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Endometrial cancer is the most common gynaecological malignancy in

developed countries. Over 382,000 new cases were diagnosed worldwide in

2018, and its incidence and mortality are constantly rising due to longer life

expectancy and life style factors including obesity. Two major improvements are

needed in the management of patients with endometrial cancer, i.e., the

development of non/minimally invasive tools for diagnostics and prognostics,

which are currently missing. Diagnostic tools are needed to manage the

increasing number of women at risk of developing the disease. Prognostic

tools are necessary to stratify patients according to their risk of recurrence

pre-preoperatively, to advise and plan the most appropriate treatment and avoid

over/under-treatment. Biomarkers derived from proteomics and metabolomics,

especially when derived from non/minimally-invasively collected body fluids,

can serve to develop such prognostic and diagnostic tools, and the purpose of

the present review is to explore the current research in this topic. We first provide

a brief description of the technologies, the computational pipelines for data

analyses and then we provide a systematic review of all published studies using

proteomics and/or metabolomics for diagnostic and prognostic biomarker

discovery in endometrial cancer. Finally, conclusions and recommendations

for future studies are also given.
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1 Introduction

1.1 Endometrial cancer – The need for
minimally invasive diagnostic and
prognostic biomarkers

Endometrial cancer (EC) is the most common gynaecological

neoplasm in developed countries, and over 382,000 new cases were

diagnosed worldwide in 2018 (1). In general, EC is diagnosed in

postmenopausal women (85% of cases) and its incidence is rising

due to longer life expectancy and life style associated risk factors.

Women with BMI above 35 have an odds ratio of 5.7 for developing

EC, with an increase of 1.1 odds ratio per BMI unit (2, 3). Exposure

to unopposed estrogens or tamoxifen or genetic aberrations

associated with Lynch syndrome confer a cumulative risk up to

70% (4, 5). Finally, endocrine disruptors and other environmental

pollutants can also increase EC risk (6, 7). Therefore, an alarmingly

high number of women in the general population is exposed to risk

factors for developing EC.

In this context, screening programs would be extremely

beneficial for these women, but, unfortunately, no minimally- or

non-invasive diagnostic tool for EC exists today, and diagnosis

relies on invasive endometrial biopsy and pathology investigation.

A second unmet clinical need in EC is the necessity to accurately

stratify patients. EC is diagnosed at an early FIGO stage in 80% of

the cases, and the five-year survival of FIGO stage 1a is around 95%.

However, a proportion of women diagnosed with early-stage EC

develop recurrent disease, which dramatically decreases survival

rates (8). This represents a challenge as recent projections indicate

that the worldwide EC mortality will increase by 70% by 2040

(Global Cancer Observatory, World Health Organisation -

https://gco.iarc.fr).

Therefore, prognostic biomarkers to reliably predict patient

prognosis are needed, both prior to any intervention - to decide

on the most appropriate treatment and if needed optimally plan the

surgical procedure - as well as post-operatively, to define the most

appropriate adjuvant treatment, and avoid over-treatment and

under-treatment. A number of prognostic markers like

histological assessment of tumour type and grade, hormone

receptor status, PTEN expression, mismatch repair proteins

(MLH1, PMS2, MSH2, MSH6), POLE exon 3 mutation, CTTNB1

mutation, L1CAM overexpression, and TP53 aberrations allow

stratification of patients according to their risk of recurrence (9–

20). In particular, the recent introduction of The Cancer Genome

Atlas (TCGA) molecular classification improved the risk

stratification at the postsurgical (21, 22), but also improved the

concordance between presurgical biopsy and pathology assessment

at hysterectomy (23), which has been a problem in the past (24).

This classification groups EC patients in four clusters with distinct

prognosis and a number of studies demonstrated the reliability and

the clinical applicability of this classification using surrogate

analyses (i.e., IHC and POLE gene mutation analyses). Patients

with POLE mutated tumours have the best prognosis, followed by

mismatch repair deficient tumours and with the final groups having

an intermediate and the worse prognosis (no specific molecular
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profile and p53 mutated, respectively) (14). Recently, also

classification methods fully based on IHC, hence applicable also

in centres with limited access to molecular infrastructures, showed

robustness and reliability (19).

Nevertheless, these methods require invasive biopsies, and

women consider the presurgical biopsy procedures discomforting

and painful (25). Therefore, non- or minimally-invasive prognostic

tools applicable presurgically are urgently needed.

Proteomic and metabolomic profiles are attractive approaches

for identifying biomarkers that can be detected in tissues or body

fluids obtained via non-, minimaly or semi–invasive procedures.

The purpose of the present review is to explore the current research

on the use of proteomics and metabolomics in the context of EC.

This review provides a brief introduction to the wet-lab

technologies, the computational pipelines for data analyses and a

systematic review of all published studies aimed at using proteomics

and/or metabolomics for diagnostic and prognostic biomarker

discovery in EC. This is followed by conclusions and

recommendations for future studies.
1.2 Proteomic and metabolomic
approaches for biomarker discovery

Proteomics and metabolomics represent fields that have grown

significantly in the last decades, thanks to the important

technological advances that allow accurate and sensitive analyses.

Both approaches have been extensively used for biomarker

discovery in various disorders (26–31).

1.2.1 Targeted and non-targeted proteomics
Large-scale proteomics mainly relies on two different

methodological approaches, namely immune-based, targeted

protein microarrays and (non-targeted and targeted) mass

spectrometry (MS). Making use of antibody-protein specific

binding, protein microarrays can be seen as miniaturized

conventional assays, thereby allowing multiplexing and high

throughput. Protein microarrays relevant for biomarker discovery

fall into three categories: analytical microarrays, reverse phase

protein array (RPPA), and bead-based microarrays. Analytical

protein microarrays are also called capture or antibody

microarray because proteins from complex protein lysates are

captured by antibodies or aptamers, which have been previously

immobilized on the surface of an array. Conversely, RPPA is based

on the immobilization of complex samples on a surface and

subsequent probing by pre-selected antibodies. Bead-based

microarrays use capture antibodies immobilised on microbeads

combined with secondary, detection antibodies. Protein

microarrays are highly sensitive and highly specific assays, which

allow relative quantification among different clinical sample groups.

While multiplexity is usually higher in analytical microarrays

compared to RPPA and bead-based microarrays, all methods

share simple sample processing allowing high throughput. A

further immune-based method, Olink technology, uses antibodies

that are labelled with ssDNA and detect proteins in a sample by
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proximity extension assay (PEA). Pairwise antibodies are linked

with complementary ssDNA which upon binding the target protein

are hybridized and extended using a DNA polymerase. Despite

being targeted hypothesis-driven approaches, antibody-based

technologies like protein arrays are solid and promising tools for

biomarker discovery and verification (32–34).

Mass spectrometry measures mass-to-charge ratios of ionized

peptides in order to analyse proteins. Ionization of proteins can be

achieved by electrospray ionization (ESI) or by matrix-assisted laser

desorption/ionization (MALDI). ESI allows the creation of ions in

solution, while in MALDI, ions are created by laser light pulsing on

matrix embedded proteins. A variation of MALDI is SELDI

(surface-enhanced laser desorption/ionization), where the

proteins are applied on a modified matrix surface allowing

binding of specific proteins or proteins classes (35). Mass analysis

of proteins is primarily conducted using TOF (time-of-flight) or

quadrupoles. Sample preparation for mass spectrometry is a

complex process. Upon cellular lysis, it includes subcellular

fractionation, depletion of highly abundant proteins, enrichment

of target proteins, denaturation and protein digestion. Resolving

and denaturation of proteins can also be achieved by SDS

polyacrylamide gel electrophoresis, 1D or 2D polyacrylamide gel

electrophoresis (PAGE) or difference gel electrophoresis (DIGE).

Mass spectrometry is not inherently quantitative but different types

of labelling (isobaric tags for relative and absolute quantitation -

iTRAQ; isotope-coded affinity tag - ICAT, stable isotope labelling

by amino acids in cell culture - SILAC) allow relative and absolute

quantification. Label-free quantification, based on signal intensity,

is an alternative, cost-efficient option but with a relatively low

throughput (36).

Non-targeted mass spectrometry is widely used for biomarker

discovery because of its suitability for hypothesis-free approaches.

Due to the complexity of the workflow, the number of samples

analysed in a discovery setting is usually quite limited, especially

when plasma samples are used. Furthermore, fractionation, depletion

of high abundant proteins or digestion could bias the results and limit

the sensitivity in the untargeted approach. In general, only a small

number of candidates undergo clinical validation using orthogonal

platforms and even fewer are tested in clinical studies (37, 38) as these

studies need first the transition of MS data into immunobased assays

to analyse a sufficiently large and statistically relevant number of

samples. In this regard, protein microarrays for discovery present the

advantage that such translation is not necessary (33).

