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Pattern formation is the process by which cells within a homogeneous epithelial
sheet acquire distinctive fates depending upon their relative spatial position to
each other. Several proposals, starting with Alan Turing’s diffusion-reaction
model, have been put forth over the last 70 years to describe how periodic
patterns like those of vertebrate somites and skin hairs, mammalian molars,
fish scales, and avian feather buds emerge during development. One of the
best experimental systems for testing said models and identifying the gene
regulatory networks that control pattern formation is the compound eye of the
fruit fly,Drosophila melanogaster. Its cellular morphogenesis has been extensively
studied for more than a century and hundreds of mutants that affect its
development have been isolated. In this review we will focus on the
morphogenetic furrow, a wave of differentiation that takes an initially
homogeneous sheet of cells and converts it into an ordered array of unit eyes
or ommatidia. Since the discovery of the furrow in 1976, positive and negative
acting morphogens have been thought to be solely responsible for propagating
the movement of the furrow across a motionless field of cells. However, a recent
study has challenged this model and instead proposed that mechanical driven cell
flow also contributes to retinal pattern formation. Wewill discuss bothmodels and
their impact on patterning.
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Introduction

Once the fate of an initially homogeneous tissue has been specified, each cell must adopt
a specialized fate—This is the process of pattern formation, a term coined by the great
developmental biologist Lewis Wolpert. To explain how tissue patterning occurred, Wolpert
formulated the concept of positional information (Figure 1). At its core, his model predicts
that every cell can sense its relative location within an epithelium and adopt a fate that is
appropriate for its position within the developing field (Wolpert, 1969). His thinking was
influenced in part by the work of John Saunders who had demonstrated that the posterior
margin of the chick wing bud, when transplanted to the anterior margin, would force the
anterior domain into producing digits that were normally associated with the posterior half
of the limb bud. As a result, a mirror-symmetry duplication of digits was generated across the
anterior-posterior axis (Saunders and Gasseling, 1968). Wolpert proposed that the posterior
region of the limb bud produced a long-range morphogen that established a concentration
gradient across the entire posterior-anterior axis (Wolpert, 1969). He suggested that cells
lying along this axis could sense and interpret negligible differences in morphogen titer or
exposure time and this in turn would result in the specification of distinct cell fates (in this
case, distinct digits). Support for Wolpert’s ideas of patterning came from the discovery in
both chick and mouse that Sonic hedgehog (Shh) is expressed within the posterior limb bud,
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FIGURE 1
The positional information model of pattern formation. Based in part by the results of transplantation experiments conducted within the chick limb
bud by John Saunders, Lewis Wolpert proposed that secreted morphogens form smooth gradients across developing tissues. Groups of cells along the
gradient then capture unique amounts of the morphogen and as a result produce distinct structures. Colorized representations of this model are often
represented as a French Flag where each color of the flag represents the conversion of a distinct morphogen concentration into a unique physical
structure. Studies in the Drosophila embryo have further suggested that even 2 cells lying adjacent to each other can sense very small differences in
morphogen concentrations and as a result execute different developmental programs. The schematic is adapted from Sharpe and Greene, 2015.

FIGURE 2
The diffusion-reaction model for the de novo initiation of repeated patterns. Alan Turing proposed that repeated patterns could spontaneously be
generated via the combined activities of activating and inhibitingmorphogens. (A) Prior to the initiation of pattern formation, the expression levels of both
activating and inhibiting morphogens are at baseline levels. (B) The initiation of a pattern begins with the spontaneous initiation of expression of the
activating morphogen. (C) As levels of the activating morphogen rises, it activates expression of the inhibiting morphogen. (D) The expression levels
of the activating morphogen are higher than the inhibiting morphogen at the source. However, the inhibiting morphogen can diffuse further than the
activatingmorphogen. (E) The inhibitingmorphogen suppresses the expression of the activatingmorphogen further away from the source. However, just
beyond the range of the inhibiting morphogen is seen spontaneous activation of the activating morphogens. (F) The process repeats itself to generate a
periodically spaced pattern of repeated elements. The schematic is adapted from Sharpe and Green, 2015.
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that its loss leads to the elimination of posterior digits, and that the
induction of digit duplications that were seen in grafting
experiments could be recapitulated if Shh expressing cells or
beads soaked with Shh were transplanted into the anterior
domain of the limb bud (Echelard et al., 1993; Riddle et al., 1993;
Chang et al., 1994; Lopez-Martinez et al., 1995; Pagan et al., 1996;
Yang et al., 1997). Additional support for Shh functioning as a
morphogen came from experiments showing that the extent of digit
duplications was directly proportional to the concentration of Shh
(Yang et al., 1997). Manipulating exposure time demonstrated that
the duration of Shh exposure is also important for limb patterning
(Yang et al., 1997; Ahn and Joyner, 2004; Harfe et al., 2004).

Although Wolpert is most associated with the concept of
morphogen gradients, many researchers in preceding decades had
proposed that concentration gradients of secreted molecules could
be the genesis for spatial patterns (Boveri, 1901; Morgan, 1901;
Child, 1915; Runnstrom, 1929; Dalcq and Pasteels, 1938;
Horstadius, 1939). Their ideas were based on the observation
that changes in spatial patterns after tissue transplantation or
extirpation were quantitative and thus might be subject to
changes in the concentration of a diffusible substance. The
relationship between Shh concentration and digit duplications in
the chick limb (i.e., increasing Shh titer = more complete
duplication) is a classic confirmation of the concentration
gradient hypothesis (Yang et al., 1997). Interestingly, a recent
synthesis has suggested a “neighborhood watch” model (Figure 2)
in which cells interpret positional information not by autonomously
sensing their address within a morphogen gradient but rather by
comparing themselves to their neighbors (Lee et al., 2022). This
innovative advance to Wolpert’s original positional information
model excellently explains how patterns can be generated across
very large distances.

Alan Turing, the mathematician and World War II era
codebreaker, was a notable contributor to the field of
developmental biology through the publication of his diffusion-
reaction model nearly two decades before Wolpert’s model (Turing,
1952). He coined the term “morphogen” and proposed that the
production of two morphogens (one that serves as an activator and
one that serves as a repressor) could generate spatial patterns within

a de novo homogeneous field by antagonizing each other’s activity
(Figure 3). But for the two signals to not simply cancel each other
out, two criteria had to be met. First, the activator must be produced
at a higher concentration than the repressor in order to overcome
local repression. Second, the repressor needs to have long-range
effects (diffuse fast and far) while the activator needs to be a short-
range signal (diffuse slowly and over only a short distance). While he
did not predict it, differences in the affinities for ligands and
receptors can also play a role in limiting the reach of the
activator. Turing’s model also predicted that the size and shape
of the generated pattern would correspond directly to the
distribution of the activator morphogen gradients (i.e., the width
of a spot or stripe would correspond to the distance that the activator
morphogen diffused).

The diffusion-reaction model as proposed by Turing stands in
sharp contrast to Wolpert’s positional information model. Turing’s
interest was in explaining how a spatial pattern could be generated
de novo from a homogenous tissue, whileWolpert was attempting to
understand how patterns developed in a field in which pre-existing
molecular heterogeneities already existed. Another important
difference is that the diffusion-reaction model predicts that the
morphogen itself produced the observed spatial pattern while the
positional information model requires that cells sense and interpret
the amount of morphogen to which they were exposed. In practical
terms, Turing’s proposal implied that the size and shape of the
spatial pattern was directly correlated to the size and shape of the
morphogen gradient. In contrast, Wolpert firmly believed that a
smooth concentration gradient (high at the source to low at the edge
of the sink) could generate any type of pattern. While these two
models stand in apparent opposition to each other in the minds of
many developmental biologists, a relatively recent synthesis has
suggested potential avenues for how these two important ideas can
be incorporated into a single model for pattern formation (Green
and Sharpe, 2015).

