
Optimal energy portfolio method
for regulable hydropower plants
under the spot market

Guanpeng Lu, Ping Yang*, Zhuangzhuang Li, Yi Yang and
Yufeng Tang

Electric Power College of South China University of Technology, Guangzhou, China

The energy allocation method for regulable hydropower plants under the spot
market significantly impacts their income. The available studies generally draw on
the Conditional Value-at-Risk (CVaR) approach, which typically assumes a fixed
risk aversion coefficient for generators. This assumption is based on the
assumption that the total energy the power plant can allocate is constant
during the decision period. However, the amount of energy that the regulable
hydropower plant can generate will be affected by inflow and water level during
the decision period, and the assumption of the fixed risk aversion coefficient is
only partially consistent with the actual decision behavior of the hydropower plant.
In this regard, the time-varying relative risk aversion (TVRRA) based method is
proposed for the energy allocation of regulable hydropower plants. That method
takes the change value of the hydropower plant’s energy generation as the basis
for adjusting the time-varying relative risk aversion coefficient to make the energy
allocation results more consistent with the actual decision-making needs of the
hydropower plant. A two-layer optimal method is proposed to obtain the income-
maximizing energy portfolio based on regulable hydropower plants’ time-varying
relative risk aversion coefficient. The inner pointmethod solves the optimal energy
portfolio of income and risk in the upper layer. The time-varying relative risk
aversion coefficient in the lower layer accurately describes the dynamic risk
preference of hydropower plants for each period. The results and comparison
show that the proposed method increases the income of the energy portfolio by
31%, and water disposal of regulated hydropower plants is reduced by 2%. The
energy portfolio optimization method for regulable hydropower plants proposed
in this paper not only improves the economic income of hydropower plants but
also improves the utilization rate of hydro energy resources and enhances the
market competitiveness of regulable hydropower plants.
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1 Introduction

1.1 Motivation

Currently, China’s power market is mainly based on forward contract trading, and the
construction of the spot market is gradually promoted. Regulable hydropower plants must
allocate their energy in the forward contract and spot market to construct the energy portfolio
for obtaining income. How to optimize the energy allocation of regulable hydropower plants to
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build the optimal power portfolio is becoming one of the research
hotspots in the field of hydropower power trading research (Rotting
and Gjelsvik, 1992; Maceira et al., 2002; Pereira-Bonvallet et al., 2016;
Fernandes et al., 2018). Studying optimal energy portfolio methods of
regulable hydropower plants under the spot market environment
helps provide decision support for regulable hydropower plants to
participate in market competition. It has important theoretical and
engineering practical value for promoting high-quality hydropower
development.

1.2 Related works and research gaps

Under the spot market environment, regulable hydropower
plants need to make energy allocation decisions considering the
risk of energy income due to the uncertainty of inflow and spot price
and optimally allocate energy in the forward contract market and
spot market to maximize the combined revenue-risk utility of the
energy portfolio. For the problem of how to reasonably optimize the
energy portfolio of regulable hydropower plants, Stochastic
Programming (Bookstaber and McDonald, 1987; Moiseeva and
Hesamzadeh, 2018; Camal et al., 2019; Lu et al., 2020), Robust
Optimization (Soroudi, 2013), Minimum Variance (MV) (Liu and
Wu, 2007a), Value-at-Risk (VaR) (Liu and Wu, 2007b; Safdarian
et al., 2013) and Conditional Value-at-Risk (CVaR) (Carrión et al.,
2007; Catalão et al., 2011) methods have been applied. Stochastic
Programming requires a good estimation of the probability
distribution of the uncertain parameters. Robust Optimization
also requires a good definition of the uncertainty set. The MV
approach and the VaR approach assume that returns are normally
distributed. However, the electricity market’s income has significant
skewness and fat-tail characteristics (Gong et al., 2009), which can
lead to a lower risk value than the actual one obtained by using the
above approach. CVaR has the advantage of not needing to solve the
analytical formula of the joint distribution of multivariate risk
variables, which is difficult to obtain in general, and can correctly
distinguish the upward and downward deviations of energy
portfolio income to avoid overly conservative optimization
results, and can accurately reflect the tail loss risk of the energy
portfolio, compared with other methods, and has been widely used
in energy portfolio optimization studies.