Proteomics displays a large panel of different tools, which can be

combined for discovery and validation phases and subsequently

integrated in multi-omics approaches (39).

1.2.2 Targeted and non-targeted metabolomics
Metabolomics is the most recent ‘omics’-technology and strives

to measure ideally all metabolites in a given biological sample (40).

Since metabolites are final downstream products of all cellular

processes, metabolomics is closest to the phenotype compared to

the other ‘omics’-techniques.

Similar to proteomics, two approaches with different objectives

are used (41), namely non-targeted and targeted metabolomics.

Non-targeted metabolomics (profiling metabolomics) is a
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hypothesis-free approach, which aims to detect simultaneously as

many metabolites as possible. Depending on the analytical

platform, non-targeted metabolomics reveals metabolites from a

wide range of metabolite classes (42), which are annotated after the

measurement. Thus, the detection of unknown metabolites not yet

annotated in metabolite databases is common in non-targeted

metabolomics. Although being comprehensive, non-targeted

metabolomics does not allow absolute quantification, but can

provide at best only semiquantitative results (42).

Targeted metabolomics is hypothesis-driven and aims to

quantify the absolute concentrations of a predefined set of

metabolites (42). Since all measured metabolites are pre-selected,

a standard calibration curve for accurate quantification can be

prepared for each metabolite. Stable-isotope labelled internal

standards are added at known concentrations to all samples,

allowing compensation for any analytical interferences. With its

advantages such as validated analytical performance and the results

delivered in absolute concentrations, targeted metabolomics is often

used for biomarker validation (42). However, the limited number of

simultaneously quantified metabolites in targeted metabolomics

increases the risk of missing relevant biological processes.

Metabolomic approaches usually use MS or nuclear magnetic

resonance spectroscopy (NMR). While MS offers high mass

accuracy, high resolution, high dynamic range and high

sensitivity (43), NMR is less sensitive but is superior in terms of

structural information content, robustness, and reproducibility (44,

45). However, current analytical methods are not able to cover the

entire metabolome (46). To achieve a high metabolite coverage

combined with quantitative data, the integration of different

metabolomic techniques (multiplatform approaches) is necessary

(46, 47).
1.3 Bioinformatics and statistical
approaches for constructing diagnostic
and prognostic algorithms

Data from proteomic and metabolomic experiments can reveal

molecules that can possibly serve as diagnostic or prognostic

markers. However, even if well-designed and executed,

experiments often result in noisy, biased and incomplete data due

to a multitude of uncontrollable factors. Therefore, thorough data

analysis needs to be performed to eliminate technical noise, while

preserving genuine biological variation between samples. A set of

computational methods used to analyse data are typically bundled

together into one unified data analysis pipeline (Figure 1), which

treats raw data files as an input while providing the list of potential

biomarkers as the output.

Proteomic and metabolomic raw data is first processed by

background correction, signal transformation, outlier detection, and

normalisation. Pre-processing is essential to minimise unwanted

technical bias and enable comparisons of samples. Further, integration

of clinical information enables comparisons of average metabolite and

protein signals between phenotypic groups of interest (48–50).

Background correction addresses different effects in proteomics

and metabolomics. In protein microarrays, it is challenging to
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correctly quantify the fluorescent signal produced by the biological

reaction avoiding local residuary background (51–53). In

metabolomics, background (or baseline) correction is used to

eliminate low frequency artefacts and differences generated by the

measuring instrument (54). Data log-transformation is common

practice, as this renders fold changes symmetric around zero,

reduces potential skew in the data and provides a good

approximation for the normal distribution, which is a prerequisite

for most computational methods (52, 55), especially for linear

models. Following background correction, outlier detection is

performed by the three standard deviations technique and

subsequently removed or replaced.

In large-scale studies based onMS proteomics or metabolomics,

samples will be distributed into several analytical batches, which

may introduce instrumental variabilities into the data set. Such

batch effects can be very destructive as they render comparison

between phenotypic groups ineffective. Normalisation strategies for

metabolomic and proteomic experiments make use of control

samples and control molecules (52, 56, 57), which are usually

assumed to exhibit constant signal levels. Any differences in

signal values are considered to be technogenic and thus, corrected

for. The most popular normalisation strategies are global scaling,

quantile normalisation, cyclic loess and the ones involving linear

models (56).
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After appropriate pre-processing, the data is used for statistical

analysis, where a large number of techniques are available.

Characteristics of data and the research question determine the

choice of the statistical method. In biomarker discovery studies,

molecules that can reliably distinguish between two (or more)

groups, like disease versus controls, are referred to as significantly

differential and can be used as biomarker candidates. The process of

identifying such molecules is termed differential analysis (52, 58).

Classical univariate statistics such as Student’s t-test (requiring

normal data distribution) or Mann-Whitney U test (non-

parametric test that does not rely on parameterized data

distribution) can be used for differential analyses. Differential

analyses have a low probability (usually less than 5%) to deliver

significant results by mistake; however, if repeated multiple times,

as for omics studies, can result in the generation of false significant

hits. Therefore, the number of tests performed needs to be taken

into account. The simplest and one of the most popular methods for

multiple testing correction is ‘Bonferroni correction’ (59), which

adjusts the p-value threshold by dividing it by the number of tests.

This is a conservative approach that may result in a high number of

potential biomarkers being ignored, hence, less stringent methods

can be considered (like Benjamini and Hochberg False Discovery

Rate correction) that keeps the number of falsely significant results

at a predefined level (e.g., 5%).
FIGURE 1

Scheme illustrating the typical computational methods used in biomarker discovery studies to analyse data. The pipeline in figure refers to the
conventional protein microarray analysis (Fishman et al. https://arxiv.org/abs/2201.06074).
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While classical statistical methods analyse the significance of

each molecule of interest independently (60), machine learning

algorithms are able to efficiently assess the predictive performance

of multiple proteins, metabolites, features and even their

combinations. Machine learning is a field of computer science

that studies algorithms capable of learning valuable relationships

from data without being explicitly programmed. Myriads of

machine learning algorithms have been developed over the past

years (61) and are frequently used in biology to discover biomarkers

for various diseases (49, 62). The most popular machine learning

methods are decision tree (63), support vector machine, random

forest (64) and gradient boosting machines (65).

It can be challenging to build reliable machine learning models,

because most model algorithms can learn random patterns that can

only explain data these models were exposed to. This phenomenon

is known as overfitting and might cause models to report

completely irrelevant biomarkers and thus, render the entire

study obsolete. In order to account for potential overfitting and

keep its influence at minimum, various strategies have been

proposed (66). One of the most important techniques is k-fold

cross validation. By using only one part of the data to build a model

(training set) and the remaining part to assess its performance (test

set), researchers can be confident that the biomarkers identified by

the model are not random fluctuations in the training data.
2 Methods

2.1 Study design

With this systematic review we aimed to respond to the

following question: Can proteomics and metabolomics contribute

to identification of biomarkers for diagnostics and prognostics in

EC? The review was conducted according to the PRISMA guidelines

(67) and is registered at the ‘International prospective register of

systematic reviews ’ (PROSPERO, Registration number

CRD42022245880).
2.2 Search strategy, data extraction and
quality assessment

We performed a systematic search of the literature in the

PubMed® and OVID® Embase databases on July 20, 2022 using

the search terms listed in Supplementary Table S1. We focused on

proteomic and metabolomic studies performed in physiological fluids

and tissue samples. There was no restriction on publication date.

Reports were retrieved, and titles/abstracts were screened according

to the inclusion and exclusion criteria (Table 1) independently by
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authors AR and TLR. Disagreements were discussed and consensus

was reached. The search strategy is provided in Table 2.

The selected reports were read in detail and the following

relevant data was extracted (when applicable): author and year of

publication, country, fundings; sample: tissue (kind), plasma, serum

or other body-fluid; study design; methods: omics approach,

targeted/nontargeted proteomics/metabolomics; analytical

methods; patient selection: case/control, stratification of patients

according to reference test; patient characteristics: number of

patients, characteristics of the enrolled patients with EC (e.g.,

mean age, body mass index [BMI], type of EC, histological

differentiation, FIGO stage, menopausal status) and control

patients or healthy women (e.g., mean age, BMI, diagnosis,

menopausal status); study phase and statistical methods:

discovery, validation phase, machine learning approaches used;

differentially abundant proteins and metabolites in the study

groups; diagnostic characteristics (e.g., sensitivity, specificity, area

under the curve [AUC], positive predictive value [PPV], negative

predictive value [NPV]) or prognostic characteristics (overall

survival [OS], disease-free survival [DFS]), and hazard ratios

[HR]; diagnostic or prognostic models; disclosures: affiliations

with industry, industrial funds, patents.