A special circumstance in which the diffusion-reaction and
positional information models have been particularly useful is the
generation of simple repeated patterns. Some of the most studied
examples include the scales of fishes (Bertin, 1944; Breder, 1947;
Gunter, 1948), feather buds of birds (Holmes, 1935; Wessells, 1965),

FIGURE 3
The neighborhood watch model for understanding how cells understand their position within a concentration gradient. Claudio Stern has recently
proposed that a cell cannot interpret the absolute value of the morphogen it captures. Instead, it compares itself with its neighbors to make a relative
calculation as to the amount of morphogen it has received. The schematic was adapted from Lee et al., 2022.
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somites of vertebrates (Cooke, 1975; Cooke and Zeeman, 1976),
molars and hair follicles of mammals (Gaunt, 1955; Straile, 1960;
Mann, 1962; Lumsden, 1970; Mou et al., 2006; Prochazka et al., 2010;
Cheng et al., 2014), and the unit eyes or ommatidia of theDrosophila
melanogaster compound eye (Ready et al., 1976). The repeated
nature of these systems means that a mutation which affects one
element of the pattern affects the entire assembly. As such,
mutations that disrupt repeated patterns have outsized effects
that are easy to identify. Genetic screens and target gene
knockdowns have shown that each of the above repeated patterns
is disturbed by reductions in Shh or it orthologs (Heberlein et al.,
1993; Ma et al., 1993; Fan and Tessier-Lavigne, 1994; Johnson et al.,
1994; Hardcastle et al., 1998; St-Jacques et al., 1998; Chiang et al.,
1999; Karlsson et al., 1999; Cobourne et al., 2004; Busby et al., 2020),
which is entirely consistent with hypotheses put forth by Turing and
Wolpert. Here, we will focus on how the morphogenetic furrow
patterns the Drosophila eye. In this context, we will discuss the roles
that several signaling pathways including Hedgehog (Hh),
Decapentaplegic (Dpp), Wingless (Wg), Notch (N), and the EGF
Receptor (EGFR) pathways play in regulating the initiation and
progression of the morphogenetic furrow. We will also discuss how
these signaling cascades generate interlocking columns of
periodically spaced unit eyes.

The initial descriptions of the morphogenetic furrow by
Donald Ready (Ready et al., 1976; Lebovitz and Ready, 1986;
Wolff and Ready, 1991) and the subsequent identification of a
role for the Hh morphogen in patterning by Kevin Moses and
Ulrike Heberlein (Heberlein et al., 1993; Ma et al., 1993)
suggested that diffusion-reaction and positional information
models are likely sufficient to explain how the compound eye
is patterned. Conspicuously absent from these discussions of the
compound eye were models centered around mechanical forces
contributing to the emergence of biological patterns. In general,
mechanisms such as these were explicitly rejected by both Turing
and Wolpert. However, a recent study from Richard Carthew has
provided a compelling reason to consider the validity of
mechanical forces such as cell flow in pattern formation. We

will discuss the evidence supporting both chemical and
mechanical force models for patterning.

Structure of the adult Drosophila eye
and the eye-antennal disc

The adult Drosophila eye is a simple nervous system
comprised of approximately 750 ommatidia that are packed
into a hexagonal array consisting of 32–34 interlocking
vertical columns (Figure 4) (Ready et al., 1976). The
compound eye is responsible for a wide range of visual and
circadian behaviors (Grenacher, 1879; Exner, 1891; Mallock,
1894; Horridge, 1975; Strausfeld, 1976; Heisenberg and
Buchner, 1977; Fischbach, 1979; Paulus, 1979; Land and
Fernald, 1992; Vosshall and Young, 1995; Land, 1997; Veleri
et al., 2007; Schlichting et al., 2016; Schnaitmann et al., 2020).
These behaviors are augmented by the ocelli, which are three
simple eyes located on the head vertex (Medioni, 1959; Fischbach
and Reichert, 1978; Hu and Stark, 1980; Rieger et al., 2003;
Umezaki and Tomioka, 2008; Krapp, 2009; Saint-Charles
et al., 2016; Jean-Guillaume and Kumar, 2022). Each
ommatidium within the compound eye contains eight
photoreceptor neurons, four lens-secreting cone cells, a set of
optically insulating pigment cells, and a mechanosensory bristle
complex. Since each cell occupies a stereotyped position within
the ommatidium, every unit eye is an exact replica of its
neighbors (Waddington and Perry, 1960; Ready et al., 1976;
Tomlinson and Ready, 1987; Cagan and Ready, 1989a). This is
best seen in retinal sections of the adult retina with the only
difference between ommatidia is that the photoreceptors within
dorsal half of the eye are organized in a chiral pattern that is the
mirror opposite to those within the ventral half of the eye. The
two chiral versions of ommatidia meet at the equator, which is an
invisible line that runs along the middle of the compound eye
(Figure 4). Mutations that affect the development of individual
cells within the ommatidium affect the overall structure of the

FIGURE 4
A clock and wavefront model for the generation of vertebrate somites. This model, developed by Johnathan Cooke and Erick Christopher Zeeman,
proposed a two-componentmechanism that would account for the periodic emergence of vertebrate somites. At its core it proposes that a wavefront of
maturation (i.e., gene expression) transforms populations of undifferentiated cells into a pair of somites at periodic intervals. These periodic waves are
triggered by an internal oscillator within the pre-somitic mesoderm (clock). Initially, it was thought that a similar internal oscillator could participate
in the production of column of ommatidia within the fly eye. The variable rate at which these columns are now known to be produced suggests that an
internal clock does not exist within the fly eye imaginal disc.
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unit eye. In rare instances, a cell within a single ommatidium of a
genetically normal fly will fail to develop correctly and this will
manifest itself as a small, barely visible, local distortion in the
array. In contrast, genetic mutations that affect the specification
of one or more cells in every ommatidium can be identified by a
“roughening” or “glazing” of the entire external surface and/or a
reduction in the overall size of the compound eye. In some
instances, the compound eye is completely lost and replaced
with epidermal tissue (Figure 5).

The adult eye is derived from a sac-like structure called the eye-
antennal imaginal disc (Krafka, 1924; Chen, 1929; Pilkington, 1942).
In addition to the compound eye, it also gives rise to nearly all adult
head structures including three simple eyes called ocelli, antennae,
maxillary palps, and surrounding head epidermis (Figure 6)
(Sturtevant, 1929; Bodenstein, 1938; Birmingham, 1942; Zalokar,
1943; Vogt, 1946; Schlapfer, 1963; Abaturova and Ginter, 1968;
Ouweneel, 1970; Haynie and Bryant, 1986). The only structural
feature of the adult head that is not derived from the eye-antennal
disc is the proboscis (mouthpart), which arises from the labial and
clypeo-labral imaginal discs (Wildermuth and Hadorn, 1965;
Gehring and Seippel, 1967; Wildermuth, 1968; Kumar et al.,
1979). The eye-antennal disc, like all other imaginal discs, is
comprised of three cell layers—A sheet of columnar cells called
the disc proper, a layer of squamous cells called the peripodial
epithelium, and a strip of cuboidal cells referred to as the margin
(Figure 7) (Atkins andMardon, 2009;Weasner et al., 2020). The disc
proper and peripodial epithelium are of the same overall size and
shape and lie juxtaposed to each other. However, due to the
differences in the size and shape of the two different cell types
that comprise these epithelia, it is estimated that by the end of larval
development the number of cells within the disc proper outnumbers
those of the peripodial epithelium by a ratio of at least 20:1 (McClure
and Schubiger, 2005). These two cell layers are joined together along
their edges by the cuboidal margin cells (Figure 7). As such, the eye-
antennal disc resembles a closed pillowcase. Enclosed within these

FIGURE 5
Structure of the adult Drosophila compound eye. (A) A scanning electron micrograph of the adult compound eye reveals that it consists of
approximately 750 unit eyes or ommatidia that are organized into 32–34 columns. (B) A light microscope section of the adult retina shows that the eight
photoreceptors that are contained within each unit eye are organized into an asymmetrical trapezoid pattern. The only difference between one unit eye
and another is the chirality of the trapezoid within ommatidia. (C) A schematic showing the distinct chiral patterns of ommatidia within the dorsal and
ventral compartments. These two compartments meet at the center of the eye which is called the equator.

FIGURE 6
The Drosophila compound eye is a model system for identifying
genes involved in development. Mutations that affect tissue
specification, growth and proliferation, pattern formation, and cell fate
specification can be identified by alterations in the crystalline-like
nature of the adult compound eye. These mutant phenotypes can
manifest themselves as (A) the absence of eyes, (B) small eyes, (C)
large-roughened eyes, and (D) large-glazed looking eyes.
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three cell layers is a small lumen (Auerbach, 1936) through which
signaling molecules are thought to be trafficked either by simple
diffusion or through two types of subcellular structures called
translumenal extensions and cytonemes (Ramirez-Weber and
Kornberg, 1999; Cho et al., 2000; Gibson and Schubiger, 2000;
Gibson et al., 2002; Roy et al., 2011).

