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Breast cancer (BC) is the most prevalent malignant tumor, surpassing lung cancer
as the most frequent malignancy in women. Drug resistance, metastasis, and
immune escape are the major factors affecting patient survival and represent a
huge challenge in BC treatment in clinic. The cell- and subcellular organelle-
targeting nanoparticles-mediated targeted BC therapy may be an effective
modality for immune evasion, metastasis, and drug resistance. Nanocarriers,
efficiently delivering small molecules and macromolecules, are used to target
subcellular apparatuses with excellent targeting, controlled delivery, and fewer
side effects. This study summarizes and critically analyzes the latest organic
nanoparticle-mediated subcellular targeted therapeutic based on
chemotherapy, gene therapy, immunotherapy, and combination therapy in
detail, and discusses the challenges and opportunities of nanoparticle therapy.
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1 Introduction

Breast cancer (BC) is the most prevalent of malignant tumor in women worldwide (Sung
et al., 2021). Treatment modalities for BC, including surgery, radiation therapy, and drug
therapy have contributed to an increase in 5-year survival rates for patients. However, these
approaches are also difficult to reduce the incidence of metastasis. Advances in cancer research
and systems biology have revealed that cancer features often intersect and act synergistically.
Moreover, some cancer cells are drug resistant during metastasis. Drug resistance and
metastasis are two major obstacles to achieving good treatment outcomes in BC.

Drug resistance during BC treatment often occurs during chemotherapeutic agents or
endocrine therapy. Although chemotherapy and hormone therapy are excellent techniques
for improving survival rates, they have significant disadvantages. Increased doses of drugs or
combinations of drugs required to effectively control cancers, especially that in advanced
stages, exacerbate toxicity. Acute and long-term side effects adversely impact the patients’
quality of life (Cai et al., 2010; Dao and Hanson, 2012). Moreover, prolonged use of
endocrine drugs can predispose toward drug resistance. Acquired resistance to endocrine
therapy has received increasing attention in recent years, with intrinsic mechanisms
including somatic alterations, epigenetic alterations, and alterations in the tumor
microenvironment (TME) (Hanker et al., 2020). Considering the shortcomings of
traditional treatment methods, actively finding effective new methods is necessary.
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Metastasis breast cancer (MBC) is incurable and has a high BC
mortality rate (Harbeck et al., 2019). Although metastasis usually
occurs several years after the primary tumor is diagnosed about 30%,
6% of new BC cases are initially metastatic (O’Shaughnessy, 2005).
MBCs are difficult to detect and treat due to their small size,
heterogeneity, and dispersion. Distant metastases of BC spread to
distant organs through the blood and lymphatic system, thereby
increasing the difficulty of treatment. BC often metastasizes to
different organ sites, including the bone, lung, liver, brain, and
lymph node. Overcoming tumor recurrence, metastasis and drug
resistance is the goal of both local and systemic therapies.

Nanoparticles have emerged as promising drug carriers in BC
treatment. Nanoparticles offer advantages, such as improved
biocompatibility, multifunctional encapsulation of active substances,
prolonged blood circulation, active or passive targeting, surface
modification, and lower side effects (Adair et al., 2010).
Multifunctional smart nanoparticles could be created by
manipulating molecules at the nanoscale to address drug deficiency
and treat primary breast cancer (PBC) and MBC. Most chemotherapy
drugs are hydrophobic, and thus, unsuitable for intravenous delivery.
The use of nanoparticles in cancer therapy lengthens the half-life and
solubility of drugs, enhancing drug bioavailability (Peer et al., 2007;
Wang et al., 2008; Hanafi-Bojd et al., 2015). Additionally, nanoparticles
increase the permeability and retention of medication within cancer
tissues (Fang et al., 2011). The delivery of nanomaterials can decrease
the dose by achieving pharmacologically efficacious concentrations at
lower concentrations. Moreover, nanomedicines can be combined with
other drugs to reduce side effects and exert synergetic therapeutic effects
(Zhang et al., 2022). These advantages have made nanomedicines a hot
spot for BC treatment.