Reporting was performed under the guidance of the PRISMA

diagnostic test accuracy checklist (67). The risk of bias and quality

of individual diagnostic accuracy studies were assessed following

the QUADOMICS tool, an adaptation of QUADAS (68) that was

designed specifically for omics studies (69) (Supplementary Table

S2). This tool focuses on study design, patient selection, index test,

reference standards, flow of timing, pre-analytical and analytical

procedures, and statistical analysis and nine questions per study

were specifically answered (Supplementary Tables S2–S4).

Additional potential financial, commercial and conflict of interest

biases were further examined (Supplementary Tables S5).
3 Results

Systematic literature search led to the identification of 52

studies in EC, 23 on proteomics and 29 on metabolomics (Figure 2).
3.1 Evaluation of the quality of
published studies

The quality of the studies included was assessed systematically

according to the QUADOMICS tool (Supplementary Tables S2–S4;

Figure 3). We evaluated study design and pre-analytical, analytical,

and post-analytical bias of all included studies. The majority of the

studies described the criteria for patient selection (question 1) in
TABLE 1 Inclusion and exclusion criteria.

Inclusion
criteria

research papers, papers in English, studies in humans, blood (plasma or serum), urine, other physiological fluids, tissue samples, at least 10 subjects per
study group.

Exclusion
criteria

abstracts, review papers, papers in other languages, studies in animals, studies in cell lines, studies including only unidentified metabolites,
epidemiological studies, studies evaluating drug effects.
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appropriate detail. Approximately 50% of metabolomic and 20% of

proteomic studies did not reflect the real clinical setting, because

they compared patients with healthy women, who are not likely to

need a diagnostic test (see discussion - question 2). The assessment

of pre-analytical bias (questions 3A and 3B) revealed that only a

fraction of all studies reported appropriate descriptions of the

samples, including the procedures for sample collection and

processing (e.g., centrifugation time, type of blood tube).

Furthermore, the majority of the studies did not report any

information about the time of sample collection, the time
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between blood draw and centrifugation, the time between sample

acquisition and storage, and the number of freeze/thaw cycles. In

75% of the metabolomic and 51% of the proteomic studies sufficient

information on the clinical and physiological factors that can affect

-omics data was not provided (question 4; e.g., BMI, menopausal

status, menstrual phase cycle, fasting status). Approximately 70% of

the included studies reported detailed descriptions on sample

storage and metabolite extraction (question 5). Almost all samples

were stored at -80°C or in liquid nitrogen, but several studies failed

to report this information. The time between the reference standard
TABLE 2 Search strategy for identification of manuscripts in Pubmed and OVID Embase.

Search Query Search results Selected manuscripts Additional manuscripts Included

Endometrial cancer and proteomics* 746 total
570 PubMed
176 OVID
275 duplicates
471 total
224 removed/titles
247 total
175 removed/abstract
Total 72

23
49 removed after full-text reading

0 23

Endometrial cancer and metabolomics* 214 total
89 PubMed
125 OVID
43 duplicates
171 total
70 removed/titles
101 total
70 removed/abstract
Total 31

31
4 removed after full-text reading

2 29
fr
*Search strategy is provided as Supplementary Table S1.
FIGURE 2

Workflow of the systematic search and paper selection.
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and the index test (metabolomics or proteomics) was not clear for

31% of the included metabolomic and 21% of the proteomic studies

(question 6), while in 52% of the metabolomic and 22% of the

proteomic studies, the verification by reference test was not

performed in all patients (question 7). With respect to analytical

biases, we observed that only 21% of all studies provided a detailed

description of the metabolomic analysis (question 8). Most studies

did not provide information on sample randomisation for MS-

based metabolomics, for the use and type of quality control samples,

and occasionally, important MS parameters were not given. In

proteomics, 78% of all included studies described the index test in

sufficient detail. Regarding post-analytical biases, we observed that

24% of the metabolomic studies described the statistical analysis in

sufficient detail, while 42% of studies provided incomplete

description. These studies failed to report information on missing

value treatment, sample-to-sample normalization, data

transformation and scaling and in one case also on model

calculation and cross-validation. In proteomics, 91% of all

included studies reported the statistical analysis in sufficient detail.
3.2 Disclosure of financial and other
potential conflicts of interest

We also evaluated whether studies clearly stated the financial

support, disclosed any potential conflict of interest, whether authors

were affiliated to industry and whether the studies complied with

the open science policy and deposited their data on public
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repositories (Supplementary Table S5). Although older studies

tend not to report any information on the financial support or

the presence of any conflict of interest, more recent studies provide

this information. The source of funding was declared in 88% of the

studies (19 out of 23 proteomic and 27 out of 29 metabolomic

studies) and the presence of any potential conflict was declared in

77% of the studies (14 out of 23 proteomic and 26 out of 29

metabolomic studies). Three studies (6% of those declaring the

source of funding) received industrial supports and four studies

included authors affiliated to companies. Only 25% of the studies

deposited the data in public repository (1 out of 23 proteomic and

12 out of 29 metabolomic studies) and four proteomic studies

declare that data are available upon request.
3.3 Proteomics in endometrial cancer

From the systematic literature search, 72 research papers were

selected based on title and abstract. From these, 19 papers were

excluded because focusing on basic cell mechanisms of

carcinogenesis with no further investigation on the diagnostic or

prognostic potential (70–80), response to metformin (81), side

effect to radiotherapy (82), racial disparities (83, 84), drug

resistance (85–87), premenopausal endometrial physiology (88).

Three studies were in silico analyses (89–91). Additionally, 11

papers (22, 92–101) were based on multi-omics approaches or

focused on pan-cancer biomarkers and will be discussed in

paragraph 3.4, thus resulting in 39 papers for review.
A

B

FIGURE 3

QUADOMICS scoring of all studies included for proteomics (A) and metabolomics (B). Proportion of studies with answers “yes”, “no”, or “not clear” to
each of the signalling questions. Each signalling question is numbered on the left and a short description of each question is given on the right. The
detailed scoring is given in Supplementary Tables S3 and S4.
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Papers that included less than 10 subjects per study group are

not further discussed here (n=16; see Supplementary Table S6 for

details). This resulted in a total of 23 papers focusing on proteomic

biomarkers for diagnosis, prognosis, risk stratification or

classification (Table 3 and Supplementary Table S7). Ten studies

used blood (serum or plasma), two studies used uterine aspirate

whereas eight studies used fresh frozen tissues and three used

formalin-fixed-paraffin-embedded (FFPE) tissues. Various

technologies were used, with the most common being 2D-DIGE/

MS based methods. Although studies on tissue proteomics preceded

chronologically those in body fluid, since this review focus of

diagnostic/prognostic biomarkers where body fluids represent the

most suitable biomaterial, we will start in the next paragraphs

describing studies using body fluids for biomarker discovery.

3.3.1 Blood proteomics
Under the rationale that protein fragments/peptides are

produced in the tissue microenvironment by proteolytic processes

and released into the blood, the first proteomic studies based on
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blood (serum or plasma) were published during the first decade of

2000. Zhu and co-workers (102) performed a biomarker discovery

study using SELDI-TOF-MS on 40 patients and 30 age-matched

healthy controls and identified 13 m/z protein-peaks that were

found in different levels between patients and healthy women. The

sensitivity of each single peak ranged from 40-95%. The authors

further built a decision tree-based algorithm that correctly

identified 95.7% (70) of the samples (30/33 healthy women and

37/40 ECs; Supplementary Table S7). The same authors further

improved the model using only four m/z protein peaks resulting in

sensitivity and specificity of 100% and 92.3%, respectively, in the

training set and 60% and 75%, respectively, in an independent

validation cohort (104). The authors did not identify the proteins

corresponding to the m/z spectra peaks (Supplementary Table S7).

A relatively large study including 199 serum samples from

untreated EC patients (n=92), patients with prolapsed uterus

(n=16), healthy women (n=17) (n=33), and uterine fibroids

(n=74) identified 507 peaks with m/z values ranging from 2,000

to 30,000 by MALDI QTOF-MS (103). Based on predefined
TABLE 3 List of the 23 proteomic studies in endometrial cancer.