Discovery of themorphogenetic furrow

The first recorded description of the eye-antennal disc can be
found within August Weisman’s monograph on the development of
insects (Weismann, 1864). His camera lucida drawing of the disc
includes all known major features including the morphogenetic

FIGURE 7
The eye-antennal disc gives rise to the adult head. (A) A light microscope image of a third larval instar eye-antennal disc. The disc is divided into
several different neighborhoods that each give rise to a unique structure on the adult head. Each larva has two eye-antennal discs that are stitched
together during pupal development. (B) A scanning electronmicrograph of that adult head. The adult structures that are derived from the disc are labeled.
oc, ocelli; ant, antenna; eye, compound eye; he, head epidermis; mp, maxillary palp.

FIGURE 8
Structure of the eye-antennal disc. The eye-antennal disc is comprised of three different cell types. A layer of columnar cells comprises the disc
proper while an overlying layer of squamous cells makes up the peripodial epithelium. These two equally sized tissues are joined together at the edges by
a strip of cuboidal cells referred to as the margin. (A, B) Schematics showing the relationship between the disc proper and the peripodial epithelium. (C)
Cross-section view of the eye-antennal disc showing the relative position of all three layers and the enclosed lumen. It also shows the cellular
composition of the three cellular layers.
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furrow, which in his drawing appears as a vertical line within the
posterior oval domain of the disc. At the time, Weissman proposed
that this line (which he probably envisioned as a physical fold in the
tissue) demarcates the border between the developing eye and the
antennal fields. Early histological methods, applied to the eye-
antennal disc, appeared to confirm this prediction as developing
ommatidia were only seen in the most posterior regions of the disc
(Chen, 1929; Krafka, 1924; Medvedev, 1935; Steinberg, 1943a; b).
This view went unchallenged for 112 years until Donald Ready and
Seymour Benzer published their landmark paper on the cellular
development of theDrosophila eye (Ready et al., 1976). They noticed
that the “eye/antenna boundary” that Weissman proposed could be
found at different physical positions during development. In
younger discs the “line” was closer to the posterior edge of the
eye field while it would be found nearer to the antenna in older discs.
The shifting position of the “line” corresponded to a shift in the
number of unit eyes—Younger discs had fewer ommatidia than
older discs. From this it was immediately obvious that the “boundary
line” was not the eye/antennal border at all but is instead the leading
edge of a differentiating wave (Figure 8). They called it the
morphogenetic furrow as its movement across the eye field
appeared to transform a sea of undifferentiated cells into a
periodic array of unit eyes and it appeared as an indentation in
the epithelium (Ready et al., 1976).

Dynamic properties of the
morphogenetic furrow

If development is allowed to proceed at 25°C, the third and last
larval instar stage begins at roughly 72 h after egg laying (AEL). At
this stage the entire eye field is both unpatterned and
undifferentiated. But approximately 6 h later at 78 h AEL the
morphogenetic furrow leaves the posterior margin and begins its
journey across the epithelium (Spratford and Kumar, 2013). Over
the course of two and a half days the furrow patterns the retina by
organizing thousands of undifferentiated cells into nearly three
dozen columns of unit eyes that ultimately will make up the
adult compound eye. The developing retina grows by accretion
with each new column of ommatidia being added to the anterior face
of the last column. The patterning of the eye resembles a growing
crystal so much that, in the title of their original paper, Ready and
Benzer referred to the compound eye as a “neurocrystalline lattice”
(Ready et al., 1976). This level of perfection is achieved through tight
regulatory control of pattern formation, cell fate specification, and
planar cell polarity.

The differentiating wave was originally described as a furrow,
in part, because scanning electron micrograph images of larval
eye-antennal discs showed a dorso-ventral groove within the
epithelium (Ready et al., 1976). Cross-sections of the disc showed
that cells within the furrow were bottle-shaped with very narrow
apical domains and enlarged basolateral sides. In comparison,
cells on either side of the furrow are tall and columnar. Dramatic
changes in cell shape, such are associated with a broad array of
patterning events including tissue invagination, cell ingression,
and cell extrusion. The transition from columnar to bottle-
shaped cells result from the simultaneous dramatic
constriction of the apical profile and the migration of nuclei

towards the basal surface (Sawyer et al., 2010; Martin and
Goldstein, 2014; Heer and Martin, 2017). If a cell making this
transition maintains its cell-cell adhesion with its neighbors, then
local deformation of the tissue will occur. In the case of the eye
disc a stripe of cells along the dorso-ventral axis all constrict their
apical profiles and plunge their nuclei in unison while preserving
cell-cell adhesion with adjacent cells. This causes a depression in
the tissue that we visualize as the morphogenetic furrow.

How and why does the furrow appear to move across the eye
primordium? At the cellular level the movement of the furrow across
the epithelium is akin to the “wave” done by fans within a sporting
arena. At the beginning everyone in the stadium starts out sitting in
their seats. For the wave to initiate, fans in one section will stand up
while everyone else remains seated. For the wave to then propagate
across the arena folks in the standing section all sit in unison while
fans in the adjacent section simultaneously all stand up in concert.
As this process repeats itself across all sections, it appears as if a wave
is sweeping across the stadium. While the wave appears to move
across the arena, the fans have, in reality, not moved from one
section to another but instead they simply sit and/or stand in place.
One can think of the moving furrow similarly. At the start of third
larval instar all cells are fully extended with the apical profiles
expanded. Then, at 78 h AEL, a stripe of cells at the posterior
margin changes their shape in unison thereby creating a dorso-
ventral groove at the posterior edge of the disc. A short time later
when those cells extend themselves back into their original position,
cells within an adjacent, anterior stripe concomitantly make the
opposite decision and become bottle shaped. As this process repeats
itself nearly three dozen times it appears as if the furrow rolls across
the retinal primordium.

The developing compound eye is patterned by the
morphogenetic furrow over the course of two and a half days.
Several studies have provided differing accounts of how quickly
the furrow produces a column of unit eyes as it traverses the eye
disc. In the first study, the authors injected third instar larvae
with radiolabeled thymidine which would be incorporated into
the genomes of cells that were dividing at the time of injection.
Cells that took up the radiolabeled thymidine would differentiate
into photoreceptors and could be identified later in a retinal
section of the adult compound eye. As such, one could determine
when a particular column of ommatidia had been born by
correlating the position of the labeled column in the adult
with the time of radiolabeled thymidine injection within the
larva. The authors then compared the position of labeled columns
in adults to each other after larvae had been injected at different
times during the third larval instar. From this it was proposed
that a new column of ommatidia was generated every 120 min,
and this timing did not vary across the developing eye (Campos-
Ortega and Hofbauer, 1977). From this it appeared as if an
intrinsic clock existed within the eye disc to produce columns
of unit eyes at regular intervals. Support for this idea came from
studies of somite development where a similar degree of
periodicity was initially observed for the generation of somites
in the frog, Xenopus laevis (Cooke, 1975) and then later for other
species including snakes, zebrafish, chicken, and mice (Gomez
et al., 2008). Johnathan Cook and E.C Zeeman proposed a clock
and wavefront model to explain this periodicity (Figure 9). In this
model a gradient of positional information (i.e., smooth
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morphogen gradients) would interact with an autonomously
acting internal oscillator (i.e., cycling waves of gene
expression) to produce new somites at regular intervals
(Cooke and Zeeman, 1976; Saga and Takeda, 2001; Hubaud
and Pourquie, 2014). Molecular evidence for the clock
component first came when repeating waves of
Hairy1 expression were observed within the pre-somitic
mesoderm (PSM) during development (Palmeirim et al., 1997;
Cooke, 1998). Likewise, support for the wavefront part of the
model came from the observation that disruptions to the FGF and
Wnt gradients within the PSM disrupt somite formation
(Dubrulle et al., 2001; Sawada et al., 2001; Aulehla et al., 2003;
Naiche et al., 2011). Similar waves and gradients of gene
expression are observed in the developing eye.