Nanomaterials also have great advantages in gene therapy.
Genes involved in uncontrolled growth, metastasis, and resistance
to drug therapy are often mutated, amplified, or overexpressed in
BC. Monoclonal antibodies or small molecule inhibitors are used in
targeted therapy to block the vital functions of oncoproteins and
reverse the cancer phenotype. However, monoclonal antibodies are
difficult to be taken up by cells, and the therapeutic effect of small
molecule inhibitors is often unsatisfactory. The advantages of small
interfering RNAs (siRNAs) are more obvious, but the main obstacle
is overcoming the problem of delivery of siRNA molecules to the

cytosol of tumor cells. Nanoparticle as siRNA carriers provide
advantages such as increased cellular uptake and integration into
components with specific functions (Ngamcherdtrakul and
Yantasee, 2019). The development of siRNA therapeutics is
mostly in the area of undruggable targets and has advantages in
the area of drug targets. Nanomaterials with siRNA cocktails
targeting several pathways can be delivered with less restrictions
and better therapeutic efficacy simultaneously. Nanomaterials
overcome the disadvantages of monoclonal antibodies, small
molecule inhibitors, siRNAs, and can be used in combination,
thereby opening the door to new therapeutic possibilities.

Nanomaterials crosses the biological barrier to achieve targeted
and precise therapy. The intelligent andmultifunctional nanoparticles
can cross biological barriers and release inside or outside the target
cell; finally, reaching the target. Nanoparticles are frequently used to
establish and visualize cancer cells as well as deliver therapeutic
medicines to prolong survival. This is done by using their unique
chemical abilities. Targeting molecules, medicinal substances,
fluorophores, or radioisotopes are coupled with nanoparticles in a
single formulation. For in vivo navigation to cancer cells, biological
targets, such as human epidermal growth factor receptor 2 (HER2),
can be chemically attached to nanoparticles.

The results achieved by cancer nanomedicine in the past decades are
encouraging. Seven nanomedicines have been approved and more than
20 have entered preclinical evaluation for BC (Jiang et al., 2022). Due to
the high drug load, extended blood circulation period, decreased
enzyme-mediated drug degradation, and sustained drug release,
nanocarrier systems function better than drug–ligand conjugation (Li
et al., 2014). However, the development process encounters bottlenecks,
such as the relative lack of clinical agents for BC relapse, resistance, and
metastasis, are mostly stuck in preclinical studies.

This review discusses the challenges of treating drug resistance
and MBC and presents advances in nanoparticle-based therapy
(Scheme 1). Targeted therapy of PBC and MBC, nanomaterials
based on chemotherapy drugs, and siRNA and antibody delivery are
introduced. Additionally, the nanoparticle-mediated modulation of
TME induced to trigger anticancer immune responses for managing
PBC and MBC is examined. Finally, insights are offered on the
production and use of nanoparticles to accelerate the development
of nanoparticle therapy for BC.

2 Nanoparticles overcome the
challenges of breast cancer
chemotherapy

2.1 Nanoparticles overcome
chemotherapeutic resistance

Owing to the heterogeneity and dispersed nature, more than
90% of BC-related deaths are caused by MBC, which is resistant to
conventional anticancer therapy (Mehlen and Puisieux, 2006;
Chaffer and Weinberg, 2011). Multidrug resistance (MDR) is a
common occurrence in clinical oncology, and one of the most
prevalent therapy limits in patients with recurrent malignancies.
P-glycoprotein (P-gp) has been linked to theMDR (Li et al., 2010). A
drug delivery platform using nanotechnology to treat cancer has
been developed that will partially or completely reverse this drug
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resistance. By inhibiting P-gp, the d-a-tocopheryl polythene glycol
1000 succinate (TPGS) may increase membrane permeability to a
drug, improve drug absorption and decrease P-gp-mediatedMDR in
cancer cells (Constantinou et al., 2008; Ma et al., 2010). Poloxamer
235 was added as a pore-forming agent to improve medication
release, in the poly (lactic-co-glycolic acid) (PLGA)-TPGS matrix
system because the porous PLGA-TPGS/Poloxamer was more likely
to be taken up by docetaxel-resistant cells (Tang et al., 2015).