Study Study aim Samples * Study design

Zhu, 2006 (102) Diagnostic Biomarkers Serum Case - Control

Kikuchi, 2007 (103) Diagnostic Biomarkers Serum Case - Control

Zhu, 2008 (104) Diagnostic Biomarkers Serum Case - Control

Qiu, 2010 (105) Diagnostic Biomarkers Serum Case - Control

Wang, 2011 (106) Diagnostic Biomarkers Serum Cases only

Enroth, 2018 (107) Diagnostic Biomarkers Plasma Case - Control

Tarney, 2019 (108) Diagnostic Biomarkers Serum Nested case-control

Ura, 2021 (109) Diagnostic Biomarkers Serum Case - Control

Celsi, 2022 (110) Diagnostic Biomarkers Serum Case - Control

Ura, 2022 (111) Diagnostic Biomarkers Serum Case - Control

Martinez-Garcia, 2016 (112) Diagnostic Biomarkers uterine aspirate Case - Control

Martinez-Garcia, 2017 (113) Diagnostic Biomarkers Prognostic Biomarkers uterine aspirate Case - Control

Yoshizaki, 2005 (114) Diagnostic Biomarkers Frozen tissue Case - Control

DeSouza, 2007 (115) Diagnostic Biomarkers Frozen tissue Case - Control

Voisin, 2011 (116) Diagnostic, Prognostic, Therapeutic Biomarkers Frozen tissue Case - Control

Shan, 2016 (117) Diagnostic Biomarkers Frozen tissue Cases only

Ceylan, 2020 (118) Diagnostic Biomarkers Frozen tissue Case - Control

Mauland, 2017 (119) Prognostic Biomarker associated with obesity Frozen tissue Cases only

Akkour, 2022 (120) Diagnostic Biomarkers Frozen tissue Case - Control

Kurimchak, 2020 (121) Prognostic Biomarkers Frozen tissue Cases only

DeSouza, 2010 (122) Diagnostic Biomarkers FFPE tissue Case - Control

Aboulouard, 2021 (123) Prognostic Biomarkers FFPE tissue Case - Control

Janacova, 2020 (124) Prognostic Biomarkers in the tamoxifen users FFPE tissue Cases only
See Supplementary Table S7 for further details.
* FFPE: Formalin fixed paraffin embedded.
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stringent criteria (P < 0.00001, AUC value > 0.80) three peaks were

differentially abundant between the case and the control groups and

showed sensitivity and specificity of 65.2% and 93.9%, respectively

(Supplementary Table S7). Surgical stage of patients could not be

discriminated by the selected m/z peaks but patients with EC and

patients with uterine fibroids could be dist inguished

(Supplementary Table S7).

Qiu and co-workers (105) performed proteomics on 30 EC

patients and 30 control patients on serum collected pre-operatively

and identified 147 differential peaks. They further used different

algorithms based on various peaks (from two to 10) and reported

specificities and sensitivities up to 97% and 100%, respectively

(Supplementary Table S7).

In another study, Wang and colleagues (106) performed a pilot

study to compare the serum proteomics in patients with distinct

stages of endometrial disease, from simple endometrial hyperplasia

(n=6), complex hyperplasia (n=4), hyperplasia with atypia (n=4)

and with early-stage EC (n=6). The authors identified 74 proteins

including potential biomarkers (Supplementary Table S7), but the

number of samples included was very limited.

A large nested case-control study aiming at identifying early

detection biomarkers for EC was based on the UK Prostate, Lung,

Colorectal, and Ovarian cancer screening trial (n =78,216 subjects),

including 112 incident EC cases and 112 matched postmenopausal

controls (108). Among cases who received an EC diagnosis less than

two years after inclusion (n=31), 1,100 total proteins were

identified, 565 of which were co-quantified across all patient

samples and 47 proteins resulted altered compared with controls.

Six candidate protein biomarkers were used to build a diagnostic

algorithm with over 45% sensitivity and 96% specificity

(Supplementary Table S7). A recent study employed PEA

proteomics (PCR-based) and Olink Multiplex assays to search for

candidate diagnostic biomarkers in gynaecologic malignancies,

including EC (107). The authors compared malignant cases with

both a group of healthy controls and with a group of women with

benign tumours. The abundance of 441 unique proteins in plasma

was first evaluated in a discovery phase that resulted in 16 potential

protein biomarkers. The diagnostic value of nine out of these 16

proteins was validated in a replication cohort and resulted in

sensitivities and specificities above 64% and 67%, respectively, to

distinguish EC from healthy women or from patients with benign

tumours (Supplementary Table S7).

Three proteomics studies using serum (109–111) were

performed by an Italian group. In 2021, the authors performed a

pilot study using the serum of 15 EC patients and 15 [non-cancer

patients (109)] and identified 16 proteins with diagnostic potential

(Supplementary Table S7), four of which (ITIH4, CLU, SERPIN1,

and C1R) were validated by western blotting. One year later, the

study was extended to a larger cohort including 60 non-EC controls

and 44 EC patients (110). Proteomic analyses was performed on 10

controls and 10 EC. It is not stated in the study whether the study

population and the samples used for proteomics overlaps with the

previous investigation from the same team (109). The authors

further validated the observed downregulation of SBSN in serum

of patients by western blotting and in silico analysis of the TCGA

database. In a subsequent study, the authors included 44 EC cases
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and 44 non-oncologic patients (111) - the study does not specify

whether this study population overlaps with the previously studied

groups (109, 110). By using PEA on two distinct protein panels

(Immuno-oncology panel and Target 96 Oncology III panel), the

authors identified several differentially expressed proteins and

proposed different models resulting in AUCs up to 0.96

(Supplementary Table S7).

3.3.2 Other body fluids
For diagnostics, another potentially interesting minimally

invasively obtained body fluid is the uterine aspirate, which has

the advantage to capture the tumour heterogeneity better than a

presurgical biopsy (current standard diagnostic method). Uterine

aspirate for proteomic biomarker discovery was used by Martinez-

Garcia and collaborators (112, 113). Since the LC-PRM targeted

proteomics technique allows the quantification of a limited number

of predefined proteins, the authors adopted a sequential workflow:

506 candidate biomarkers were first extracted from a literature

search. Subsequently, the authors determined the presence of these

biomarkers in uterine aspirates by LC-MS/MS and confirmed the

presence of 158 proteins. After method optimisation, a list of 52

candidate biomarkers was selected for PRM design/development

and 26 proteins were differentially expressed between cases and

controls (112). The same set of 52 proteins was subsequently tested

on an independent prospective cohort of 116 women entering the

EC diagnostic workup due to EC suspicion (113). A diagnosis of EC

was confirmed in 69 women and 28 proteins elevated in EC versus

controls had an AUC >0.75. Various tests and combinations of the

five best individual biomarkers were assessed, resulting in

diagnostic and prognostic models with sensitivities and

specificities above 89% and 83%, respectively (Table 3).
3.3.3 Tissue proteomics
3.3.3.1 Frozen tissue

Pioneering studies were conducted as early as 2005 using

iTRAQ. After determining the feasibility and comparing the

performance of iTRAQ and cICAT for proteomics (authors used

less than 10 samples per group; Supplementary Table S6, (125), the

authors used iTRAQ to analyse 40 frozen tissue samples including

proliferative, secretory endometrium and EC (115). Over 1,000

proteins were identified among which six candidate markers (PK,

PIGR, CPN10, MIF, AAT, CKB, and TAGLN) were confirmed as

differentially expressed from their previous pilot investigation (125).

Fourteen proteins were selected for further analyses and after

assessing the associations of each individual protein with

malignant or benign status using the two-sample t-test (p<0.005),

four proteins (PK, CPN10, AAT and CKB) were selected to build a

prediction model. Although these proteins used as single markers

reached maximum AUC of 0.95 (sensitivity: 85%; specificity: 90%;

PV: 87%; PPV: 89%), the use of three markers (AAT, PK and

CPN10) resulted in improved performance and an AUC of 0.96

(Table 3). The validity of these biomarkers was further confirmed by

two-thirds/one-third cross-validation, and also by using dot-blot

and IHC on a panel of independent samples (115). In a subsequent

study, the authors verified five of the identified markers (CPN10,
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S100A8, PIGR, PK-M2 and AAT) and one additional marker

(TIMP-1) by IHC on a tissue microarray (TMA), including 148

samples (two simple hyperplasia; eight complex hyperplasia; 39

endometrioid EC; 13 serous papillary/clear cell or Type II EC; one

carcinosarcoma: 85 benign endometrium samples of which 25

proliferative, 25 secretory, 25 atrophic, and 10 menstrual). They

further showed that CPN10 and PK-M2 could distinguish

hyperplasia and EC cases versus controls (sensitivity and

specificity of 77% and 87%, respectively), whereas the

combination of AAT, CPN10, and PK-M2 resulted in sensitivity

and specificity of 85% and 93%, respectively, in distinguishing EC

versus control patients (126). The same authors subsequently

performed a pilot study on 10 EC patients and 10 control

patients using a novel strategy (drill-down coupled to iTRAQ) to

improve their ability to detect novel proteins and identified 1,529

proteins, among which 40 candidate biomarkers. The PPV and

AUC of these proteins used as single diagnostic biomarkers ranged

between 62%-100% and 0.60-1.00, respectively (Supplementary

Table S7) (116).