A later attempt to document the velocity of the furrow
suggested that patterning of the eye field was less uniform
than previously thought. The authors first determined that a
very brief pulse of Sevenless protein can restore R7 development
to a narrow stripe of ommatidia—Sometimes just one or two
columns wide. If the authors introduced a pause between two
brief pulses, then the velocity of the furrow could be calculated by
dividing the intervening time period by the number of
ommatidial columns that lacked the R7 cell. From this method
the furrow appeared to produce a column of ommatidia every
100 min within posterior regions of the eye which was consistent

with the earlier report. However, in anterior half of the eye, the
furrow appeared to accelerate and produce a column of unit eyes
every 60–70 min (Basler and Hafen, 1989). These two methods
indirectly measured the pace at which the retina is patterned. As
such, it is not surprising that these studies came up with differing
measurements.

A resolution to this issue came when an effort was made to
directly measure the rate of patterning across the eye field. To do
this, the number of ommatidial columns were directly counted in
eye discs from third instar larvae that were carefully timed and
dissected at 3-h intervals. From this effort, it appears that
patterning is a very dynamic process with the generation time
for producing a single ommatidial column ranging from 35 to
150 min. Ommatidial columns at the posterior and anterior edges
of the eye field are produced more quickly than those within the
center (Spratford and Kumar, 2013). Such differences in velocity
suggest that molecular “accelerator and brake pedals” likely exist
within the disc to either speed up or slow down the furrow
depending upon its position within the disc. At least two brake
pedals have been identified—One is a nuclear hormone receptor
encoded by the ultraspiracle (usp) locus and the other is a helix-
loop-helix transcription factor encoded by the
extramacrochaetae (emc) gene (Brown et al., 1995; Zelhof
et al., 1997; Spratford and Kumar, 2013). The removal of
either usp or emc results in the acceleration of the furrow. In

FIGURE 9
Themorphogenetic furrow patterns the eye field during the third larval instar. (A–E) Light microscope images of different stage third larval instar eye
discs showing the progression of the morphogenetic furrow. As the furrow passes across the epithelium, columns of photoreceptor clusters (ELAV,
green) are produced in its wake. (C)Highmagnification view of the area surrounding themorphogenetic furrow. Cells ahead the furrow have large apical
profiles and are dividing randomly. As the furrow approaches, cells constrict their apical profiles and enter G1 arrest. As cells exit the furrow groups of
periodically spaced cells exist the cell cycle and form the first five photoreceptors of each unit eyes. Cells between these developing ommatidia will
eventually undergo one final round of mitosis and give rise to the final three photoreceptor neuron and twelve non-neuronal accessory cells. (F) A high
magnification image showing a region around the morphogenetic furrow.

Frontiers in Cell and Developmental Biology frontiersin.org08

Warren and Kumar 10.3389/fcell.2023.1151348

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1151348


the instance of emc, its removal results in a furrow that moves
approximately 30% faster than it does during normal
development. Emc is able to control the pace of the
ommatidial column production by regulating the levels of the
activating form of Cubitus interruptus (Ci), the sole transcription
factor of the Hh pathway (Spratford and Kumar, 2013). The
variable speed at which ommatidial columns are laid down
suggests that the mere presence of a repeated pattern in
nature does not necessarily guarantee that it is generated with
rhythmic periodicity or that it uses an oscillating molecular clock.
In short, while somites are generated with a regular periodicity,
such regularity does not appear to be a feature of compound eye
development. Thus, one can think of the clock and wavefront
mechanism as a very specific adaptation of the diffusion-reaction
and positional informational paradigms that applies to the
production of vertebrate somites.

Molecular accelerators and brakes are required to regulate the
pace at which the furrow patterns the eye field because the eye
continues to grow while it is being patterned and these two
processes need to be synchronized so that 750 ommatidia are
generated. If the rate at which the furrow patterns the disc
outpaces the rate of cell proliferation, then the resulting adult
eye will contain fewer unit eyes than required and will be
disorganized. On the other hand, if the furrow moves too
slowly then, even though there may be enough cells to make a
normal sized eye, fewer than expected numbers of ommatidia will
be created by the time larval development comes to an end. This
failure to complete eye development on schedule could lead to
developmental delays as the fly “waits” for the eye to finish
patterning itself. It could also result in a smaller than normal
eye if the fly fails to recognize the incomplete state of patterning
and proceeds into the pupal stage of development. The furrow

must reach the eye/antenna border before the head
morphogenesis begins.

Initiation of the morphogenetic
furrow—Evidence for the positional
information model

The positional information model predicts that a source of a
secreted morphogen should be present at the posterior edge of the
eye field. This is indeed the case in the vertebrate limb bud where
Shh is expressed in and emanates from the posterior domain (Riddle
et al., 1993; Chang et al., 1994). Around the same time of this
discovery there was a lot of interest in understanding how the fly eye
was patterned. In decades past, a considerable number of mutants
with severely reduced or missing compound eyes had been
identified. These mutants were starting to be examined and the
underlying genes were being cloned. Several genes such as eyeless
(ey), eyes absent (eya), sine oculis (so), and dachshund (dac) turned
out to be core components of the retinal determination network
(Kumar, 2010). In addition to the eye being lost in these mutants
(Bonini et al., 1993; Cheyette et al., 1994; Hoge, 1915; Mardon et al.,
1994; Milani, 1941; Serikaku and O’Tousa, 1994; Sved, 1986) forced
expression of these genes in non-retinal tissues is sufficient to induce
the formation of ectopic eyes within the antenna, leg, wing, and
genital imaginal discs (Halder et al., 1995a; Bonini et al., 1997;
Pignoni et al., 1997; Shen and Mardon, 1997). As such, these factors
function as selector genes for the eye during the earliest stages of
development (Figure 10).

The identification of the retinal determination network had a
profound impact on our understanding of how fate of the eye is
specified. Furthermore, the subsequent identification of these genes

FIGURE 10
The retinal determination network specifies the fate of the eye. (A) The coremembers of the retinal determination network include the transcription
factors Eyeless (Ey), Twin of Eyeless (Toy), Sine Oculis (So), Eyes Absent (Eya), and Dachshund (Dac). (B–D) Scanning electronmicrographs of wild type (B)
and eyeless loss-of-function mutants (C, D). Disruptions to the retinal determination network result in either the loss or the severe reduction of the
compound eye. (E) Forced expression of members of the retinal determination network can induce the transdetermination of non-ocular tissues
such as legs, wings, halteres, antennae, and genitalia into eyes.
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within the eyes of all seeing animals resulted in a paradigm shift in
our view of how the eye evolved. The traditional view that the eye
arose multiple times (Salvini-Plawen and Mayr, 1977; Land and
Fernald, 1992) has been replaced with a new view that the eye
originated just once during evolutionary history (Halder et al.,
1995b; Gehring, 1996; Callaerts et al., 1997; Gehring and Ikeo, 1999).

Prior to the initiation of the morphogenetic furrow, hh is
expressed at a single point along the posterior edge of the eye
primordium (Figure 11) (Ma et al., 1993; Dominguez and Hafen,
1997; Borod and Heberlein, 1998). This is reminiscent of the Shh
expression pattern in the limb bud and the asymmetry in hh
expression within the disc at this stage is entirely consistent with
Wolpert’s positional information model. Two lines of evidence
proved that the Hh pathway is required for the initiation of
retinal patterning. First, a viable mutation within the hh locus
implicates Hh signaling in the development of the eye. Like
several retinal determination mutants, the hhbar3 allele
(renamed hh1) has very small eyes—Roughly 150 out of a
possible 750 ommatidia (Ives, 1950; Mohler, 1988; Renfranz
and Benzer, 1989). This defect is caused by a deletion within
an eye-specific enhancer element (Pauli et al., 2005; Rogers et al.,
2005). It should be noted that in hh1 mutants the expression of hh
is severely reduced but not eliminated from the margin and/or
photoreceptors neurons. Thus, pattern formation can be initiated
and sustained for a short period of time before terminating.
Second, if Hh signaling is completely disrupted at the posterior
margin then the furrow is prevented from initiating (Dominguez
and Hafen, 1997; Borod and Heberlein, 1998; Greenwood and
Struhl, 1999; Curtiss and Mlodzik, 2000). Third, ectopic
activation of the Hh pathway ahead of the advancing furrow
induces undifferentiated cells to initiate ectopic retinal
patterning (Chanut and Heberlein, 1995; Heberlein et al.,
1995; Ma and Moses, 1995; Pan and Rubin, 1995; Strutt et al.,

1995; Wehrli and Tomlinson, 1995; Fu and Baker, 2003). As such,
the necessity and sufficiency of Hh signaling in eye development
confirms that it can initiate development in a manner predicted
by the positional information model.