Nanomaterials reduce the occurrence of drug resistance by
increasing the uptake of drugs or altering the intracellular
distribution of drugs after uptake. Doxorubicin (Dox)-carrying
polyester-based hyperbranched dendritic-linear nanoparticles
modify subcellular drug distribution by endocytic. Notably, this
type of nanoparticle boosted the induction of apoptosis and changed
the levels of enzymes and signaling pathways components. Drug
resistance can be overcome using polymeric carriers for controlled
drug release with significantly greater effectiveness (Zeng et al.,
2014). Solid–lipid nanoparticles (SLNs) have attracted great interest
as drug carriers because they have biocompatible lipid nuclei and
amphiphilic surfactants on the outer surface and benefits from
physical stability, prevention of drug degradation, ease of
preparation, and low toxicity (Muller et al., 2000). In a study,
membrane resistance was circumvented without the aid of
chemotherapeutic sensitizers because SLN-loaded Dox could
enter the cytoplasm through endocytosis (Chawla and Amiji,

2002). Because SLN-Dox increased the amount of Dox in drug-
resistant MCF-7/Adr BC cells, the risk of mortality may be higher
(Kang et al., 2010).

Non-specific targeting nanoparticles overcome chemotherapeutic
resistance by increasing drug accumulation in cells, although with
lower efficiency compared with specific nanoparticles under certain
stimuli. For instance, the pH-responsiveness of nanoparticles allowed
a model drug to swiftly escape the endosomal system and reach its
intended destination. The side carboxyl group on glutamic acid is “on-
off” ionized, giving it pH sensitivity. Consequently, the monomethoxy
poly (ethylene glycol)-b-P (D,L-lactic-co-glycolic acid)-b-P
(L-glutamic acid) (mPEG-PLGA-PGlu) nanoparticle exhibits dual
responsiveness compared with free Dox in vitro. The pH-
dependent and enzyme-sensitive nanomedicine showed increased
toxicity and cellular uptake in MCF/Adr cells (Xu et al., 2015).
The pH sensitivity of mPEG-PLGA-PGlu nanoparticles can be
changed by controlling the length of PGlu fragments. Moreover,
owing to dual sensitivity and target accessibility, the nanoparticle-
enclosed model drug can quickly escape from the endosomal system.
The suppression of autophagy reportedly reduced the tumorigenic
capacity of BC stem cells (CSCs) and overcame the radio- or
chemoresistance of CSCs (Chaterjee and van Golen, 2011; Kumar
et al., 2013; Yue et al., 2013).

Studies have shown that the deletion of genes associated with
autophagy, such as LC3, ATG4, and ATG12, or the deletion of

SCHEME 1
Nanoparticle-based therapy for reducing drug resistance, metastasis, and remodeling of tumor microenvironment in breast cancer.
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autophagy-related genes can lower the CSC subpopulation,
inhibit the development of mammospheres, and increase
tumor-free survival (Wolf et al., 2013; Yang et al., 2013; Ojha
et al., 2015). Nanog, Sox2, and Oct4 were extremely
downregulated by autophagy blockade, and autophagy
inhibition promoted efficient of chemotherapy against CSCs.
Autophagy inhibitors and chemical agents were coupled by
Sun et al. to synergistically kill both common CSCs and bulk
tumor cells. The nanoparticle-based combinatorial delivery
system is expected to develop further to enhance the
anticancer activity of chemical agents and autophagy inhibitors
(Sun et al., 2016).

2.2 Nanoparticles enhance antimetastatic
effect of chemotherapy

Although various medications are available and useful for
treating early stages of BC, not many therapeutic choices are
both efficient and pleasant for those who advance to metastatic
BC or MBC. Because most conventional chemotherapeutic agents
are non-targeted, patients with BC progression or MBC undergo
drug changes or use drug combinations, the toxicity of which is
difficult to tolerate. The nanocarrier delivery of anticancer drugs
protects drugs from degradation, reduces systemic toxicity, and
improves biodistribution. Precisely designed nanoparticles with

FIGURE 1
Effective delivery of docetaxel (DTX) by amphiphilic terpolymer nanoparticle (NP) system for the treatment of brain metastasis. (A) Schematic
illustration of DTX-NP, recruitment of Apo-E, enhanced EPR and breached of the blood-brain barrier. (B) Treatment and imaging schedule. (C) In vivo
images of brain tumor bioluminescence. (D) An increase of the total tumor radiance. Data are represented as mean ± SD (n = 6; *p < 0.05, **p < 0.01,
***p < 0.001). Reproduced with permission (He et al., 2017) Copyright © 2016 Elsevier B.V.
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targeting can guide anticancer drugs to the site of action for
precision treatment (Zheng et al., 2021). Therefore, the discovery
of new precision medications for BC is critical.