In parallel to these studies based on iTRAQ, the first studies

analysing fresh/frozen EC tissues using 2D gel separation followed

by MS were published in 2005. By applying SELDI-TOF-MS to 19

cases of EC and 20 control patients, the authors identified one peak

(m/z 9,600) consistently upregulated and a second peak (m/z

11,300) consistently downregulated in case group versus control

group (114).

Additional biomarker discovery studies were published in

subsequent years, with most of them being pilot or feasibility in

nature and including less than 40 samples. Shan and co-workers

(117) compared EC versus adjacent normal tissue in 10 cases with

iTRAQ-based proteomics and identified 1,266 proteins, 103 of

which were upregulated and 30 downregulated in cancer versus

control tissue (Supplementary Table S7). Results were confirmed by

western blotting, qRT-PCR and functional studies using cell lines.

Ceylan and co-workers (118) also performed a diagnostic

biomarker discovery study based on 2D-DIGE-MALDI-TOF and

compared controls (pre- and post-menopausal women),

hyperplasia and EC. Several proteins were differentially expressed

between controls and EC, controls and hyperplasia (Supplementary

Table S7), or were associated with advanced-stage disease (CAH1,

PPIB, K2C8, and UAP56).

Mauland and colleagues (119) explored the levels of 163

proteins using RPPA in relation to prognosis and obesity. The

authors used patient cohorts from different geographical regions: a

group of samples collected in Norway in two different periods

served as training (n=272 collected between 2001-2013) and

validation (n=68 collected between 2011-2015) cohorts and a

third cohort collected in Texas (USA) was used as extra

validation (n=178 collected between 2000-2009). Beside

correlation with BMI, several proteins were associated with

patient prognosis, including proteins indicative of a low PI3K

activation in non-obese early-stage ER-positive tumours. Data

was further validated by RNA (correlation) and IHC (Table 3).

Akkour and colleagues (120) used 2D-DIGE to analyse tissues from

patients with hyperplasia (n=12), EC (n=12) and age-matched
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proteins (26 between controls and hyperplasia and 32 between EC

and hyperplasia; Table 3). Further modelling was not performed. In

a recent study, Kurimchak et al. (121) used an innovative approach

based on Multiplexed Inhibitor Beads (MIB) and MS to chart the

kinase network in EC (n=20) and adjacent normal tissues (n=16).

The MIB binding value was measured for 347 kinases, 300 of which

were quantitated by both LFQ and s-SILAC, whereas 37 and 10 by

LFQ and s-SILAC, respectively. These analyses showed that SRPK1

was overexpressed in cancer tissue (Table 3). IHC on TMAs (39

serous and 18 endometrioid and 12 normal endometrial tissues),

functional/loss of function studies in vitro and the TGCA and

CPTAC datasets confirmed that SRPK1 is associated with EC and

with poor patient survival.

3.3.3.2 Formalin-Fixed-Paraffin-Embedded (FFPE)
tissue

A number of studies investigated the potential use of FFPE

material for proteomics (Supplementary Table 6), but only three of

them met our selection criteria (Table 3; Supplementary Table S).

DeSouza and colleagues confirmed the feasibility of mTRAQ

targeted proteomics using FFPE tissues (122). The authors laser-

capture-microdissected tissue and examined the tissue of interest

from 10 ECs and 15 proliferative endometrium samples and

detected 13 out of the 17 targeted proteins across 12 samples

(Table 3; Supplementary Table 7).

Janacova and colleagues (124) explored archival material from 36

EC patients, 15 of whom had received tamoxifen adjuvant treatment

for breast cancer, whereas 21 were never exposed to tamoxifen

previously. The authors explored with LC−MS/MS in SWATH-MS

mode 34 tumour samples (each from one subject) and 11 myometrial

tissues adjacent to the tumours. The proteomic approach targeted

over 1,100 different proteins, of which over 900 were consistently

identified. The authors compared clinical features in the tamoxifen

versus tamoxifen naïve patients and identified six upregulated and 22

downregulated proteins. The expression of CAPS and STMN1 was

confirmed with IHC and STMN1 was also associated with poor

patient prognosis (Table 3). Using a very innovative approach (123),

Aboulouard and coworkers compared the proteome profile in EC and

sentinel-lymph-node SLN tissues (Table 3; Supplementary Table 7).

Regions of interest were first microdissected, then analysed with

NanoLC-ESI-MS and a number of potential biomarkers indicative of

lymph node disease were identified.
3.4 Metabolomics in endometrial cancer

Our literature search identified 29 studies using metabolomics

in EC (Table 4 and Supplementary Table S8), with the majority

evaluating the metabolic profiles in blood samples (10 serum, seven

plasma, one serum and plasma, one dried blood). Seven studies

focused on endometrial tissue samples, one on cervical lavage, one

on endometrial brushing and one study on urine samples. Most

studies aimed to identify diagnostic and/or prognostic biomarkers,

better understanding the mechanisms of carcinogenesis (studies in
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tissue samples), and also to determine associations between

metabolic profiles and EC (131, 132). Plasma, serum and urine

represent appropriate sources for discovery of diagnostic/

prognostic biomarkers (155). However, also metabolic profiles of

cervical lavage, brushing endometrial samples, and tissue samples

(if obtained as pre-surgical biopsy) may be of clinical relevance.
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Non-targeted metabolomics was more commonly applied (20

studies) as compared to targeted metabolomics (10 studies). Only

six studies used NMR analysis, and there was one study that

combined NMR with the most commonly used LC-MS/MS (138).

The majority of the targeted metabolomic studies focused on lipids

and amino acids.
TABLE 4 List of the 29 metabolomic studies in endometrial cancer.

Study Study aim Samples Study design

Ihata, 2014 (127) Diagnostic Biomarkers Plasma Case-control

Knific, 2018 (128)
Diagnostic Biomarkers
Prognostic Biomarkers

Plasma Case-control

Strand, 2019 (129) Prognostic Biomarkers Plasma Cases only

Njoku, 2021 (130)
Diagnostic Biomarkers
Prognostic Biomarkers

Plasma Case-control

Kliemann, 2021 (131) Association Plasma & serum Nested case-control

Dossus, 2021 (132) Association Plasma Nested case-control

Breeur, 2022 (133) Association Plasma & serum Case-control study

Audet-Delage, 2018 (134)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Audet-Delage, 2018 (135)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Troisi, 2018 (136)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Shi, 2018 (137) Exploratory Serum Case-control

Bahado-Singh, 2017 (138) Diagnostic Biomarkers Serum Case –control

Lunde, 2020 (139) Exploratory Serum Cases only

Kozar, 2021 (140) Exploratory Serum Prospective observational study

Gu, 2021 (141)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Yan, 2022 (142)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Schuhn, 2022 (143) Diagnostic Biomarkers Serum Case-control

Troisi, 2020 (144) Diagnostic Biomarkers Dried blood samples Multicenter prospective cohort study