Researchers have carried out a lot of research on CVaR-based
energy portfolio optimization. The literature (Carrión et al., 2007)
proposed an income risk measurement model for the energy portfolio
of distribution enterprises based on the CVaR method considering
spot price and load fluctuations. The literature (Catalão et al., 2011)
constructed a risk optimization model for energy purchases by large
energy consumers based on stochastic programming and CVaR
methods. The risk aversion coefficient in CVaR reflects the risk
aversion of energy producers, who will select the energy portfolio
with the highest combined benefit-risk utility when making energy
allocation decisions. Therefore, the value of the risk aversion
coefficient has a significant impact on the income of the generator.
The risk aversion coefficient in CVaR is assumed to be fixed (Fix Risk
Aversion, FRA) in the above literature because the calculation of the
risk aversion coefficient is based on the assumption that the total
energy of the power plant is constant during the decision period.
However, for regulable hydropower plants, the total energy over the

decision period is affected by inflow and reservoir regulation capacity,
and assuming a fixed risk aversion coefficient may lead to overly
conservative or aggressive results in the optimization solution.

Some empirical tests and experimental results in recent years
have shown that risk aversion is a time-varying, state-dependent
variable more in line with the facts (Steffensen, 2011; Björk et al.,
2014; Hentschel, 2015; Cui et al., 2016; Díaz and Esparcia, 2021), and
some scholars have proposed the concept of Time-Varying Relative
Risk Aversion (TVRRA) coefficient and applied it to the study of
portfolio optimization, and achieved some results. The literature
(Atmaca, 2022) proposes a portfolio optimization model that applies
the time-varying risk aversion coefficient, which can follow the
market trend to adjust the risk preferences of market participants,
and verifies that the model has more stable profitability performance
and risk aversion compared to the model with fixed risk preferences.
In (Garcia et al., 2017), an energy portfolio optimization method
based on the Sharpe and Treynor ratios of the electricity market that
dynamically adjusts the risk aversion coefficient is proposed and
validated using data from the Turkish day-ahead market, and the
results show that the optimized energy portfolio has a better
performance level. The above study shows that the portfolio
optimized based on TVRRA has better return performance
compared to fixed risk aversion coefficients while also achieving
more flexible risk management effects. However, the introduction of
a time-varying relative risk aversion coefficient in the optimal energy
portfolio problem of regulable hydropower plants has not been
studied yet, and further research and verification are needed on how
to construct the TVRRA-based optimal energy portfolio method for
regulable hydropower plants, the analysis of the effect of this optimal
energy portfolio method and the influence of the regulable capacity
of hydropower plants on the optimization effect.

1.3 Contributions

This study first analyzes the energy allocation framework for
regulable hydropower plants under the spot market. Then we
propose an energy portfolio method by introducing a time-
varying relative risk aversion coefficient. We establish a two-layer
solution method in the optimization stage to obtain the optimal
energy portfolio. Compared with the fixed risk aversion coefficient,
this method can improve the performance of the energy portfolio
under a scenario with a high inflow fluctuation range. In summary,
the main contributions of this paper include:

(1) An energy portfolio method by introducing a time-varying
relative risk aversion coefficient is established is proposed.
The method uses the change value of the hydropower plant’s
energy generation adjusting the time-varying relative risk
aversion coefficient to improve the energy portfolio’s income.

(2) A two-layer solution method that uses the interior point method
to solve the optimal power portfolio in the upper layer and the
DDDP method to solve the optimal risk aversion coefficient in
the lower layer.

The optimal energy portfolio models with TVRRA and FRA are
modeled through the GAMS platform. And then, we compare their
performance in the energy portfolio’s income, the average water
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level per unit of energy generation, and the water level during the
peak electricity demand period.

The paper is organized as follows. In Section 2, we introduce the
energy allocation model for regulable hydropower plants. Include
the objective function and constraints for energy portfolio
optimization and gives the solution method. Section 3 provides
the simulation results and analysis. Section 4 concludes the paper.