Brain metastasis is a deadly condition with few available
treatments and a very short life expectancy. Systemic
chemotherapy although typically ineffective in treating brain
metastasis, has a modest effect on peripheral BC metastases. The
blood-brain barrier (BBB) is accountable for this resistance. A BBB-
penetrating amphiphilic polymer-lipid nanoparticle system was
developed to efficiently deliver docetaxel (DTX) for treating of
brain metastases in triple negative breast cancer (TNBC).
Although DTX and tamoxifen are first-line drugs for treating BC,
their different metabolic pathways often cause antagonism The
antagonism between the two drugs can be reversed by
nanoparticles. Maltodextrin, polysorbate 80 (PS 80), poly
(methacrylic acid), and n-dodecane form an amphiphilic
copolymer that stabilizes ethyl arachidate which formed the
nanocarrier (Figure 1A). Treatment with DTX-nanoparticle
enhanced DTX circulation dramatically in comparison to
Taxotere, and increased the median survival time in animals with
brain tumors (He et al., 2017). This is explained by factors such as
the improved blood circulation stability of nanoparticles, effective
cellular absorption, graded drug metabolism in the tumor, and well-
organized drug transport to tumor (Figures 1B–D).

Approximately 70% of patients withMBC have bone metastases,
which can cause grave skeletal problems such as pathological
fractures, spinal cord compression, or bone discomfort (Coleman,
2006; Buijs and van der Pluijm, 2009). Bone metastasis in BC tend to
spread throughout the bone because specific target expression and
chemoprevention of the bone microenvironment is lacking (Meads
et al., 2008; Croucher et al., 2016). Although initial breast tumors
and visceral metastases do not express β3, metastatic bone cancer
cells do in preclinical types of BC. Mechanistic investigations have
demonstrated that BC-mediated activation of β3 in bone tissue
requires transforming growth factor (TGF)-signaling in the Smad2/
Smad3 pathway. DTX-containing micellar nanoparticles that are
integrin avβ3-targeted (avβ3-phospholipid/polysorbate 80) suppress
bone metastasis and tumor-related bone destruction more potently
than free-DTX (Ross et al., 2017).

In patients with TNBC, metastasis is the main cause of the death,
of which pulmonary metastases accounts for approximately 36.9%
(Waks and Winer, 2019), because the lung consists of dense
capillaries that facilitates the adhesion of circulating tumor cells
(Liang et al., 2020). Tumor proliferation and monitoring of immune
evasion are both favored by the immunosuppressive milieu that
exists in the lung. Inhaled nanodrugs that deliver anticancer drugs
directly to the lungs would be beneficial in inhibiting lung
metastases. The treatment of metastatic lesions is also achieved
through nanomedicine delivery (Kuzmov and Minko, 2015).

In addition to the important role played by tumor cells in
metastasis, their surrounding stromal cells also provide a
favorable environment. The development, angiogenesis, and
proliferation of tumors are significantly influenced by stromal
cells. For instance, fibroblasts subjected to paracrine signals
secreted from malignant neoplasms, differentiate into activated
cancer-associated fibroblasts (CAFs) (Tarin and Croft, 1969).
Most CAFs in the tumor stroma release cytokines that affect
both stromal and tumor cells, and they display high levels of

smooth muscle actin (α-SMA), which encourages cell division
and promotes the malignant phenotype (Cirri and Chiarugi,
2011). Matrix metalloproteinases (MMP), degrade the
extracellular matrix (ECM) and promote the migration of tumor
and stromal cells into tissues and the bloodstream (Cirri and
Chiarugi, 2011; Eckhardt et al., 2012). Stromal cells provide ECM
to tissues that have undergone remodeling, constructing a scaffold
that supports tumor cell growth.

Cellax was produced through the ester-mediated covalent
conjugation of DTX, PEG, and acetylated carboxymethylcellulose.
A polymer conjugate that significantly reduces α-SMA levels by 82%
or 70% in different BC models, respectively. After therapy, tumor
interstitial fluid pressure, tumor matrix, and tumor vascular
permeability all rose by more than 30%, 2.5 times, respectively.
Approximately, 70-fold increase in tumor perfusion was observed.
Cellax treatment reduced lung nodules from 7- to 24-fold, however,
native DTX and nab-paclitaxel (PTX) therapies were ineffective. A
much better antimetastatic outcome was observed with the
antistromal action of Cellax treatment. These results support the
more efficient targeting of tumor stroma by Cellax (Murakami et al.,
2013).