Shao, 2016 (145) Diagnostic Biomarkers Urine Case-control

Cheng, 2019 (146) Diagnostic Biomarkers Cervicovaginal fluid Case-control

Jove, 2016 (147) Diagnostic Biomarkers Tissue Case-control

Altadill, 2017 (148) Diagnostic Biomarkers Tissue Case-control

Trousil, 2014 (149) Diagnostic Biomarkers Tissue Case-control

Cummings, 2019 (150) Diagnostic Biomarkers Tissue Case-control

Skorupa, 2021 (151) Diagnostic Biomarkers Tissue Case-control

Arda Düz, 2022 (152) Diagnostic Biomarkers Tissue Case-control

Gatius, 2022 (153) Diagnostic Biomarkers Tissue from Biobank Cases only

Shafiee, 2020 (154) Diagnostic Biomarkers Plasma & tissue Cros-sectional study

Yi, 2022 (101) Diagnostic Biomarkers Tissue & Urine Case-control
See Supplementary Table S8 for further details.
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3.4.1 Blood metabolomics
Metabolomic studies on serum samples from EC patients have

been performed from 2017 and identified a series of metabolites in

differential concentrations between study groups (Supplementary

Table S8). Audet-Delage and co-workers (134) reported that the

levels of 115 acylcholines, monoacylglycerols, and acylcarnitines

were increased while the levels of 22 free fatty acids were decreased

in 26 postmenopausal EC patients (type I and II, recurrent and non-

recurrent) versus 18 patients with benign conditions. The authors

identified a series of metabolites specific for recurrent EC, where

bile acids were increased in type I and sphingolipids in type II

recurrent EC. The authors constructed a diagnostic model

(including the levels of spermine, isovalerate, glycylvaline and

gamma-glutamyl-2-aminobutyrate) with an AUC of 0.92 and a

prognostic model (including 2-oleoylglycerol and TAG 42.2-

GA12:0) that separated between recurrent and non-recurrent EC

with an AUC of 0.90. Troisi and colleagues (136) used a GC-MS

approach and determined the metabolic profiles in 118 EC patients

and 130 healthy women and control patients. Using several

machine learning approaches and distinct patient cohorts, they

constructed and validated a diagnostic model (EC versus healthy

women) with accuracy of 0.99 and a prognostic model (type I/type

II) with accuracy of 0.93. The first was based on increased levels of

lactic acid, homocysteine, 3-hydroxybutyrate, and decreased levels

of linoleic acid, stearic acid, myristic acid, threonine, valine and

progesterone, whereas the latter on increased levels of progesterone

and decreased levels of lactic acid, cystine, serine, malate, glutamate

and homo-cysteine. Bahado-Singh and co-workers (138) performed

NMR analysis in 56 stage I-IV EC patients and 60 healthy women,

divided in discovery (33 ECs and 36 healthy women) and validation

phase (23 EC and 24 healthy women) and constructed several

diagnostic logistic regression models based on lipid levels with an

AUC above 0.8. The highest AUC (0.83) was reported for the

combination of C14:2, PCae C38:1 and 3-hydroxybutyric acid. This

model separated also between stage I-II EC and healthy women

(AUC = 0.82). An exploratory MS analysis by Kozar et al. in 15 EC

and 21 control patients (140) reported a Random Forest model

including Cer 34:1;2, Cer 40:1;2, AC 16:1-OH and 1-

methyladenosine with AUC of 0.92, but reported no validation.

Yan et al. performed a MS-based study (142) which included 23 EC

patients, 30 healthy women, 30 patients with endometrial polyps

and 12 patients with endometrial hyperplasia in the discovery phase

and 50 EC patients (stage I-IV) and 195 healthy women, 171 polyps

and 40 hyperplasia patients in validation phase. Their logistic

regression models for separation between EC and endometrial

polyps included 6-keto PGF1a, PA(37:4), LysoPC (20:1) and PS

(36:0) and showed good characteristics with AUC > 0.90. A recent

MS/MS targeted metabolomic study by Schuhn et al. performed in

20 EC patients, 157 healthy women and 14 control patients (143)

reported that individual metabolites (carnitines and amino acids)

allow stratification between EC and healthy women, and EC and

control patients, with AUCs of 0.82 and 0.85 for malonylcarnitine

and threonine, respectively (Supplementary Table S8). The study by

Lunde et al. (139) performed NMR analysis in serum samples from
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metabolic profiles that allow identification of patients with chronic

pelvic pain after hysterectomy. Using different machine learning

approaches on metabolites with different levels in the two groups

(Supplementary Table S8), several models were built, with the best

diagnostic characteristics (AUC of 0.87) seen for linear support

vector model.

Due to potential variability in the composition of serum, plasma

represents the preferred source for biomarker discovery. However, so

far a minority of the studies on blood metabolomics were performed

using plasma. The first study by Ihata et al. (127) used MS to analyse

plasma from 80 EC patients (stages I-IV), 122 patients with benign

gynaecological diseases and 240 healthy women using training (40 EC

and 120 healthy women) and validation sets (40 EC and 120 healthy

women and 122 control patients). The authors built logistic

regression diagnostic models based on panels of amino acids

(histidine, isoleucine, valine and proline) that separated EC from

healthy women (AUC > 0.91) and EC from control patients (AUC =

0.83; Supplementary Table S8). In a study by Knific et al. (128), 61 EC

patients and 65 patients with benign uterine conditions were

included. By employing LC-MS/MS analysis in training and test

sets, the authors constructed diagnostic logistic regression models to

separate EC from controls (AUC = 0.84) and prognostic models that

allowed stratification of patients with lymphovascular invasion (LVI;

AUC = 0.94) and myometrial invasion (AUC = 0.86). These were the

first diagnostic and prognostic models of EC that included metabolite

ratios. Strand et al. (129) used the same methodological approach but

focused on prognostic biomarkers to identify metabolic differences

between 20 EC patients with long versus 20 EC patients with short

survival, where patients were matched for stage, grade, age, and BMI.

Using Partial Least-Squares Discriminant Analysis (PLS-DA), three

models with AUC up to 0.96 were constructed but none has been

validated yet (Supplementary Table S8). Another MS-based study in

plasma samples (130) focused on diagnosis of EC in obese patients

(BMI > 30) and included 67 EC patients and 69 control patients (test

and training sets). RF algorithms including 20 metabolites separated

all EC patients from controls (AUC = 0.95) and showed even better

characteristics for separation of stage I EC from control patients

(AUC = 0.98). Individual metabolites showed potential as prognostic

biomarkers and separated EC patients with/without LVI (AUC =

0.83; Supplementary Table S8). Other studies on serum/plasma

metabolome in EC patients reported only different levels of

metabolites in EC patients (133, 135, 137, 141) and associations of

individual metabolites with EC (131, 132).

A well-designed GC-MS discovery study analysed dried blood

samples analysed 50 postmenopausal EC patients and 70 patients

without EC and validated prospectively the results among 1,430

postmenopausal women including 16 incident EC patients

(Supplementary Table S8). Their ensemble machine-learning

algorithm included 10 different classification models with

accuracy of 99.9% (144). Among studies reporting serum and/or

plasma metabolic profiles in EC patients, only few diagnostic/

prognostic models have been validated in large multicenter

studies, and the majority still awaits appropriate validation.
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3.4.2 Metabolomics in other physiological fluids
Only two studies searched for biomarkers of endometrial cancer

in urine samples (Supplementary Table S8). Shao et al. (145) used

nontargeted metabolomics to determine differences in urine

metabolic profiles from 25 EC patients, 25 healthy women and 10

endometrial hyperplasia patients and constructed PLS-DA and

Support Vector Machine models, but provided no diagnostic

characteristics. Yi et al. (101) analysed urine, tissue samples, and

brushing endometrial samples and identified 285 metabolites in

differential levels in urine samples from 10 EC patients compared

with 10 control patients. PLS-DA based on the top 100 metabolites

showed an AUC of 0.81. The cervicovaginal fluid from 21 EC

patients and 33 non-EC controls was analysed by NMR using

training and test sets (146). The levels of 29 metabolites differed

between groups and RF and SVM models with accuracy up to 0.78

were constructed (Supplementary Table S8). These studies in urine

samples and cervicovaginal fluid included a small number of

samples thus future attempts for biomarker discovery should

include respective metabolomics profiles from larger group of EC

and control patients.

3.4.3 Tissue metabolomics
Seven studies explored the metabolic profiles in EC tissue. The

first study was published in 2014 (149) and included 10 ECs and 10

control patients. NMR analysis revealed deviated concentration of of

several amino acids, phosphocholine, glutathione, scyllo-inositol,

myo-inositol, and inosine/adenosine in EC tissue (Supplementary

Table S8) and the authors built a PLS-DA model with an AUC of

0.99. Arda Düz et al. (152) employed NMR to analyse tissues from 17

ECs and 18 control patients, and reported a number of candidate

metabolite biomarkers e.g., lactate, alanina, phenylalanine and ratios

glutamate/glutamine/methionine and leucine/isoleucine with AUCs

up to 0.88 (Supplementary Table S8). A recent non-targeted NMR

analysis on 64 EC tissue (patients with different grades of disease) and

10 tissues from patients with benign uterine diseases, identified using

OPLS-DA the levels of a number of metabolites differentiating the

patient groups (151). The concentrations of dimethylsulfone and

phosphocholine were higher whereas the concentrations of

glycerophosphocholine and glutamine were lower in low grade EC.

In grade 1/2 EC, the levels of myoinositol were decreased and in grade

3 there were higher levels of 3-hydroxybutyrate, alanine, and betaine.

The models constructed based on individual metabolites allowed

separation between different grades of tumours with AUCs above

0.90 (Supplementary Table S8).