2 Optimal energy portfolio method
based on time-varying relative risk
aversion coefficient

Based on themarket rules inmost regions of China at this stage, the
regulated hydropower plants participate in twomain markets of energy
trades: the forward market and the spot market. Assuming that the
regulablehydropowerplantsparticipateinthespotmarketaspricetakers,
the energy allocation decision behavior of regulable hydropower plants
does not affect the spot price. Under the spot market environment, the
regulable hydropower plant first gets the monthly planned energy
generation for each month of the year according to the medium and
long-term operation plan and then allocates the energy in the forward
contractmarket and the spotmarket reasonablyaccording to the forecast
results of spot price, inflow, reservoir operation, and its own risk
preference, in order to obtain more income. The energy allocation
framework of regulable hydropower plants is shown in Figure 1.

2.1 Objective function

The optimal energy allocation method based on a time-varying
relative risk aversion coefficient can be described by a two-layer
optimization framework, in which the upper optimization layer
determines the energy portfolio of regulable hydropower plants,
and the lower optimization layer determines the risk aversion
coefficient under different spot prices, inflow, and reservoir
operation conditions, whose framework diagram is shown in
Figure 2.

2.1.1 Upper layer objective function
The upper layer objective function for the optimal allocation of

regulable hydropower plants’ energy is to maximize the combined
benefit-risk utility of the energy portfolio, as shown in Eq. 1 (Ma
et al., 2018).

maxOh Qd, λd( ) � E Qd( ) −∑D
d�1

λdFβ Qd, αd( ) (1)

Where: Qd is the energy portfolio of the hydropower plant on
operating day d, d � 1, 2, 3, ., D, and D � 30; E(Qd) is the income
function (Wang et al., 2005) of the energy portfolio, as shown in Eq.
2; Fβ(Qd, αd) is the CVaR-based risk function (Li et al., 2022) of the
energy portfolio, as shown in Eqs 10–11; λd is the risk aversion
coefficient, calculated as in Eq. 5.

FIGURE 1
Regulable hydropower plants’ framework.
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2.1.1.1 The income function

E qc,d, qs,d, qc,s,d( ) � ∑D
d�1

qc,s,d · Pc +∑D
d�1

qs,d · Ps,d

− Pm qc,d −∑D
d�1

qc,s,d⎛⎝ ⎞⎠ (2)

Where Pc is the forward contract price, and Ps,d is the spot
market price on an operating day d. Pm is the settlement price of the
forward contract deviation settlement fee; ∑D

d�1qc,s,d is the actual
monthly settlement of the hydropower plant’s forward contract
energy.

2.1.1.2 The risk function

Fβ Qd, αd( ) � αd + 1
1 − β

.∫
Ld ≤ αd

Ld − αd[ ]+p Rd( )d Rd( ) (3)
Ld − αd[ ]+ � max 0, Ld − αd{ } (4)

Where αd is the income loss value of the energy portfolio for
Fβ(Qd, αd) at a given confidence level β, and Ld � f(Qd, Rd) is the
energy income loss. Rd is the loss of energy portfolio income vector,
which consists of the loss of income of each trading variety in the
energy portfolio. p(Rd) is the joint probability density function
of Rd.

2.1.1.3 Risk aversion coefficient

λd � − Qd ±Δqd( )Oh″ Qd, λd( )
Oh′ Qd, λd( ) (5)

Where Δqd is the change value of the hydropower plant’s energy
generation calculated as in Eq. 13. Oh′(Qd, λd) and Oh″(Qd, λd) are
the first-order and second-order derivatives of the utility function,
respectively. And their economic meaning is the marginal utility and
risk preference of the utility function.

Δqd � η · ΔFu,d ·Hd (6)
Where η for the regulation of hydroelectric power station water-

electrical energy conversion coefficient; ΔFu,d for the production of
spot energy causes inflow change value; Hd for the operation of the
day d water head (m), calculated in the way as Eq. 7.

Hd � Ad−1 + Ad

2
− Ae

d −Hc
d (7)

Ad−1, Ae
d, is the operating water level and tailwater level of the

regulable hydropower plant in operation day d (m), and D is the
head change value of operation day d (m).

2.1.2 Lower layer objective function
The lower layer objective function for the optimal allocation of

regulable hydropower plants’ energy is to maximize the income
from the daily energy generation change, as in Eq. 8.

max∑D
d�1

Δqd · Ps,d (8)

2.2 Constraints

2.2.1 Upper layer constraints
The upper layer constraints include hydropower plant operating

constraints (Yu et al., 2008) and energy market trading constraints
(Li et al., 2022).