3 Nanoparticle-based gene therapy

Compounds, such as monoclonal antibodies, proteins, peptides,
nucleic acid aptamers, polysaccharides, and small molecules, can
serve as targeting moieties (Chen et al., 2013; Noble et al., 2014).
Monoclonal antibodies and small-molecule inhibitors are examples
of conventional medicines. These compounds can only impact a
small subset of proteins and processes, or “druggable” targets. Only
extracellular or proteins that have been liberated from the cell
membrane are targeted by monoclonal antibodies. siRNAs are
frequently used to silence genes because RNA interference is a
dependable and established technique. The inhibition of
oncoprotein expression at the mRNA level inhibits the synthesis
of active proteins, making RNA interference more effective than
monoclonal antibodies and small-molecule inhibitors, which only
restrict the activity without preventing the production of new active
oncoproteins.

Since 1998, siRNA has been used for down regulating target
genes expression. All genes responsible for malignancy hallmarks,
such as angiogenesis, invasion, and metastasis, can be targeted for
silencing. Because of the anionic charge and the large molecular
weight of its phosphodiester backbone, it is challenging for siRNA to
traverse negatively charged cell membranes (Wang et al., 2010).
Moreover, siRNA has low cellular absorption and a considerably
short blood half-life in the blood, delivering siRNA to tumors in vivo
has proven challenging (Choi et al., 2007; Wang et al., 2010).
Additionally, unmodified siRNAs can activate the innate immune
system. To overcome these difficulties, siRNA needs to be further
shielded when used in a therapeutic environment.

The delivery of siRNA using nanoparticles is the most promising
method available for treating cancer. Patisiran (Alnylam), the first
siRNA therapeutic approved by the US Food and Drug
Administration (FDA), was used to manage heritable
transthyretin-mediated amyloidosis (Adams et al., 2018; Ledford,
2018). This positive outcome supports the potential use of siRNA
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technology in therapeutic applications. Potentially, systemic
clearance may be slowed by siRNA-loaded nanoparticles with a
size range of 30–200 nm. Endosomal escape is a significant cellular
obstacle for siRNA delivery (Dominska and Dykxhoorn, 2010).
Nanoparticles must be able to damage endosomal membranes to
release from the endosome and enter the cytosol, where they may
function. To overcome these challenges, various siRNAmodification
techniques have been developed; however, these modifications may
reduce the effectiveness of siRNA-mediated silencing (Bramsen
et al., 2009; Pascut et al., 2015).

Different elements of cancer can be simultaneously targeted
through multi-siRNA delivery using nanoparticles. This need can be
met by simultaneously knocking down several genes by delivering
different siRNAs on different nanoparticles to the same tumor.

3.1 Nanoparticles overcome resistance to
gene therapy

Because the HER2 oncogene and associated genetic components
amplifying in the amplicon on the chromosome, the clinical subtype
known as HER2+ BC displays HER2 overexpression on the tumor
cell surface (Nassar et al., 2014). Between 15% and 25% of invasive
BCs fall under this clinical subgroup (Prat et al., 2014). Clinically,
between 20% and 50% more cases of brain metastasis occur in
patients with HER2 or triple-negative form of BC (Kennecke et al.,
2010; Aversa et al., 2014).

For systemic administration of siHER2, Ngamcherdtrakul et al.
created a delivery system based on mesoporous silica nanoparticles
(MSNP) with trastuzumab as the target drug. The nano-
construction comprised cross-linked polyethylenimine (PEI) and
PEG surface modification (50 nm) on top of an MSNP core.
Although PEI boosted the endosomal escape of siRNA, PEG
enhanced overall blood compatibility, provided steric effects to
avoid aggregation, and shielded siRNA from enzyme-mediated
degradation. Trastuzumab was further conjugated to improve
selectivity and homing abilities (Ngamcherdtrakul et al., 2015).
Based on these findings, mesoporous silica nanoparticles were
developed to concurrently distribute trastuzumab, DTX, and
siHER2. When combined with targeted ultrasound aided by
microbubbles, trastuzumab–siHER2–NP(DTX) effectively caused
a therapeutic effect in mouse brain breast tumors
(Ngamcherdtrakul et al., 2022). The treatment of brain
metastases from HER2+ BC may be improved by use of
nanomaterials. This adaptable nanoparticle platform may
combine the administration of multiple treatment modalities,
ensuring that they reach the target cells simultaneously to
provide synergistic effects.