Other studies that investigated the metabolic profiles in cancerous

tissues contributed mainly to a better understanding of the

pathophysiology of EC, as these studies reported differential

metabolites and dysregulated pathways in EC. Jove et al. (147)

analysed 27 EC tissue samples and 15 normal endometrium samples

by MS/MS and identified 44 differential metabolites including

increased levels of stearamide, monoolein, hypoxanthine, 1,2-

dihexadecanoyl-sn-glycerol (Supplementary Table S8). Comparison

of cancer tissue of different grades identified 26 metabolites with

increased levels of taurine and erythriol and decreased levels of

oleamide. Importantly, this nontargeted metabolomic study used a

novel approach as the authors examined the differences between
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surface EC and the myometrial invasion front and reported 104

differential metabolites (147). Altadil et al. (148) used non-targeted

MS/MS to analyse 39 EC tissues and 17 control samples from

postmenopausal women with stage I-III EC and benign diseases,

respectively. Eighty metabolites, with 42 exhibiting differential levels,

were identified with increased levels of taurine and erythriol and

decreased levels of oleamide (Supplementary Table S8). Specific

metabolites had different levels between cancers and controls

(glutamate-phenylalanine-arginine-tryptophan, palmic amide,

stearamide, oleamide, 2-phosphatidylserine, phosphatidylglycerol,

inosine, and picolinic acid) or between stage I/II and stage III disease

(phosphatidylcholines, phosphatidylethanolamines, and arachidonic

acid; (Supplementary Table S8). Cummings et al. (150) performed a

targeted metabolomic study on 108 cancer tissues, 53 samples of

normal endometrium, 33 atrophic endometrium and 31 samples of

atypical hyperplasia. The authors showed decreased concentrations of a

number of metabolites including 13,14-dihydro-15-keto PGE2 in type 1

and 2 EC versus normal endometrium and 12-HETE in EC type 2

versus type 1; Supplementary Table S8). Shafiee et al. (154) focused on

the pathophysiology of EC and compared 34 cancerous tissues with 34

control endometrial tissues from patients with polycystic ovarian

syndrome (PCOS). Their nontargeted MS-based analysis revealed

changes mainly among lipids. Yi et al. (101) performed nontargeted

metabolomics in urine, intrauterine brushing, and tissues from 24 EC

patients and 18 control patients where PLS-DA identified 74

metabolites of which 47 were found in higher levels and 27 in lower

levels. Comparison of metabolic profiles in tissue samples to urine and

brushing samples showed that 49 of 74 metabolites were also detected

in urine samples and 21 of 74 metabolites in intrauterine brushing

samples, which supports the potential of urine metabolomics profiles

for non-invasive diagnostic/prognosis (Supplementary Table S8). A

recent study explored the metabolic profiles in biobanked tissue

samples from endometrioid (n=20) and serous EC (n=11) (153).

Using non-targeted MS analysis, 232 metabolic differences could be

characterised (Supplementary Table S8).

Three metabolomic studies using tissue samples (149, 151, 152)

identified individual metabolites and constructed diagnostic models

with promising AUC values; however, these studies included very

limited number of patients.
3.5 Combined metabolomics/proteomics

There was only one study that employed a combined omics

approach (101) and performed nontargeted metabolomics on 24

cancer and 20 control tissue samples (Supplementary Table S7) and

also nontargeted proteomics on a subset of 12 cancer and 9 control

tissue samples by LC-MS/MS. The authors identified 1,445 proteins

significantly up- or down-regulated in the EC group compared with

the control group (adj. p<0.05, FC<1.5). To further characterise any

relation between the metabolic and proteomic profiles, the authors

performed network analysis that showed 28 metabolites and 135

proteins with 212 connections. Glutamine, dopamine, noradrenaline,

adenosine-5-monophospate, and guanosine-5’-monophosphate were

the major centres of sub-networks showing differences in amino acid

and nucleotide metabolism.
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3.6 Additional multi-omics or
pan-cancer studies

A number of studies explored the proteome in patients with EC,

but such analyses were part of a larger multi-omics approach, or

part of systems-biology/pan-cancer approaches to study human

disease or to establish databases and repositories. Most of these

studies did not use proteomics for biomarker discovery, but as tools

to understand the pathophysiological processes.

Five studies aiming at improved patient classification were

performed within the TCGA consortium and used RPPA as

proteomic method (22, 92, 94, 95, 99). Two studies demonstrated

the utility of functional proteomics based on RPPA next to genomics

and transcriptomics (92) and further created the bioinformatic

resource ‘The Cancer Proteome Atlas’ (TCPA; (94)). The study of

Kandoth and co-workers (13) explored a cohort of 373 EC patients,

including 307 endometrioid and 53 serous ormixed histology cases to

assess somatic mutations, copy number alterations, RNA expression,

protein expression, DNA methylation and micro-RNA expression.

With regard to proteomics, 293 samples were analysed by RPPA and

several differentially expressed proteins were associated with other

specific molecular tumour features (22). One of the latter two TCGA

studies did not use proteomics (99), whereas the other study (95)

explored 57 carcinosarcomas and -also in this case-, protein analyses

were used to confirm other features identified with the molecular

analyses (like EMT transitions, PI3K/AKT pathway activation, low

steroid hormone receptor signalling). Similar to the TCPA (initiated

within TCGA), the Clinical Proteomic Tumor Analysis Consortium

(CTPAC) generated large proteomic datasets across various tumour

types, and further characterised the proteogenomic landscape in EC

(100). A pan-cancer study (98) aimed to characterise the actionable

mutations across different solid tumours (including EC) and used

RPPA to demonstrate PI3K and MAPK signalling pathways, whereas

one study was focussed on human diseases other than cancer (97).
4 Discussion

In this study, we systematically reviewed all papers that

explored the proteome or the metabolome in search for candidate

biomarkers for prognostic or diagnostic purposes in EC. After

screening the retrieved publications, we included 23 studies on

proteomics (serum, plasma, uterine aspirate or tissue) and 29

studies on metabolomics (serum, plasma, urine, intra-uterine

brushing, dried blood, cervicovaginal fluid or tissue).

Proteomic studies on body fluids and tissues (first fresh frozen

then FFPE) have been published from second half of 2000. Initial

studies were pilot in nature, and enrolled only a few patients

(Supplementary Table S6). The first metabolomic studies were

published one decade later, and study populations were in general

larger than those used for proteomics. Seven out of 23 proteomic

and 14 out of 19 metabolomic studies reported the performance of

the models as AUCs, and several candidate biomarkers show great

potential with AUC values above 0.8. However, the majority of the

reported proteins or metabolites and corresponding models
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represent biomarker candidates that still require validation. The

models developed need evaluation of their statistical performance

by splitting the data into training and test sets (so called “statistical

validation”) and further experimental validation on independent

cohort is essential (156).

With regard to statistical validation, this was performed by two

proteomic studies (two-thirds/one-third cross-validation (115);

leave-one-out-cross-validation (113) and four metabolomic

studies (127, 128, 136, 142). Data on differentially expressed

proteins was also confirmed experimentally using alternative

methodologies like dot-blot (115), IHC (119, 121), RNA/qRT-

PCR (117, 119), western blotting (110, 117), in vitro functional

studies (117, 121) or using existing databases and repositories

(119, 121).

In the context of proteomics, four studies only validated their

data using independent sample cohorts (104, 107, 113, 119), and

one study (115), validated their proteomic-based model in a

subsequent publication using TMAs (126). Three metabolomic

studies performed similar validations in independent cohorts

(138, 142, 144), and one study in particular successfully validated

the metabolic profiles identified in serum samples (136) also using

dried blood and reported excellent diagnostic characteristics (144).

For validation, the authors adopted a prospective design on a very

large study cohort (over 1,000 subjects), therefore, candidate

biomarkers identified in this study bear great potential for

translation into clinical practice. Of interest, these biomarkers

include steroids, which were also selected as candidate molecules

in other studies (135, 157)

A caveat in a number of the included studies on proteomics

(102, 104, 108) or metabolomics (136, 138, 142, 143) is the use of

healthy (not age/comorbidity matched) women, likely resulting in

an overestimated diagnostic accuracy. Also, if pre-menopausal

controls are included, this may induce biases as EC is

predominantly a postmenopausal disease (114–116, 122, 147, 149,

154). Additionally, biomarker discovery preferably includes a

relevant population needing diagnostic tests such as women with

postmenopausal uterine bleeding, or high-risk women, e.g., patients

treated with tamoxifen or with Lynch syndrome, but also women

with PCOS and obesity. Some proteomic studies focussed on these

target groups, like obese subjects (119), or women with previous

exposure to tamoxifen (124). One metabolomic study was

performed in an obese population, and reported a Random

Forest-based diagnostic model combining the top 10 performing

metabolites that stratified stage I EC from other obese patients with

an AUC of 0.98 (130), whereas the second metabolomic study

included patients with PCOS (154).