FIGURE 2
Double-layer optimization framework.
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2.2.1.1 Hydropower plant operating constraints
2.2.1.1.1 Regulable reservoir capacity constraint.

Vd
min ≤Vd ≤Vd

max (9)
Where: Vd

min and Vd
max are the lower and upper limits of the

reservoir capacity of the hydropower plant in the operating day d
respectively.

2.2.1.1.2 Water balance constraint.

Vd+1 � Vd + FIn
d − Fe

d + Fs
d( )[ ] (10)

Where: FIn
d , Fe

d and Fs
d are hydropower station inflow,

power generation flow, and water abandoning in the
operating day d.

2.2.1.1.3 Hydropower plant outflow constraint.

Fd
min ≤Fd ≤Fd

max (11)
Where Fd

min and Fd
max are the lower and upper outflow limits

of the hydropower plant in the operating day d.

2.2.1.1.4 Hydropower plant generation constraint.

Pd
min ≤Pd ≤Pd

max (12)
Where Pd

min and Pd
max are the lower and upper generation

limits of the hydropower plant in the operating day d.

2.2.1.2 Energy market trading constraints

s.t.

∑n
i�1
qi,d � Qd

0≤ qi,d ≤ qi,d max

Ed ≥ e
xd ≥ 0
xd ≥Ld − αd

∑D
d�1

Qd ≤Qm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

Where: e is the minimum income expectation of the hydropower
plant’s energy portfolio. qi,d max is the upper limit of the energy
allocated to the market i in the operating day d. Qm is the total
monthly energy generation of the hydropower plant.

2.2.2 Lower layer constraints
The lower layer constraints include hydropower plant

operation and power market trading constraints. And only
different constraints are shown to avoid duplication with the
upper layer.

2.2.2.1 The hydropower plant operation constraints
2.2.2.1.1 Flow balance constraints.

ΔFd � ΔFst
d + ΔFus

d (14)
Where: ΔFd is the inflow change value, ΔFs,d is the inflow stored

in the reservoir, and ΔFu,d is the inflow rate used for energy
generation.

2.2.2.1.2 Inflow and outflow constraints.

FIn
d ′ � FIn

d + ΔFd (15)
Fd

Out′ � FOut
d + ΔFus

d (16)
Where: FIn

d ′ and Fd
Out′ are the inflow and outflow after

considering the runoff change on day. FOut
d is the outflow in Eq.

10, FOut
d � Fe

d + Fs
d.

2.2.2.2 The energy market trading constraints

qi,d′ � qi,d + Δqd (17)
Where: qi,d′ is the daily energy generation capacity considering

the change of energy.

2.3 Solving method

The widely used two-layer optimization method is to derive the
KKT (Karushe-Kuhne-Tucker) condition for the lower
optimization and convert the lower one into the upper
optimization constraint for solving. The optimization problem
of the risk aversion coefficient of hydropower plants is non-linear
programming, and its KKT conditions are difficult to obtain.
Therefore, this paper uses the upper and lower optimization
iterative methods to solve it. The initial solution of the
objective function is first solved by using a fixed risk aversion
coefficient in the upper optimization layer. Then the energy
portfolio and reservoir operation state are used as the initial
values in the lower optimization layer. The approximate
solution of the risk aversion coefficient obtained in the lower
optimization layer is sent back to the upper optimization layer
to obtain new optimization results. The difference between the
latest two results is compared, and the cycle is stopped when the
difference meets the set accuracy requirements.

The integration of the joint probability density function p(Rd)
in the upper layer optimization objective function is often difficult to
find. In this paper, the cumulative distribution function is simulated
and estimated based on the sample value R1

d, R
2
d, , R

J
d for J times

sampling of Rd. The estimation of the cumulative distribution
function of Ld can be expressed as L1d, L

2
d, , L

J
d. The simulated

estimator of Eq. 3 is (Li et al., 2022):

Fβ Qd, αd( ) � αd + 1
J · 1 − β( ).∑

J

j�1
Lj
d − αd[ ]+ (18)

To simplify the solution process, introducing the dummy
variables xj

d � [Ljd − αd]+, j � 1, 2, 3., J, and Fβ(Qd, αd) can be
converted into a linear function and linear constraint (Li et al.,
2022).