3.2 Nanoparticles enhance the
antimetastatic effect of gene therapy

siRNA uses a precise mechanism to achieve protein knockdown.
Multiple siRNA nanoparticle delivery systems have been created to
limit BCmetastasis. In a study, the inhibition of the NF-κB pathway,
inhibited the expression of the enzyme matrix metalloproteinase-9,
which degrades the ECM and basement membrane and promotes

cancer cell extravasation (Deryugina and Quigley, 2006). In
4T1 cells, migration and invasion were prevented by blocking the
NF-kB pathway (Yu et al., 2016). Yu et al. used a micelle based on a
polymer to deliver siRNA against the NF-kB component p65 (sip65)
poly (ethylene glycol)-block-poly (aminolated glycidyl
methacrylate) (aminolated glycidyl methacrylate) poly (2
(diisopropylamino) ethyl methacrylate) block polymer (PEG-
b-PAGA-b-PDPA) triblock copolymers and found that the
sip65 delivered by this micelle prevented the orthotopically
implanted 4T1 tumors from metastasizing to the lung (Yu et al.,
2016). In TNBC, the oncoprotein Myc is frequently overexpressed.
To deliver cyclin-dependent kinase 1 (CDK1) siRNA to TNBC cells
with elevated Myc expression, Liu et al. used a cationic lipid-based
PEG-polylactic acid (PEG-PLA) nanoparticle (Figure 2A). In vitro,
decreased Myc expression has been linked to impaired colony
formation, decreased cell viability, and increased apoptosis
(Figures 2B–E) (Liu et al., 2014).

Previous research has shown that TGF-mediated epithelial-
mesenchymal transition (EMT) depends on β3 integrin (Parvani
et al., 2013). The epithelial markers cytokeratin (CK)19 and
E-cadherin are upregulated, and N-cadherin and PAI1 are
downregulated when β3 integrin is silenced in vitro (Parvani
et al., 2015). Increased circulation time and tumor cell absorption
were achieved by adding PEG, which was coupled to an RGD
peptide that is recognized by β3 integrin, to the lipid ECO-based
nanoparticles that carry β3 integrin siRNA (Iyer et al., 2013). RGD-
ECO/siβ3 lipid nanoparticles significantly reduced the burden of the
main tumor, primary tumor recurrence, and metastatic tumor in
nude mice engrafted with TNBC (Parvani et al., 2015).

BC cells that have spread to the brain release C-C chemokine
ligand 2 (CCL2), which attracts myeloid cells and aids in the
formation of metastatic tumors [66]. Nanoparticle-siRNAs,
reduced the amount of tumor in mouse brains by knocking
down long non-coding RNA associated with BCBM (Lnc-BM) in
vivo. Lnc-BM caused the release of CCL2 by activating a
downstream signaling pathway, and Lnc-BM/JAK2/STAT3 was
involved in generating positive feedback [67].

4 Nanoparticles enhance
immunotherapy

4.1 Nanoparticles enhance innate immunity

Nanotechnology has the potential to be beneficial in reversing
immunosuppression within the TME (Mao et al., 2020).
Immunosuppression frequently renders the anticancer immune
response ineffective, allowing some cancers to evade immune
monitoring and spread. The most studied immune evasion
mechanisms in BC include the expression of inhibitory co-
stimulatory molecules, tumor-associated macrophages (TAM) in
the microenvironment, maturation of dendritic cells (DC), killing
activity of natural killer (NK) cells, and the presence of inhibitory
factors.