A final relevant confounder is the ethnic background, known to

affect the proteome profiles (83, 84). However, only one study used

a cohort from a different geographical background, although still

Caucasian to validate their data (119).

In a diagnostic/preoperative workup, ideal biomarkers should

be present in easily and minimally invasively obtained body

specimens. The proteomic studies included in this review

predominantly used blood (serum of plasma) or uterine aspirate.

The pilot studies using urine, although possibly the ideal body fluid
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for biomarker detection, were too small to be included

(Supplementary Table S6). Also in the context of metabolomics,

only a few studies were performed on physiological fluids other than

blood. One study explored cervicovaginal fluid (146) and two

studies used urine samples, both of which have important

limitations as they either used healthy women as controls (145)

or included a few samples only (10 EC patients and 10 control

patients) (101). Despite these limitations, these studies are also

promising and future attempts for biomarker discovery in urine or

cervicovaginal fluids using larger group of EC and control patients

are warranted.

Importantly, although research groups were often able to

validate their own candidate biomarkers in subsequent studies,

rarely data was confirmed by independent authors/researchers,

most probably due to methodological issues and also the

abovementioned biases associated with geographical locations/

ethnicity and lifestyles. Of note, there were candidate biomarkers

that were validated in independent studies, and these represent

highly promising molecules. Besides lipids, phospholipids and

steroids, candidate proteins were reported as well. ANXA1 is

described upregulated by three independent groups in EC tissues,

uterine aspirates, and lymph nodes contaminated with EC cells

(112, 113, 118, 123). ANXA1, annexin A1, plays an important role

in immunity and inflammation and is associated with various

diseases and cancers (158). HSPB1 was found upregulated in EC

tissues and uterine aspirates by two teams (112, 113, 118). The

HSPB1 gene encodes for Heat Shock Protein Family B (Small)

Member 1, a protein that is associated with gynaecological cancers

(159). In addition, SERPINC1, APOA4, APOE and ITIH4 are

described deviated in the serum of hyperplasia or cancer patients

by two teams (106, 109). In metabolomic studies, both molecule

levels but also the ratio between levels of molecules proved to be

good biomarkers, and a number of studies included metabolite

ratios in modelling/analyses (128, 130, 132, 148, 152).

Overall, the major limitations of the studies published up to

data are: i) the use of small study cohorts; ii) the diagnostic or

prognostic accuracy was seldom compared with other known

biomarkers or reference molecules (e.g., CA-125). iii) the 95%

confidence intervals for AUC values, sensitivity and specificity

were rarely reported; iv) as outlined above, validation in

independent cohorts was done by a few studies only; specifically

in metabolomic studies, validation using other technologies was

never performed.
4.1 Strengths and limitations of
the present study

The limitations reported above related to the papers retrieved and

reviewed are reflected also in the present study, i.e., small study

cohorts, potenial pre-analytical and analytical bias, potential bias due

to ethnic background, lifestyle; lack of validations; no comparison

with a reference or gold standard. This, in combination with the

heterogeneity in study designs and in the technologies adopted

precluded us making any meta-analyses of identified candidate
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biomarkers, whose potential can be assessed at a qualitative level

only. This implies the impossibility to make any clinically relevant

recommendation or conclusion at this moment. Nevertheless, the

strength of the present study is that, due to the rigorous systematic

approach we adopted, it offers a balanced and realistic view of the

potential of these technologies for the future. It sets the milestones in

proteomic and metabolomic biomarker discovery research, and

indicates the path to follow in the future (see paragraph 4.2.

Recommendations for further biomarker discovery).

It should be also noted that recently systematic reviews focused

on metabolomic and/or proteomic biomarkers for diagnosis of EC

(160), and liquid biomarkers for diagnosis of EC (161). However,

our systematic review has additional unique strengths: we did not

limit our analyses on one biospecimen only, but focused on

metabolomics and proteomics in different biospecimens; we

rigorously assessed the study quality using QUADOMICS and

analysed additional potential conflicts of interest. The study

quality was also assessed by Karkia and co-workers (161),

however, these authors included only studies published in the two

years prior to the publication, whereas we did not set a time limit for

publication. Additionally, we used strict inclusion and exclusion

criteria, which were defined and deposited in the PROSPERO

repository prior to the start of our work. We finally provide

comprehensive tables with all available diagnostic accuracy data

(AUC, sensitivity, specificity).
4.2 Recommendations for further
biomarker discovery

As thoroughly discussed, body fluids and liquid biopsies

represent the most suitable material for diagnostic and prognostic

biomarkers (162, 163), as they capture the disease heterogeneity

better than a biopsy and they are non- or minimally invasive, thus

create less anxiety in patients. In the context of the most appropriate

body material, plasma preparation is less prone to technical (pre-

analytical) biases than serum. Therefore, plasma represents the

preferred source at least for the discovery phase of non-invasive

diagnostic/prognostic biomarkers. Urine also represents an

important clinical sample for non-invasive diagnostics (155),

calling for further biomarker discovery studies. However, urine

poses a challenge for biobanking, as large sample volumes are

needed for analyses (this applies not only if 24-hour urine needs

to be collected, but also for morning urine, which is common in

biomarker discovery studies).

In terms of methodology, statistical and experimental validation

in independent cohorts should be an intrinsic part of biomarker

discovery studies, and inclusion of study populations with distinct

lifestyles, geographical regions of origin and ethnic backgrounds is

essential to identify candidate biomarkers truly associated with

diseases. Strict standard operation procedures for sample

collection and processing should be prepared by experts and

rigorously followed (164). The importance of adhering to quality

standards is also emphasized in a recent narrative review on

biomarker discovery in EC (165).
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5 Conclusions and future prospects

Clinically, there is a great need for non/minimally invasive

biomarkers of EC that could serve as replacement test for

endometrial biopsy or a triage test to select patients for further

invasive diagnosis. Tissue biomarkers are also needed to allow

preoperative stratification of patients and further individualised

treatment. Recent advances in analytical technologies and

computational approaches that can handle increasingly larger

numbers of features offer unprecedented potentials to develop

diagnostic and prognostic tools. The studies performed so far

were in most cases pilot or explorative in nature, and

heterogeneous in terms of study design, technology, and

methodologies. These aspects need harmonisation for the future,

and the study quality should be scrupulously monitored by journals,

reviewers, and stakeholders in order to ensure translationability of

the discoveries.
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Glossary

AUC area under the curve

BMI body mass index

CPTAC Clinical Proteomic Tumor Analysis Consortium

Da Dalton

DFS disease-free survival

DIGE difference gel electrophoresis

EC Endometrial cancer

ELISA enzyme-linked immunosorbent assay

ER estrogen receptor

ESI electrospray ionization

FFPE formalin-fixed-paraffin-embedded

FIGO International federation of gynaecologic oncology

GC Gas chromatography

HER2/Neu Human Epidermal growth factor Receptor 2

HR hazard ratios

iCAT Isotope-coded affinity tag

IHC immunohistochemistry

iTRAQ Isobaric tags for relative and absolute quantitation

LC Liquid chromatography

LFQ Label free quantification (LFQ)

LVI lymphovascular invasion

MALDI matrix-assisted laser desorption/ionization

MIB Multiplexed Inhibitor Beads

MRM multiple-reaction monitoring

MS mass spectrometry

MSI mass spectrometry imaging

NMR nuclear magnetic resonance spectroscopy

NPV negative predictive value

OS overall survival

PAGE polyacrylamide gel electrophoresis

PCOS Poly Cystic Ovarian Syndrome

PEA proximity extension assay

PLS-DA Partial Least-Squares Discriminant Analysis

PPV positive predictive value

PR progesterone receptor

PRM parallel reaction monitoring

PTEN Phosphatase and tensin homolog

RPPA reverse phase protein microarray

(Continued)
F
rontiers in Oncology
 21
Continued

SD Standard Deviation

SDS sodium dodecyl sulphate

SELDI surface-enhanced laser desorption/ionization

SILAC Stable isotope labelling by amino acids in cell culture

SLN sentinel-lymph-node

SRM Selected-reaction monitoring

TCGA The Cancer Genome Atlas

TCGA The Cancer Proteome Atlas

TMA tissue microarray

TOF time-of-flight
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