptosis and cuproptosis. Compared with the control group,

ferroptosis scores of the AH group were significantly increased.

Although there was no statistical difference in GSVA scores of

cuproptosis, there was a increasing trend (Figure 3A). In addition,

correlation analysis showed that M1 macrophages, ferroptosis and

cuproptosis were positively correlated with each other (Figure 3B).

To further explore the role of genes co-associated with M1

macrophages, ferroptosis and cuproptosis in AH patients, we

used CIBERSORT’s M1 macrophage results, ferroptosis and

cuproptosis scores as characteristic data for WGCNA analysis.

The power value is set as b value when the correlation coefficient

between connectivity K and logarithm logarithm (P(k)) reaches
A B

DC

FIGURE 2

Immune infiltration in control group and AH group. (A) Bar charts of 22 types of immune cells in selected samples. Green name is normal liver
sample, red name is AH sample. (B) Correlation heatmap of 22 types of immune cells, blue is positive correlation, red is negative correlation, color
intensity represents the degree of correlation. (C) Boxplot of difference analysis of immune cells between control group (Con) and AH group (AH).
(D) Scatter plot of PCA results. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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0.83. A scale-free topological network (b = 6) was established

(Figure 4A). Based on selected soft-thresholding power, a

hierarchical clustering tree was established to cluster high-

coexpression genes into same module and color code them

(Figure 4B). Next, Spearman correlation analysis was used to

draw module-trait relationship heatmap for 13 transcription

modules identified and evaluate relationship between modules

(Figure 4C). We found that red module was closely correlated

with M1 macrophages, ferroptosis and cuproptosis, and was also

highly correlated with AH traits. Therefore, this module was

identified as hub module (Figures 4C, D). The module contains

834 genes, including 33 genes and 41 edges with threshold weight >

0.2 (Figure 4E). These genes are considered as hub genes.
Candidate genes co-associated with M1
macrophages, ferroptosis and cuproptosis
in AH patients

To further identify biomarkers associated with AH patients,

DEGs analysis was performed on gene expression data from control

and AH groups. There were a total of 877 DEGs, including 519 up-

regulated genes and 358 down-regulated genes (Figure 5A)

(Supplementary Table S5). The intersection of DEGs with hub

genes related to M1 macrophages, ferroptosis and cuproptosis was

performed to obtain 27 candidate genes (Figure 5B). The heatmap

shows expression of these candidate genes in each sample

(Figure 5C). Functional enrichment analysis was conducted for

the above 27 candidate genes. The top 10 significantly enriched GO

terms and KEGG pathways are shown separately in Figures 5D, E

(see Supplementary Table S6 for details). AGE-RAGE and PI3K-

AKT signaling pathway are associated with inflammation and

oxidative stress. This suggests that M1 macrophages, ferroptosis

and cuproptosis may be related to each other through the above

signaling pathways. In addition, the results of functional

enrichment analysis showed that the common high expression of

M1 macrophages, ferroptosis and cuproptosis may activate

extracellular matrix (ECM)-related signaling pathways.
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Identification of biomarkers co-associated
with M1 macrophages, ferroptosis and
cuproptosis via machine learning

For the above 27 candidate genes, SVM and LASSO regression

algorithms were used to screen potential biomarkers co-associated

with M1 macrophages, ferroptosis and cuproptosis. According to

the results of ten fold cross-validation in SVM algorithm, 22 feature

genes were identified (Figure 6A, Table 1). The coefficients of

LASSO versus log (l) are shown in Figure 6B that 5 feature genes

were obtained (Table 1 and Supplementary Table S7). Finally, 5

genes selected by two machine learning algorithms were

overlapped, including ALDOA, COL3A1, LUM, THBS2 and

TIMP1 (Figure 6C). To assess predictive accuracy of these

biomarkers, ROC curves of 5 genes were analyzed (Figure 6D).