Grafting experiments using the limb bud had suggested that Shh
might function as a long-range morphogen with an activity range of
as much as 200 um (approximately 20 cell diameters) (Honig, 1981;
Summerbell and Honig, 1982; Riddle et al., 1993; Chang et al., 1994).
Similarly, Hh establishes patterning over considerable distances
across the Drosophila wing and leg imaginal discs (Diaz-
Benjumea et al., 1994; Felsenfeld and Kennison, 1995). Initially, it
was not clear if Hedgehog proteins exert their influence over such
distances by directly acting as long-range gradient morphogens or
by functioning as short-range inducers of other downstream
signaling pathways. Evidence supporting the latter model came,
in part, from studies of the wing and leg imaginal discs. In both
tissues, Hh is expressed just within the posterior compartment.
Several studies have demonstrated that in the wing and leg, Hh acts
locally to activate dpp and wg within stripes of cells that lie adjacent
to the hh expressing domain (Basler and Struhl, 1994; Capdevila and
Guerrero, 1994; Tabata and Kornberg, 1994; Ingham and Fietz,
1995; Jiang and Struhl, 1995; Li et al., 1995; Pan and Rubin, 1995;
Zecca et al., 1995). Their activation is direct as functional binding
sites for Ci are present within dpp and wg disc enhancer elements
(Von Ohlen et al., 1997; Muller and Basler, 2000; Parker et al., 2011).
The Dpp andWg signaling molecules in turn, then function as long-
range gradient morphogens to pattern the anterior domain of the
imaginal discs (Struhl and Basler, 1993; Zecca et al., 1995; 1996).
(Nellen et al., 1996) These findings support the clear conclusion that
Hh patterns the leg and wing imaginal discs by functioning as a
short-range activator of secondary long-range morphogens.

At the start of the third larval instar dpp is expressed within
domains along the posterior-lateral margins that flank hh expression

FIGURE 11
Expression patterns of morphogens that regulate patterning of the eye. (Top row) Early third larval instar just prior to the initiation of the
morphogenetic furrow. Prior to the initiation of the furrow, hedgehog and unpaired are expressed at the firing point while decapentaplegic andwingless
are along the posterior-lateral margins. (Bottom row) Mid third larval instar in which the morphogenetic furrow has progressed half-way across the eye
field. As the furrow progresses across the eye field, the expression patterns of all four morphogens are altered dramatically. Hedgehog is expressed
within the first few columns of photoreceptor clusters, decapentaplegic is expressed within cells of the furrow, and wingless is expressed ahead of the
furrow along the posterior margins. Both hedgehog and wingless are also expressed within the developing ocellar field.
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at the firing point (Figure 11). One of the few dpp mutants that
survive to adulthood contains a deletion of an eye-specific enhancer
(dppblk). In these mutants, expression of dpp along the margins is
greatly reduced and as a result, the eyes of these mutants are very
small with pattern formation failing to initiate at the dorsal and
ventral margins (Borod and Heberlein, 1998; Chanut and Heberlein,
1997a; b). In contrast, if dpp expression is forcibly targeted to the
anterior margin of the eye field (where it is normally absent), then it
is sufficient to initiate a new morphogenetic furrow (Chanut and
Heberlein, 1997b; Pignoni and Zipursky, 1997). Together these
findings indicate that the Dpp pathway is integral to initiating
pattern formation within the retina. In contrast to the wing and
leg discs, Hh signaling is unlikely to activate dpp transcription within
the eye as the onset of dpp expression predates that of hh during
development (Ma et al., 1993; Hazelett et al., 1998; Chang et al.,
2001). As we will see in in our discussion of furrow progression, the
regulatory relationship between Hh and Dpp that is seen in the leg
and wing will return to the retina during furrow progression.

The initiation of the morphogenetic furrow is a very complex
regulatory process with several additional signaling pathways
contributing to the kickstarting of pattern formation. One key
morphogen is Unpaired (Upd), a ligand for the JAK/STAT
pathway. At the late second larval instar Upd overlaps with Hh
and is present just at the firing point (Figure 11) (Zeidler et al., 1999;
Chao et al., 2004; Tsai and Sun, 2004). In contrast to Hh and Dpp,
which function to directly promote the initiation of the furrow, Upd
and the JAK/STAT pathway appear to control the timing of when
the furrow is initiated. High levels of Upd at the firing point
correlates with the loss of wg transcription, which, until this
time, had been expressed along the posterior margin including
the firing point (Ma and Moses, 1995; Treisman and Rubin,
1995; Hazelett et al., 1998). As we will see below, early in
development the Wg pathway functions at the posterior margin
to prevent temporally precocious initiation of the furrow. The JAK/
STAT and Dpp pathways relieve this repression at the L2/
L3 transition by inhibiting wg expression (Dominguez and
Hafen, 1997; Ekas et al., 2006; Tsai et al., 2007). By expelling the
Wg morphogen from the firing point and posterior margin, the Hh
and Dpp cascades are free to initiate the morphogenetic furrow.

Comparing the temporal and spatial expression patterns of hh,
upd, and dpp hinted that the initiation of the morphogenetic furrow
could be divided into two phases with each chapter being controlled
by unique combinations of signaling gradients. The first phase of
initiation can be thought of as the primary ignition step. It takes
place at the firing point, generates the first column of ommatidia,
and is controlled by the Hh and JAK/STAT pathways. Mutations
that affect these pathways at the firing point, as expected, often result
in a complete block in pattern initiation—Imaginal discs and adult
flies lack photoreceptor neurons in these instances (Dominguez and
Hafen, 1997; Ekas et al., 2006). In addition to the Hh and JAK/STAT
cascades, the EGF Receptor (EGFR) pathway appears to also
participate in regulating this phase. Disruption of this pathway
using a temperature sensitive allele (Egfrtsla) identified a critical
window where EGFR signaling is required for the initial phase of
pattern formation. The furrow fails to initiate when pathway activity
is eliminated during this window (Kumar and Moses, 2001).
Furthermore, Hh appears to lie downstream of the EGF receptor
cascade as its expression is lost when pathway activity is

compromised. Furthermore, activation of EGFR pathway activity
along the margins is sufficient to initiate new differentiating waves
indicating that this pathway is both necessary and sufficient for the
initial triggering of retinal patterning (Kumar and Moses, 2001).

The generation of each of the remaining columns of unit eyes
can be conceptually thought of as being part of a second phase of
pattern initiation. The production of each column involves the
progression of the furrow through the middle of the disc
(discussed below) and the re-initiation of the furrow at the
margins. The combination of furrow progression and re-
initiation results in a uniform straight wave of differentiation. At
the margins, the second phase of patterning relies on the use of the
Dpp morphogen, as lowering of Dpp signaling directly or via
disruption of upstream regulators blocks its re-initiation from the
margins (Chanut and Heberlein, 1997a; b; Hazelett et al., 1998;
Pignoni et al., 1997). Likewise, blocking either EGFR and/or Notch
signaling along the margins prevents the furrow from reinitiating as
well (Kumar and Moses, 2001). In all three instances the furrow
starts at the firing point and bulges outward—Much like toothpaste
being squeezed out of a tube—Instead of appearing as a uniform line
across the dorsal-ventral axis.