Fβ Qd, αd( ) � αd + 1
J · 1 − β( )∑

J

j�1
xj
d (19)

xj
d ≥L

j
d − αd (20)

The constraint of Eq. 13 is rewritten as:
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s.t.

∑n
i�1
qi,d � Qd

0≤ qi,d ≤ qi,d max

Ed ≥ e
xj
d ≥ 0

xj
d ≥L

j
d − αd

∑D
d�1

Qd ≤Qm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

The transformed objective function and constraints constitute
the Linear Programming (LP) problem, which is solved in this paper
using the Interior Point Method (IPM) (Wei et al., 1998; Wächter
and Biegler, 2005; Nguyen et al., 2020), which is widely used in
solving LP.

The lower layer optimization problem of the risk aversion
coefficient is characterized by high dimensional order, multi-
stage, non-linearity, and multiple constraints. To solve this type
of optimization problem, researchers have proposed improved
stochastic fractal search algorithm (ISFSA) (Phan et al., 2021),
Coyote Optimization Algorithm (COA) (Heidari et al., 1971) and
Discrete Differential Dynamic Planning (DDDP) (Bookstaber and
McDonald, 1987; Diniz et al., 2020), etc. Among them, DDDP has
the advantage of finding the optimal solution only in the locally
feasible domain of state variables, which can effectively reduce the
computational storage and computing time compared with other
algorithms. This paper uses DDDP to solve the lower optimization
problem. The flow chart of the solution is shown in Figure 3.

The solution steps are as follows.

(1) First, input the prediction results of inflow and spot price, then
set the initial parameters of hydropower plant operation. Use
the fixed risk coefficient to calculate the initial solutions of the
energy portfolio and reservoir operation state sequence.

(2) Use the initial solutions of the energy portfolio and reservoir
operation state as the initial values of the risk aversion
coefficient optimization, calculate the energy change values
and the new reservoir operation state, and output the
approximate risk aversion coefficient.

(3) Use the approximate risk aversion coefficient as the parameter
of the upper layer optimization objective function to solve the
new energy portfolio and reservoir operation state sequence.

If the difference between them is less than the required accuracy
ε, the final energy portfolio is output as the optimal solution;
otherwise, repeat steps (2)–(3) until the difference between the
utility function values meets the requirements.

3 Simulation example

3.1 Data and parameters setting

A regulable hydropower plant in the upper reaches of the Jinsha
River, which has a strong regulating capacity and is close to a

FIGURE 3
Solution process flow chart.
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provincial load center, is used as the study object, and its energy
generation does not affect the price of the spot market in the
province. The confidence level β of this hydropower station on
the energy portfolio income is 0.95, and a minimum expected
income rate of 0.24. And it has an average monthly energy
capacity of 4,100 MWh and an average energy production cost of
$0.25/kWh. The main parameters are shown in Table 1.

The CVaR calculation generally adopts the historical simulation
method, which has the advantages of no need to estimate the
distribution of trading varieties’ returns and no assumptions
about model and parameter estimation risks. However, it requires
at least 1,500 data for each trading market. China’s electricity spot
market is still in the construction stage, and the trading rules are still
being adjusted according to the trial run. So the data before the
adjustment of trading rules cannot objectively reflect the latest
market returns, and the data only after the rules adjustment is
used less in quantity. The bootstrapping method can get the data of
new data of good nature by repeated re-sampling in the case of small
samples [34], which is a suitable data augmentation method for
electricity spot markets with non-normal return distributions. To
improve the accuracy of the optimization method, we first use the
Bootstrapping method to augment the historical data:

• Forward contract prices (FCP).
• Spot prices (SP).
• Inflow.

Subsequently, the four essential statistical parameters of the
augmented data, namely, the mean, variance, skewness, and
kurtosis, were compared with those of the original historical data
to establish the validity of the augmented data. The outcomes of the
analysis are presented in Table 2.

The analysis of the matching of hydropower spot energy and the
spot price is shown in Figure 4. The matching of hydropower plants
in the spot market energy and the spot price is low, and hydropower
plants need to improve the revenue of spot market power by follows:

(1) Optimizing the energy allocated in the spot market on each
operating day.