The AUC values indicated that 5 biomarkers co-associated with M1

macrophages, ferroptosis and cuproptosis had excellent diagnostic

values. Next, we analyzed the correlation between 5 potential

biomarkers and M1 macrophage, ferroptosis and cuproptosis. The

analysis results showed that 5 potential biomarkers were positively

correlated with M1 macrophage, ferroptosis and cuproptosis

(Figures 7A–C), and 5 potential biomarkers were also positively

correlated with each other (Supplementary Figure S2). In addition,

we validated 5 potential biomarkers using GSE155907 and

GSE142530 datasets. In two validation datasets, consistent with

training dataset, all 5 genes in AH group were up-regulated, with

statistical significance (Figures 7D, E). Combined with the above

results, 5 genes co-associated with M1 macrophages, ferroptosis and

cuproptosis can be used as potential biomarkers in AH patients.
Potential biomarkers were validated in a
mouse model of AH

To verify 5 potential biomarkers, we first analyzed mouse

dataset (GSE97234) and found that the expression levels of 5

genes were significantly up-regulated in AH group (Figure 8A).

Based on the above analysis, we conducted experimental
A B

FIGURE 3

M1 macrophages, ferroptosis and cuproptosis were positively correlated with each other. (A) Boxplot of difference analysis of ferroptosis and
cuproptosis GSVA scores between control group (Con) and AH group (AH). (B) Correlation analysis of M1 macrophage, ferroptosis and cuproptosis.
*p < 0.05.
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verification in mice. We established a chronic plus single binge

alcohol model, which has been widely used to study the

pathogenesis of AH (Figure 8B). Compared with pair-fed mice,

ethanol-fed mice had a significant decrease in body weight

(Figure 8C) and a significant increase in liver weight/body weight

ratio (mean, 0.056 vs. 0.048, P = 0.028) (Figure 8D). ALT and AST,

important indicators of liver injury, were significantly elevated in

ethanol-fed mice than in pair-fed mice (ALT, mean, 112.7 vs. 69.1,

P = 0.001) (AST, mean, 464.0 vs. 269.7, P = 0.0003) (Figures 8E, F).

H&E staining showed that ethanol feeding resulted in necrosis of

hepatocytes and morphological changes of liver tissues, suggesting

more severe liver injury in ethanol-fed mice than in pair-fed

mice (Figure 8G).

Macrophages play a crucial role in regulating liver homeostasis

and hepatic injury. By double immunofluorescence staining of liver
Frontiers in Immunology 07
tissues with F4/80 (a marker of macrophage) and iNOS (a marker of

M1 macrophage), we found that M1 macrophages (F4/80 and iNOS

double positive cells) were almost not expressed in pair-fed mice,

while the expression of M1 macrophage marker protein was

increased in ethanol-fed mice, suggesting the infiltration of more

M1 macrophages (Figure 8H). Lipid peroxide and GSH are crucial

markers of ferroptosis. MDA is considered to be the end product of

the lipid peroxidation process. The MDA and GSH levels of liver

tissues were detected by kits. Compared with pair-fed mice, MDA

levels (mean, 2.26 vs. 1.17, P = 0.021) were significantly increased

and GSH levels (mean, 2.24 vs. 5.41, P = 0.014) were significantly

decreased in ethanol-fed mice (Figures 9A, B). In addition, the well-

identified markers of ferroptosis, GPX4 and ACSL4, were detected

in liver tissues by western blot. As shown in Figure 9C, the protein

expression levels of GPX4 (mean, 0.40 vs. 0.85, P = 0.048) were
A B

D

E

C

FIGURE 4

Hub gene screening based on WGCNA. (A) Scale-free fitting index analysis of soft-thresholding powers. (B) Cluster dendrogram. (C) Module-trait
correlation heatmap, red is positive correlation, blue is negative correlation. (D) Scatter plot of red module. Horizontal axis (MM) represented the
correlation between genes and modules, and vertical axis (GS) represented the absolute value of correlation between genes and phenotypic
characteristics. (E) The network of hub genes.
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significantly down-regulated and the protein expression levels of