Limiting pattern initiation to a single
firing point

As we have seen above, prior to the initiation of pattern
formation, expression of several morphogen ligands is limited
to either the firing point (Hh, Upd) or the posterior margin
(Dpp). This restriction is important as ectopic activation of
these ligands ahead of the furrow or at any point along the
dorsal, ventral, or anterior margins results in the initiation of
ectopic differentiating waves (Chanut and Heberlein, 1995; 1997b;
Heberlein et al., 1995; Ma and Moses, 1995; Pan and Rubin, 1995;
Strutt et al., 1995; Wehrli and Tomlinson, 1995; Pignoni and
Zipursky, 1997; Ekas et al., 2006; Tsai et al., 2007). The
endogenous and ectopic patterning waves crash into each other
within the middle of the eye field resulting in small, drastically
disorganized eyes. Thus, the initiation of pattern formation,
particularly in the context of an organized, repeated pattern,
needs to be restricted to a single point within the epithelium.
What is the mechanism(s) that restricts the sources of positional
information? Initial insight into this question came from
experiments in which temperature sensitive alleles of wg were
used to inhibit pathway activity within the retina (Ma and Moses,
1995; Treisman and Rubin, 1995). Early in development, wg is
expressed broadly along the entire posterior lateral margin
(Figure 11). But at the end of the second larval instar wg
expression is “pushed” off the posterior margin and is now
restricted to the dorsal-lateral and ventral-lateral
margins—These lie just ahead of and abut the dpp expression
domain (Figure 11). The loss of Wg pathway activity at the start of
the third larval instar results in the initiation of ectopic
differentiating waves from the dorsal and ventral edges of the
eye field. The resulting eyes are small, globe-like, and highly
disorganized (Ma and Moses, 1995; Treisman and Rubin, 1995).
In contrast, ectopic expression of wg within the eye field is
sufficient to block both furrow initiation and progression
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(Treisman and Rubin, 1995; Cadigan et al., 2002). Together, these
results indicate that the roles of the Wg pathway is to first block
precocious activation of the furrow from the posterior margin (at
the L1 and L2 stages) and then later to prevent the emanation of
ectopic furrows from the margins (during the L3).

Ectopic differentiating waves are also seeing igniting from the
dorsal and ventral margins of eye fields that are mutant for emc
(Spratford and Kumar, 2013). In emc mutants, wg expression is lost
along the ventral margin suggesting that Emc functions to activate
transcription of wg. Emc Is a HLH protein and its biochemical
function is to bind to and sequester basic helix-loop-helix (bHLH)
transcription factors away from their DNA consensus binding sites
(Ellis et al., 1990; Garrell and Modolell, 1990; Van Doren et al.,
1991). Thus, in this context, if Emc is directly regulating wg at the
ventral margin, then it does so most likely by removing one or more
bHLH transcriptional repressors from the locus. It is alternatively
possible that Emc and its binding partner regulates an unknown
upstream regulator of wg. Interestingly, this genetic relationship
does not exist at the dorsal margin—Here wg expression remains
unchanged suggesting that Emc and the Wg pathway function
independently from each other to block differentiating waves
from initiating at this margin. It is not clear why the regulatory
relationship between Emc and Wg differs at the two margins. But
interestingly, in two studies it is reported that the dorsal and ventral
compartments of the compound eye are formed at different times
and through different molecular mechanisms (Singh et al., 2002;
Singh and Choi, 2003; Singh et al., 2004; Won et al., 2015). As such,
patterning at the two margins (which border each compartment)
could, by extension, be regulated by unique mechanisms.

Progression of the morphogenetic
furrow—Reaction-diffusion makes a
temporary comeback

A central tenant of the positional information model and the
more recent neighborhood watch model is that cells within a
gradient adopt different fates based on the differences in
morphogen concentration. This is certainly true of situations like
the mammalian limb bud in which distinct types of digits are
produced in response to declining amounts of Shh. However, in
the developing eye, cells that are close to the original source of Hh
(the firing point) as well as those that are located on other side of the
disc all make the same decision—All are turned into identically
constructed columns of ommatidia. How is this accomplished in the
developing fly eye and are there similarities with other patterns in
nature that contains repeated elements?

As the furrow begins to traverse the eye disc the expression
patterns of both hh and dpp are completely reconfigured. Expression
of hh at the firing point is lost and then reinitiated within all newly
formed photoreceptor clusters. At the same time, dpp expression is
extinguished at the margins and is instead activated within the
furrow itself (Figure 11) (Heberlein et al., 1993; Ma et al., 1993). The
relationship between these two genes now resembles what is seen in
the wing in that hh and dpp expressing cells lie adjacent to each
other. Furthermore, genetic studies suggested that Hh functions as a
short-range morphogen to activate dpp expression within the
furrow. Cells within the furrow constrict their apical profiles

significantly which, as a result, increases the density of the
Patched (Ptc) and Smoothened (Smo) surface receptors—These
capture the Hh morphogen (Benlali et al., 2000; Corrigall et al.,
2007; Schlichting and Dahmann, 2008). Strong activation of the Hh
pathway within cells of the furrow results in the stabilization of the
full-length activator form of Ci, which is the sole transducer of Hh
signaling (Methot and Basler, 1999; 2001). It is thought to then
activate several target genes within the furrow including dpp
(Dominguez and Hafen, 1997; Greenwood and Struhl, 1999).
However, other inputs into dpp must exist as it continues to be
activated within the furrow even in the complete absence of Ci (Fu
and Baker, 2003; Pappu et al., 2003). This is consistent with
embryonic and wing development in which Ci appears
dispensable for Hh pathway function (Hepker et al., 1999; Gallet
et al., 2000). It should be noted that others have come to the opposite
conclusion and report that there is an absolute requirement for Ci
within the Hh signaling pathway (Methot and Basler, 2001).

Dpp, in turn, then exerts its effects over a longer range and
directs a broad swathe of cells ahead of the furrow to prepare to enter
a furrow-like state. As cells within the furrow initiate photoreceptor
fate specifications, their nuclei rise, their apical profiles expand, they
exit the cell cycle, downregulate dpp expression, and activate hh
transcription. Likewise, cells that were once ahead of the furrow now
enter G1 arrest, plunge their nuclei basally, constrict their apical
profiles, and activate dpp expression in response to Hh activity from
the newly created column of photoreceptor clusters. This process
repeats itself until the furrow reaches the eye/antenna border. These
rolling waves of hh and dpp expression ensure that all regions of the
eye field are exposed to the same concentrations of both
morphogens at some point during their life history. As such, in
the developing eye, the Hh and Dpp pathways generate identical
structures (32–34 columns of ommatidia) across the entire eye field.
This is markedly different from the mouse limb bud or the leg/wing
imaginal discs—In these tissues there is a concentration gradient
across the epithelial field such that each cell receives a different
dosage of each morphogen and contributes to the development of a
unique structure.

When the Hh pathway is activated, the full-length isoform of
Ci, which functions as an activator (CiA) is stabilized and
prevented from being cleaved into the smaller CiR isoform. In
the wing disc the Hh morphogen gradient translates into
opposing gradients of CiA and CiR proteins (Parker et al.,
2011). Since both activator and repressor forms recognize the
same DNA binding site, competition amongst these two forms
results in the activation of different target genes along the Hh
gradient. Regions with a high CiA/CiR ratio (near the Hh source)
activate dpp while cells with a high CiR/CiA ratio (far from the Hh
source) repress dpp (Parker et al., 2011). Surprisingly, it has
shown that eye development proceeds normally in tissue that
completely lacks Ci (Fu and Baker, 2003; Pappu et al., 2003). This
finding suggests that, at least in the eye, the Hh pathway may not
play a role in directly activating target genes in a concentration
dependent manner. Instead, it suggests that the task of the
upstream Hh pathway is to eliminate default repression that is
caused by the inhibiting form of Ci (CiR). In essence, the role of
the Hh pathway will be to prevent the CiR from repressing target
genes such as dpp. The conversion of the Hh pathway from a
concentration gradient (in the wing) to a binary switch (in the
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eye) may be essential for generating columns of repeated units as
it might allow for the rapid activation and repression of
dpp—This creates a tight, rolling wave of dpp expression.

Turing’s reaction-diffusion model predicted that both activating
and repressing signals are required to generate an array of
periodically spaced repeated units. In the fly eye, how each unit
eye is properly spaced within a column and how each column of unit
eyes is appropriately spaced with respect to adjacent columns
depends on generating a periodically spaced array of
R8 photoreceptors within the eye disc. The R8 cell is the first cell
of the unit eye to be specified and it serves as the founding cell for the
rest of the ommatidium (Ready et al., 1976; Tomlinson and Ready,
1987; Wolff and Ready, 1991). A key regulatory molecule for
R8 specification is the pro-neural transcription factor Atonal
(Ato). The R8 photoreceptors fail to form in ato loss-of-function
mutants and without the founding cell, the remaining
photoreceptors, cone, and pigments cells of the ommatidium fail
to develop as well (Jarman et al., 1994; Jarman et al., 1995). In
contrast, ectopic ato expression either due to mis-expression of ato
itself or through the manipulation of upstream regulators, results in
the formation of ectopic R8 cells and a disruption of the ommatidial
lattice (Baker et al., 1996; Dokucu et al., 1996; Frankfort et al., 2001;
Pepple et al., 2008). Thus, a key step in producing the crystalline like
array of unit eyes is to properly activate ato expression in a
periodically spaced pattern.