(2) Allocating spot energy to the high price days in the spot market
as much as possible.

3.2 Analysis of results

3.2.1 Analysis of optimization results
The results of the monthly energy portfolio optimization for the

regulable hydropower plants are shown in Figure 5 and Table 3.
The analysis of Figure 5 and Table 3 proves the effectiveness of

the energy portfolio optimization method proposed in this paper.

(1) Forward contracts account for a large proportion of the monthly
energy portfolio of regulable hydropower plants. Hydropower
plants effectively lock in their income through forward
contracts, reducing the overall risk of the energy portfolio,
and the optimization results are in line with the actual
situation of hydropower plant operation.

(2) As the set confidence level decreases, both the income and the
risk value of the energy portfolio obtained from the
optimization calculation increase simultaneously. That
reflects the adjustable hydropower plant operators can obtain
more income while being willing to take more risks, and the
calculation results are consistent with the hydropower plant
operators in the real market decision-making situation.

Figure 6 shows the variation in the inflow forecast data and the
water level of the hydropower plant during the optimization process.
Figure 7 shows the changes in the risk aversion coefficient of the
hydropower plant for the energy portfolio in the optimization
process. In the initial stage, the water level of the hydropower
plant is high, the inflow is small, and the hydropower plant
arranges the energy in an orderly manner to gradually reduce the
water level. The risk aversion coefficient of the hydropower plant is
low, and the hydropower plant has an aggressive risk appetite. From
day 1 to day 6, the risk aversion coefficient gradually increases as the
water level decreases. On day 7, the hydropower plant encounters a
round of large inflow as the water level of the hydropower plant is
high. The risk aversion coefficient turns from increasing to
decreasing, and the risk preference of the hydropower plant is
strengthened. On Day 9, after the influence of large inflow

TABLE 1 Main parameters of hydropower station.

Parameter Number

Normal water level/m 1,180

Dead water level/m 1,023

Upper limit of outflow/(m3/s) 15,872

Lower limit of outflow/(m3/s) 0

Hydroelectric coefficient 8.6

Upper limit of power generation flow/(m3/s) 2,189

Lower limit of power generation flow/(m3/s) 0

regulation capacity weekly

TABLE 2 Statistical indicators of historical data and simulated data.

Data Historical data Augmented data

Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis

FCP 177 13.72 0.12 3.11 175 12.57 0.13 3.09

SP 195 12.12 0.27 3.68 196 13.31 0.28 3.52

Inflow 688.3 234.1 0.22 3.11 658.8 232.7 0.23 3.15
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disappears, the water level of the hydropower plant gradually
decreases, and the risk aversion coefficient increases
simultaneously. From day 17 to day 22, when the second inflow
is higher, the higher risk aversion makes the hydropower plants
reduce the energy in the spot market. On day 23, the operating water
level of the hydropower plants remains high, and the inflow
maintains a higher flow until the end of the month. The risk
aversion coefficient decreases slightly, which is conducive to the
hydropower plants allocating more energy in the spot market and
reducing water abandonment. The maxima and jumps in risk
aversion coefficients occur from day 10 to day 16, when water
levels and inflow fall simultaneously and truly reflect the operational
behavior of hydropower plants. Hydropower plants tend to show a
greater risk-averse preference during that period, allocating limited
energy to forward contracts to avoid deviation assessment penalties.

The energy allocated in the spot market before and after
optimization in each operating day is shown in Figure 8. The

optimized energy allocation curve of the hydropower plant has
been improved to match the spot price. After the optimized
allocation, the hydropower plant allocates the spot energy mainly
in the high spot price periods and less energy in the low spot price
periods. Among them, day 30 is the last operating day of the
optimization cycle, and the hydropower station allocates all the
remaining spot energy of the month on this operating day, resulting
in the energy of this operating day not fully matching the electricity
price. The Comparing of Figure 8 and Figure 4 shows that the
hydropower plant improves the income of energy by shifting energy
from the low price period to the high price period.