ACSL4 (mean, 2.29 vs. 0.50, P = 0.004) were significantly up-

regulated in ethanol-fed mice compared with pair-fed mice. Known

biomarkers of cuproptosis, including FDX1 and SLC31A1 were

determined. We also detected the expression levels of FDX1 and

SLC31A1 in liver tissues by western blot. the protein expression

levels of FDX1 (mean, 0.45 vs. 1.25, P = 0.031) were significantly

down-regulated and the protein expression levels of SLC31A1
Frontiers in Immunology 08
(mean, 2.68 vs. 0.75, P = 0.022) were significantly up-regulated in

ethanol-fed mice compared with pair-fed mice (Figure 9D).

Combined with the above results, alcohol consumption

significantly promoted the infiltration of M1 macrophages, the

expression of ferroptosis and cuproptosis.

The expression levels of Aldoa, Col3a1, Lum, Thbs2 and Timp1

mRNA were detected by RT-qPCR. As shown in Figure 9E,

compared with pair-fed mice, the expression levels of Aldoa
A

B

D

E

C

FIGURE 5

Identification of biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis. (A) Volcano plot of DEGs between control and AH
groups. (B) Venn diagram of intersection genes between DEGs and hub genes. (C) The heatmap of 27 candidate genes. (D) GO enrichment analysis.
(E) KEGG enrichment analysis.
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(mean, 2.12 vs. 1.00, P = 0.027), Col3a1 (mean, 1.92 vs. 1.00, P =

0.007), Lum (mean, 2.92 vs. 1.00, P = 0.005), Thbs2 (mean, 3.79 vs.

1.00, P = 0.002) and Timp1 (mean, 2.62 vs. 1.00, P = 0.021) in liver

tissues of ethanol-fed mice were significantly increased. These

experimental results further support that 5 genes as potential

biomarkers for AH patients.
Discussion

In this study, biomarkers co-associated with M1 macrophages,

ferroptosis and cuproptosis were identified in AH patients. The

CIBERSORT algorithm was used to calculate infiltration of 22 types

of immune cells. Ferroptosis and cuproptosis scores were calculated

using GSVA algorithm. By WGCNA and LASSO-SVM analysis, we

found that ALDOA, COL3A1, LUM, THBS2 and TIMP1 were

potential biomarkers in AH patients. These biomarkers were

validated in GEO datasets and a mouse model of AH.

Excessive alcohol consumption directly damages hepatocytes,

which in turn induces immune cell infiltration and secretion of
Frontiers in Immunology 09
inflammatory factors, ultimately leading to overactivation of

inflammatory cascade (36, 37). For example, neutrophil

infiltration and high expression of pro-inflammatory factors

(TNF-a and IL-1b) promote the progression of alcohol-related

inflammatory response (38). In addition, chronic alcohol

consumption leads to upregulation of M1 macrophage-related

markers (39). In this study, we used the CIBERSORT algorithm

to assess the difference in immune cells between normal liver and

AH samples. We found that M1 macrophages were significantly

increased in AH patients. These findings provide new insights

into immune cell infiltration in AH patients based on

transcriptomic analysis.

Clinical calculators such as the Model of End-stage Liver

Disease (MELD) score can predict patient mortality and guide

clinical treatment strategies (40). However, MELD score is not

specifically designed to predict AH. Clinically, biomarkers for AH

prediction have not been identified. Therefore, the discovery of new

biomarkers for AH prediction is an urgent area of research. In

recent years, with the development of high-throughput sequencing

technology, the identification of disease-related biomarkers based
A B

DC

FIGURE 6

Machine learning identifies potential biomarkers. (A, B) Biomarkers were analyzed using LASSO regression and SVM algorithm. (C) Venn diagram of
overlapping biomarkers between LASSO regression and SVM algorithm. (D) ROC curve of 5 potential biomarkers.
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on transcriptomic analysis has been widely studied. In previous

studies, a prognostic model of hepatocellular carcinoma was

established using WGCNA analysis of macrophage-related genes

(41). The prognostic model based on ferroptosis and epithelial-
Frontiers in Immunology 10
mesenchymal transition state helps predict overall survival of