Within the developing eye ato expression starts off in a broad
pattern which is then progressively reduced to a column of evenly
spaced single ato positive cells behind the furrow (Figure 12)
(Jarman et al., 1994; Jarman et al., 1995; Baker et al., 1996;
Dokucu et al., 1996; Frankfort and Mardon, 2002). ato is first
expressed in a wide dorso-ventral stripe just anterior to and
within the morphogenetic furrow. As these cells mature through
the furrow and exit on the posterior side, ato expression is lost in
small periodically spaced cell clusters. What remains are evenly
spaced groups of approximately 10–15 Ato positive cells termed
intermediate groups. As these cells continue to mature behind the

furrow, ato expression is extinguished in all but two to three cells per
cluster. These cells are considered the R8 equivalence group as each
cell has the potential to develop into the R8 neuron. A final
refinement takes place so that only a single cell is selected from
this equivalence group to become an R8.

Initially, Hh signaling, first emanating from the firing point
(during initiation) and later from photoreceptor clusters (during
progression), plays a role in activating the broad stripe of ato
expression (Strutt and Mlodzik, 1996; Dominguez and Hafen,
1997; Borod and Heberlein, 1998). This pattern is controlled by
an enhancer element located at the 3′ end of the locus (Sun et al.,
1998). As we have seen above, Hh signaling is unlikely to be
directly activating target genes such as ato. Instead, Hh signaling
most likely contributes to the activation of the broad ato stripe by
eliminating the CiR isoform. The independence of ato from direct
Hh signaling is also seen within the Bolwig’s organ, which is used
by larvae as a phototactic organ (Suzuki and Saigo, 2000). Direct
activation of ato in the compound eye comes from the concerted
activities of several eye selector genes including Ey, So, and Eya
(Tanaka-Matakatsu and Du, 2008; Zhou et al., 2014; Zhou et al.,
2016). These are all expressed in broad overlapping stripes ahead
of the morphogenetic furrow (Bonini et al., 1993; Cheyette et al.,
1994; Quiring et al., 1994; Serikaku and O’Tousa, 1994). In
addition to the RD network, the Notch pathway also
contributes to the broad stripe of ato expression ahead and
within the furrow by downregulating levels of the Emc and
Hairy (H) transcription factors) which are themselves tasked
with repressing ato (Brown et al., 1995; Baker and Yu, 1997;
Ligoxygakis et al., 1998; Nagel and Preiss, 1999; Baonza and
Freeman, 2001). In the eye the Hh and Notch pathways are
connected to each other in that Hh signaling activates expression
of the Delta ligand which then triggers Notch signaling (Baonza
and Freeman, 2001).

As discussed above, the broad band of ato expressing cells must
be refined into a column of evenly spaced single R8 cells. The process
of reducing pro-neural gene expression to single cells is termed

FIGURE 12
Refinement of the atonal expression pattern. Atonal is first activated in a broad stripe ahead and within the morphogenetic furrow. As development
proceeds, this broad pattern is reduced to a column of single cells through a series of refinement steps. During the first step groups of 10–15 cells (called
intermediate groups) retain atonal expression. In the second step, atonal expression within the intermediate groups will be eliminated from all but two to
three cells—These are now called equivalence groups. In the last step, a single cell within the equivalence group will retain atonal expression. This
cell, the R8 photoreceptor, is the founding cell of the ommatidium.
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lateral inhibition. At each refinement stage, cells that will eventually
contribute to future ommatidia (intermediate groups, equivalence
groups, single R8 cells) as well as the ommatidia themselves secrete
inhibitory morphogens which prevent neighboring cells from
becoming photoreceptor neurons. The requirement of inhibitory
signals to generate a periodically spaced array of repeated units, be it
ommatidia or feather buds, was predicted by Turing and is an
essential component of his diffusion-reaction model. Within and
behind the morphogenetic furrow, Hh signaling switches from being
an activator of ato and now, indirectly aids in its repression
(Dominguez, 1999). It does so through the default activation of
the BarH1/2 and rough (ro) genes. Although these transcriptional
repressors were originally thought to be activated directly by the Hh
signaling pathway (Chanut et al., 2000; Lim and Choi, 2004), the
results of Nick Baker and Graeme Mardon suggest that their
activation might result, in part, from the elimination of the CiR.
Irrespective, both factors are expressed broadly within the furrow
(Kimmel et al., 1990; Dokucu et al., 1996; Lim and Choi, 2003) and
function to prune the broad band of ato expression into single
R8 cells with BarH1/2 being responsible for the refinement to
intermediate and equivalence groups and Ro for the pruning
down to a single R8 cell. Loss of either repressor results in
ectopic R8 formation (Heberlein et al., 1991; Dokucu et al., 1996;
Chanut et al., 2000; Lim and Choi, 2003; 2004).

The Notch pathway is also redeployed for lateral inhibition
and aids the Hh pathway in refining ato expression. Loss of
Notch signaling during the different refinement stages results in
extra R8 photoreceptors and abnormal spacing between
ommatidia (Cagan and Ready, 1989b; Baker et al., 1990;
Baker and Zitron, 1995). Since the distance between ato
clusters is too great for Notch-Delta interactions to mediate
lateral inhibition, a secreted morphogen with a much longer
range is required. One such factor is encoded by the scabrous
(sca) locus which encodes a secreted protein that shares
homology with both fibrinogen-related and tenascin
extracellular matrix proteins and binds to the Notch receptor
(Lee et al., 1996; Powell et al., 2001). As with reductions in Notch
signaling, loss-of-function mutations in sca also result in extra
R8 cells that are too closely spaced to each other (Baker et al.,
1990; Mlodzik et al., 1990; Ellis et al., 1994; Baker and Zitron,
1995; Gavish et al., 2016).

The Epidermal Growth Factor Receptor (EGFR) signaling
cascade is an important contributor to the spacing of ommatidia
but does so later than either the Hh or Notch pathways. EGFR
signaling does not appear to play a role in R8 selection as both
specification and spacing of this pioneer neuron are completely
normal when the receptor is removed (Kumar et al., 1998; Yang
and Baker, 2001). R8 specification and spacing are also unaffected
if a ligand for the receptor, Spitz (Spi), is likewise removed (Tio
and Moses, 1997). Spi contains a single EGF-like repeat and once
secreted serves to activate the EGFR signaling cascade
(Schweitzer et al., 1995b). Spi is not required for the
specification of the R8 cell itself but must be secreted by the
R8 for the recruitment of the R2/5 pair of photoreceptors. It is
then made within and secreted from these cells to recruit the R3/
4 photoreceptor pair. After the second mitotic wave generates a
new pool of cells, Spi generated from the last pair of
photoreceptors is sequentially used to first recruit the R1/

6 and then the R7 neuron. Except for R8, all remaining
photoreceptors within the ommatidium require Spi for their
development (Freeman, 1994b; Tio et al., 1994; Tio and
Moses, 1997). A similar requirement is seen for the EGF
Receptor (Freeman, 1996; Kumar et al., 1998; Spencer et al.,
1998; Yang and Baker, 2001).

To preserve the spacing between unit eyes, mechanisms must be
in put in place to limit the range of Spi-EGFR interactions so that
cells lying between ommatidial clusters (product of lateral
inhibition) do not adopt a photoreceptor fate and join
neighboring unit eyes. To do this, the same cells that secrete the
activating Spi ligand also secrete a long-range inhibiting ligand
called Argos (Aos), which inhibits EGFR signaling via two
distinct biochemical mechanisms. At one level, Aos inhibits
EGFR signaling by competing with Spi for binding to the
receptor (Schweitzer et al., 1995a; Sawamoto et al., 1996; Jin
et al., 2000). In a second layer of regulation, Aos also binds to
Spi and sequesters it away from the receptor (Klein et al., 2004;
Alvarado et al., 2006; Klein et al., 2008). Spi is made at higher levels
than Aos but diffuses across a much smaller distance. As such,
within the cluster of cells that will form the future ommatidium
there is sufficient Spi to activate the EGFR pathway. However, since
Aos can travel much farther than Spi, Aos-EGFR interactions are
dominant in cells the lie between developing unit eyes. Amazingly,
built into Turing’s diffusion-reaction model was the understanding
that these types of differences in levels and traveling distances of
activating and inhibiting ligands are necessary for creating
periodically spaced patterns (Figure 13). Loss-of-function
mutations in aos result in cells that lie between clusters adopting
a neuronal fate (Freeman et al., 1992). In contrast, over-expression
of aos results in too few photoreceptor neurons (Freeman, 1994a;
Sawamoto et al., 1994).