3.2.2 The impact of hydropower plants’ regulable
capacity

The optimization results of hydropower plants with different
regulation capacities are shown in Table 4. The regulating capacity
of the weekly regulating hydropower plant is smaller than that of the
monthly regulating hydropower plant, and its water storage varies
more drastically. The weekly-regulated hydropower plant completed
the forward contract earlier, 4 days earlier than the monthly-
regulated hydropower plant. This is due to the smaller regulation
capacity of weekly regulation hydropower plants, which cannot fully
hedge the uncertainty of inflow. The hydropower plant priority is
given to completing forward contracts to avoid the risk of inflow
uncertainty. The performance of the energy portfolio of monthly
regulated hydropower plants is better than that of weekly regulated
capacity hydropower plants. This is due to the stronger inflow
uncertainty hedging capability of the monthly-regulated
hydropower plants, which can allocate more energy to the
higher-return spot market while ensuring the completion of the
forward contracts. The simulation results show that the
optimization method proposed in this paper is equally effective
for hydropower plants with different regulation capacities.

3.3 Performance comparison

In order to verify the advantages of the proposed method in
terms of risk management and energy income over the traditional
method of energy allocation based on a fixed risk aversion

FIGURE 4
The matching analysis result of the hydropower plant’s energy in the spot market and the spot price.

FIGURE 5
Result of the optimized energy portfolio.
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coefficient, a comparison is made with the fixed risk aversion
coefficient (λd = 1.2) used in the literature (Carrión et al., 2007),
with the same calculation conditions except for the selected value of
the risk coefficient.

3.3.1 Energy portfolio optimization performance
comparison

As shown in Table 5, under the same generation reservoir
storage rate, the power portfolio income of the hydropower plant
gradually decreases as the inflow fluctuation range gradually
increases, which indicates that the increase of inflow
uncertainty risk leads to the decrease of the energy portfolio
income.

The risk aversion coefficient of the proposed method is lower
than that of the method in literature (Carrión et al., 2007), and the
energy portfolio income is higher than that of the method in
literature (Carrión et al., 2007) when both the income fluctuation
range and the generation reservoir storage rate are low. With the
gradual increase in the range of inflow fluctuation, the risk aversion
coefficient obtained by the method proposed in this paper gradually
increases, the energy portfolio income changes less, and the energy
portfolio income obtained by the method in literature (Carrión et al.,
2007) gradually decreases. In the scenario where the income
fluctuation range is 25%, and the initial generation reservoir

TABLE 3 Portfolios at different confidence levels.

Confidence levels Income rate Value of CVaR Proportion of forward contract (%) Proportion of spot market (%)

0.99 0.2491 0.13395 95.93 4.07

0.98 0.2573 0.13423 95.35 4.65

0.97 0.2598 0.13499 95.21 4.79

0.96 0.2623 0.13585 94.33 5.67

0.95 0.2709 0.13754 93.77 6.23

0.94 0.2747 0.13889 93.47 6.53

0.93 0.2769 0.13919 92.49 7.51

0.92 0.2799 0.13953 92.90 7.10

0.91 0.2808 0.13988 92.81 7.19

0.90 0.2789 0.13746 91.89 8.11

FIGURE 6
Result of optimized water level curve and inflow process.

FIGURE 7
Risk aversion coefficient curve.
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storage rate is 70%, the energy portfolio income obtained based on
the method proposed in this paper is 31% higher than that of the
literature (Carrión et al., 2007), which has a significant advantage. It
shows that the method proposed in this paper can correctly use

inflow forecast data and reservoir to adjust the risk aversion
coefficient and effectively use the regulation capacity of
hydropower plants to reduce the loss of energy portfolio income
due to inflow uncertainty.

FIGURE 8
Energy portfolio before and after optimization.

TABLE 4 Portfolio performance comparison with different regulation capacities.

Regulation capacities Income rate CVaR Day of forward contracts completion Average rate of storage change (%)

Weekly 0.2754 0.1964 25 6.7

Monthly 0.2865 0.1874 29 3.1

TABLE 5 Performance comparison of portfolio optimization.