hepatocellular carcinoma (42). Cuproptosis-related subtypes

predict tumor microenvironments and drug candidates in

hepatocellular carcinoma (43). However, biomarkers for AH
A

B

D E

C

FIGURE 7

5 potential biomarkers were positively correlated with M1 macrophage, ferroptosis and cuproptosis. (A–C) Correlation analysis of 5 potential
biomarkers with M1 macrophage, ferroptosis and cuproptosis. (D) Expression levels of 5 potential biomarkers in GSE155907 dataset. (E) Expression
levels of 5 potential biomarkers in GSE142530 dataset. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
TABLE 1 Feature genes obtained by machine learning.

Machine
learning Feature genes

SVM
CCDC80, COL5A1, ITGAV, CDH11, VCAN, THBS2, COL4A2, COL4A1, SEL1L3, PMP22, C1orf198, FBN1, PALLD, COL1A2, COL3A1, EFEMP1,
TIMP1, ALDOA, LUM, ADAMTS2, COL6A3, COL1A1

LASSO ALDOA, COL3A1, LUM, THBS2, TIMP1
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prediction still need further analysis. In this study, we used

WGCAN and LASSO-SVM analysis to identify 5 AH biomarkers

co-associated with M1 macrophages, ferroptosis and cuproptosis in

AH patients.

ALDOA is a key metabolic enzyme in glycolysis pathway. High

expression of ALDOA is associated with poor prognosis in

hepatocellular carcinoma (44). COL3A1 is a fibrous collagen

found in connective tissue. Previous studies have shown that

COL3A1 is involved in the progression of liver fibrosis (45). The

levels of type III collagen formation and degradation were

significantly increased in ALD patients compared to healthy
Frontiers in Immunology 11
individuals (46). In addition, LUM has been identified as a

biomarker for advanced fibrosis in non-alcoholic fatty liver

disease (47). THBS2 is a novel biomarker for predicting the

prognosis of metastatic pancreatic ductal adenocarcinoma (48).

Manzardo et al. analyzed miRNA expression in alcoholics to

further characterize the genetic influence of alcoholism and the

influence of alcohol consumption on predicted target mRNA

expression, which involved THBS2 (49). In mice treated with

ethanol and CCl4, down-regulation of TIMP1 effectively inhibited

hepatic fibrosis and activation of hepatic stellate cell (50). Clinical

studies have found that alcohol consumption in adolescents leads to
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FIGURE 8

Alcohol exposure promotes infiltration of M1 macrophages. (A) Expression levels of 5 potential biomarkers in GSE97234 dataset. (B–H) Groups of
C57BL/6 mice (n = 5 per group) were fed ethanol liquid diet or ethanol free control liquid diet. (B) Schematic diagram of a chronic binge eating
model. (C) Changes in body weight. (D) Liver weight/body weight change ratio. (E, F) Serum ALT and AST levels. (G) Representative H&E staining of
liver tissues. Scale bar, 50 mm. (H) Double immunofluorescence staining of F4/80 and iNOS in liver tissues. Nuclei were stained with DAPI. Scale bar,
50 mm. *P < 0.05, **P < 0.01.
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elevated serum TIMP1 concentrations (51). We first reported that

ALDOA, COL3A1, LUM, THBS2 and TIMP1 were highly

expressed in AH and associated with M1 macrophages,

ferroptosis and cuproptosis. Further studies with larger clinical

cohorts and basic studies are needed to confirm these biomarkers.
Conclusion

In summary, we used CIBERSORT algorithm to analyze 22

types of immune cells, and M1 macrophages were the most

significantly increased immune cells in AH patients. By

combining bioinformatics analysis with a mouse model of AH,

we identified 5 potential biomarkers co-associated with M1

macrophages, ferroptosis and cuproptosis. Further study of these
Frontiers in Immunology 12
biomarkers can provide new ideas and basis for understanding the

disease progression and targeted therapy of AH patients.
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FIGURE 9
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