As a new column of ommatidia develops, the newly created
photoreceptor neurons serve as a fresh source of Hh. As a result, a
new band of ato expression is activated ahead of the morphogenetic
furrow (which has advanced one column) and the entire process
begins again. This process will repeat itself until the furrow reaches
the eye/antennal border about half-way through the first day of
pupal development. The Hh, Dpp, Notch, and EGFR signaling
pathways function as the activating and repressing factors within
the reaction-diffusion model and their combined activities ensure
that an initially uniform field of undifferentiated cells are
transformed into a crystalline array consisting of hundreds of
identical unit eyes that are organized into several dozen
interlocking columns.

Mechanical cell movements dethrone
diffusion-reaction

One of the hallmark features of the Drosophila eye is that
significant cell movements and/or migrations do not take place
during its development (Ready et al., 1976; Campos-Ortega and
Hofbauer, 1977; Wolff and Ready, 1991). The lone exception is a
set of glial cells that enter the eye field through the optic stalk
(Choi and Benzer, 1994; Perez and Steller, 1996; Rangarajan et al.,
1999). The cells of the eye field are thought to lie motionless while
waves of morphogens pass over them like water rippling over
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river stones. The small lumen between the disc proper and the
overlying peripodial epithelium (Auerbach, 1936) provides a
space for morphogens to pass easily over the disc surface
without undergoing excessive dilution. From this point of
view, cells within the developing eye stand in place and
execute their cellular behaviors in response to different
combinations and concentrations of the morphogens that we
have discussed. When thinking about the movement of the
furrow, the optical illusion of the wave moving across a
stadium is an apt visual. The static nature of the developing
eye was thought to make it an ideal example of Turing’s
diffusion-reaction model. In fact, several mathematical models
based on reaction-diffusion principles have been specifically
proposed to explain how the eye is patterned (Pennington and
Lubensky, 2010; Lubensky et al., 2011; Fried et al., 2016; Gavish
et al., 2016).

The view that cells within the developing eye lie motionless is
based in part on the absence of observable cell migration when
discs are extirpated from larvae, cultured in media, and viewed
using time-lapse video microscopy (Milner and Haynie, 1979;
Milner et al., 1983; Milner et al., 1984; Li and Meinertzhagen,
1995; Tsao et al., 2016; Tsao et al., 2017). However, the culture
media used in these assays often did not allow for significant
survival times and/or disc growth. In addition, limitations in
imaging technology and the absence of advanced imaging
software prevented authors of earlier studies from being able
to accurately assess cell movements. These technological
limitations prevented a rigorous testing of the assumption
that little to no cell movements take place within the
developing eye field. As a result, researchers have instead
relied mainly on snapshots of developing eyes that have been
dissected and photographed at successive stages of development
and other indirect measures such as the behavior of clonal
patches of cells.

A recent study by Richard Carthew’s group describes a
breakthrough in developing a long-term ex vivo culturing system
for the eye-antennal disc. It uses a unique culture media as well as
cutting-edge time-lapse microscopy and image analysis to visualize
the birth and development of approximately four to five columns of
ommatidia over the course of 10–12 h (Gallagher et al., 2022). Their

ex vivo system is an excellent proxy for studying in vivo eye
development because all aspects of gene expression, tissue
growth, cell fate specification, and planar cell polarity appear to
be recapitulated. Surprisingly, and for the first time, the authors
noted that there are extensive cellular movements throughout the
eye field. Within the morphogenetic furrow itself the authors
observed both “fast” and “slow” moving cell clusters—Both of
which are moving in the anterior direction. These relative rates
refer to the movements of these clusters in relation to each other.
The faster moving cells are not yet specified as ommatidia and
instead contribute to the leading edge of the morphogenetic furrow.
In comparison, the slow migrating cells, by moving slower than the
others, appear to emerge from the posterior side of the furrow. A
subset of these cells will develop into a column of evenly spaced
ommatidia and slow to a standstill. By doing so they fall further and
further behind the anterior edge of the furrow.When the developing
eye field is viewed in real-time, the faster moving cells appear to race
ahead of the new ommatidial column and as such the furrow appears
to move forward. The surprising finding that the crystalline growth
of the eye is the product of complex cell movements as opposed to
diffusion-reaction of morphogens across a sheet of motionless cells
is only possible because new cutting-edge technology such as an ex
vivo culturing system, time-lapse microscopy, and sophisticated
image analysis tools were used to revisit a question that seemed
to have been answered decades ago.

As we have discussed throughout this article, the Hh, Dpp,
Notch, EGFR, and Wg signaling transduction pathways set up
chemical gradients that result in repeating waves of gene
expression. As a result, a completely non-patterned and
undifferentiated sheet of cells is transformed into a
neurocrystalline lattice of hundreds of periodically spaced unit
eyes. This transformation closely resembles the process of
generating the array of feathers on a bird. Based on past
assumptions about the static behavior of cells within the eye
field, patterning of the eye has been held up as a textbook
example of the diffusion-reaction model as was proposed by Alan
Turing exactly 70 years ago. However, the mechanical flow of cells
that is described by Gallagher et al., 2022 makes the mechanism by
which the eye develops incompatible with the diffusion-reaction
model as envisaged by Turing.

FIGURE 13
The EGF receptor pathway maintains spacing between developing ommatidial clusters. Once the R8 cell is specified the EGFR pathway is then
reiteratively used to specify the remaining photoreceptor neurons (purple circles). Starting with the R8 cell, each photoreceptor secretes the Spitz ligand.
This activating morphogen is expressed at high levels but only travels short distances. The photoreceptor cells also secrete the Argos inhibiting
morphogen. It is expressed at lower levels than Spitz but travels farther. The differences in levels and distance travelled by the two morphogens
ensures that the unit eyes are spaced at periodic intervals. This is reminiscent of the diffusion-reaction model that was proposed by Alan Turing.
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But models are just that, models. In fact, the positional
information model itself is undergoing a makeover as a recent
study has proposed a new model to potentially replace it. In the
neighborhood watch model, cells do not interpret their position
within a gradient in isolation (as predicted by positional
information) but instead understand their position within the
gradient by comparing themselves to neighboring cells (Lee et al.,
2022). In fact, even the role of Shh as a morphogen, which
appeared to give proof to Wolpert’s positional information
model, has recently been called into question. Instead of
acting as a spatial morphogen, Shh is now proposed to act
transiently as a trigger for the specification of all digits of the
mouse limb in a concentration independent manner (Zhu et al.,
2008; Zhu et al., 2022). Similarly, Hh is seen as functioning as
binary switch instead of as a morphogen gradient in the fly eye
(Pappu et al., 2003). Live imaging of the eye-antennal disc has
forced us to view patterning of the fly eye through a completely
new lens. It will be fascinating to determine if the signaling
pathways that we have discussed here contribute to the flow of
cells that appear to exist within the developing Drosophila
compound eye.

Concluding remarks

Studies of theDrosophila compound eye have, for over a century,
made remarkable contributions to our understanding of
developmental biology including the mechanisms that underlie
tissue determination, specification, and pattern formation
(Weasner and Kumar, 2022). The morphogenetic furrow
provides a unique opportunity to understand the molecular
mechanisms underlying the generation of arrays of periodically
spaced identical units, a pattern that is seen repeatedly in nature.
While describing the morphogenetic furrow we have endeavored in
this article to describe the models of tissue patterning that have
underpinned our conceptual understanding of how the fly eye
achieves its final crystal-like arrangement. By discussing the
morphogenetic furrow within a historical timeline, we hope that
we have impressed upon the reader how new technologies can be
used to force the fly eye to give up ever more secrets to its
development and thus continue to enrich our own understanding
of how patterns in nature are generated. Like the initial studies of the
furrow, many of the seminal discoveries using the fly eye were made
before the molecular age. As such, it is exciting to wonder if applying

more sophisticated tools to other aspects of the fly eye will yield new
insights into specification and patterning.
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