Daily inflow fluctuation range (%) Initial generation reservoir filling rate (%) Carrión et al. (2007) This page

Income rate λd Income rate λd

5 70 0.2561 1.2 0.2729 0.823

10 70 0.2457 - 0.2653 0.854

15 70 0.2214 - 0.2631 0.937

20 70 0.2176 - 0.2701 0.964

25 70 0.2047 - 0.2682 1.124

5 80 0.2552 - 0.2632 0.855

10 80 0.2471 - 0.2542 0.872

15 80 0.2154 - 0.2372 0.921

20 80 0.2076 - 0.2194 0.981

25 80 0.1947 - 0.2039 1.153

5 90 0.2349 - 0.2482 0.885

10 90 0.2235 - 0.2309 0.924

15 90 0.2083 - 0.2166 0.994

20 90 0.2031 - 0.2043 1.099

25 90 0.1937 - 0.1997 1.192
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As the initial generation reservoir storage rate gradually
increases, the advantage of the method proposed in this paper
over the literature (Carrión et al., 2007) in terms of energy
portfolio income gradually decreases. This is because the
available regulation capacity gradually decreases, and the
hydropower plant cannot fully hedge the loss of energy portfolio
income due to inflow uncertainty by the reservoir. However, even in
the scenario where the initial reservoir storage rate is 90%, the
method proposed in this paper still has a 3%–5% advantage over the
literature (Carrión et al., 2007) in terms of energy portfolio income.

3.3.2 Hydropower plant operation optimization
performance comparison

As shown in Table 6, the TVRRA strategy significantly increases
the average energy of hydropower plants during the water level
(AEWL) by 4.1% compared to the FRA strategy. The average spillage
of regulated hydropower plants is reduced by 2%, indicating that the
TVRRA strategy can utilize the regulation capacity more effectively
and reduce the water consumption of energy generation. The
TVRRA strategy also increases the water level during electricity
demand peak periods (WLP), which enables hydropower plants to
generate more energy during peak load periods. Generally speaking,
the price of electricity during peak periods is higher than in other
periods. Hence, hydropower plants with higher operating water
levels during peak periods are good for obtaining more economic
income.

4 Conclusion

This paper investigates the regulable hydropower plants’ energy
portfolio optimization problem under the spot market. Firstly, an
energy allocation model for regulable hydropower plants under the
spot market is established. Then an optimal energy portfolio method
for regulable hydropower plants with the introduction of a time-
varying relative risk aversion coefficient is proposed based on the
allocation model. The optimal allocation method uses the change
value of the hydropower plant’s energy generation as the basis for
adjusting the time-varying relative risk aversion coefficient to
improve the performance of the energy portfolio optimization
method. Finally, the following conclusions are drawn from the
analysis of the results of the simulation.

(1) Compared with the fixed risk aversion coefficient, the proposed
method accurately portrays the risk preferences of regulable
hydropower plants in the energy allocation decision periods. It
dynamically optimizes the energy portfolio according to this
time-varying risk preference. The energy allocation curve
obtained by this method matches the price curve better, and

the energy portfolio income is improved by 31% under a
scenario with an inflow fluctuation range of 25% and an
initial reservoir storage rate of 70%.

(2) Compared with the fixed risk aversion coefficients, the proposed
method increases the average water level per unit of energy
generation in hydropower plants by 4.1% and reduces average
spillage by 2%. At the same time, the hydropower plant has a
higher water level during the peak electricity demand period,
which improves favorable conditions for the hydropower plant
to improve economic income further.

(3) The energy allocation method using a time-varying relative risk
aversion coefficient can meet hydropower plants’ energy
portfolio optimization needs with different regulation
capacities. Still, the optimization effect is affected by the
regulation capacity. Monthly regulation capacity hydropower
plants can achieve a more effective energy portfolio effect than
weekly regulation capacity hydropower plants using the optimal
energy portfolio method using a time-varying relative risk
aversion coefficient.

The construction of China’s electricity market is steadily
advancing, and the models and algorithms described in this
paper contain certain assumptions and simplifications. The
energy portfolio optimization of hydropower plants needs to be
studied in depth and tested in practice. The next step will be to
conduct in-depth research on energy portfolio optimization
according to the development of the electricity market.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

Author contributions: PY and GL designed the research,
performed the research, and wrote the paper. YY and ZL
analyzed the data, and YT collected the data.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

TABLE 6 Performance comparison of TVRRA and FRA.

Strategy AEWL (MWh/m) Average spillage (%) WLP m)

RRA 1,176.2 1 1,182.5

FRA 1,171.3 3 1,178.3
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