4.1.1 Macrophages
Macrophages are one of the most prevalent immune cells in

BC. Increased macrophage density is associated with many clinical
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traits, such as invasiveness, metastasis, immunosuppression,
neovascularization, and a subpar response to treatment. TAMs
are mostly proinflammatory macrophages that accelerate tumor
growth by generating proangiogenic and inflammatory cytokines
during the initial stage of tumor development (De Palma et al.,
2017; Salmaninejad et al., 2019). Targeting and reprogramming
tumor macrophages can enhance immunotherapy (Franklin et al.,
2014). In cancer, macrophages exhibit a continuum of activation
states with two extremes. Traditionally activated M1-like
macrophages (M1 cells) modify host defense against infections
and activate antitumor immunity. However, a protumorigenic
response can be mediated by activated M2-like macrophages
(M2 cells), which do so by boosting angiogenesis and reducing
the cytotoxic immune response. As a result, a novel and potential
treatment approach involves changing the tumor immune milieu
by altering TAM polarization.

CD137, mostly expressed in activated leukocytes, belongs to the
superfamily of the tumor necrosis factor (TNF) receptor.
CD137 promotes monocyte and macrophage migration to the
TME by increasing Fra1 expression. An F4/80-targeted liposomal

nanoparticle was created that contained the anti-CD137 blocking
antibody (Figures 3A,B). BC metastases to the bones and lungs were
considerably reduced in mice when F4/80 + monocytes/
macrophages were depleted (Figures 3C–F). Targeting F4/80 +
macrophages and suppressing their CD137 signaling may
successfully prevent the occurrence of tartrate-resistant acid
phosphatase positive osteoclasts in the bone metastatic lesions of
BC (Jiang et al., 2019).

Nanosized therapies are unable to penetrate efficiently due to a
robust ECM and significant interstitial fluid pressure. An acid-
triggered size-changeable nanoparticle (aptamer/acid sensitive
linker crosslinked dendrigraft poly-L-lysine (DGL)/zoledronic
acid, or Apt@(DGL-ZA)n nanoparticles) with effective tumor
dispersion, extravasation, and penetration was developed to solve
this problem. DGL was crosslinked using a mild-acid responsive
linker [1,6-bis(4-formylbenzoyloxy) hexane], which resembles
natural aberrant proteins to promote tumor autophagy. Charge
attraction loaded zoledronic acid (ZA), a macrophage
conditioning agent onto DGLs. For a tumor-homing effect to
(DGL-ZA)n nanoparticles, a tenascin-C targeting aptamer (GBI-

FIGURE 2
Cationic lipid-assisted PEG-PLA nanoparticle system delivers siCDK1 for the treatment of triple-negative breast cancer (TNBC) with over-expressed
of c-Myc. (A) Schematic illustration of nanoparticles. (B) Cell viability and (C) colony formation of cells. (D) Cell apoptosis and (E) c-PARP expression
change. Reproduced with permission (Liu et al., 2014) Copyright © 2014, Elsevier B.V.
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10) was modified. The results showed excellent in vivo anticancer
effectiveness, improved tumor autophagy, and effective macrophage
control (Guo et al., 2019).

To provide siRNAs to tumor M2-TAMs and BC cells that target
vascular endothelial growth factor (VEGF) and placental growth
factor (PIGF), Song et al. developed a polymeric nanoparticle based
on PEG- and mannose-doubly modified trimethyl chitosan and
citraconic anhydride grafted poly (allylamine hydrochloride) (Song
et al., 2018). In tumors, low pH conditions trigger PEG lysis,
exposing mannose and cations to particles. Nanoparticles
promote the transport of macrophages and cancer cells in tumors
while repolarizing M2 macrophages to M1 macrophages.

The biodegradable poly (ε-caprolactone)-b-poly (2-
aminoethylethylene phosphate) (PCL-b-PPEEA), PEG-b-poly (ε-
caprolactone) (PEG-b-PCL), and PCL homopolymer used in

RNAi nanoparticles can prevent BC from spreading. CCL-18 is a
possible therapeutic target, which is released by TAMs and triggers
cancer cell EMT, boosts BC metastasis, and lowers patient survival.
The best nanoparticle platform can effectively reduce the expression
of CCL-18 in macrophages, thereby reducing the migration of BC
cells (Liang et al., 2018).

4.1.2 Dendritic cells
Vaccines achieve the induction, regulation and maintenance

of T cell immunity through DCs (Hamdy et al., 2011). Polymeric
nanoparticles can improve the efficiency of tumor vaccine
delivery systems. Cell membrane cancer immune nano-
vaccines are effective in inducing tumor-specific immunity. In
addition, PLGA NPs are used together for cancer prevention and
treatment (Jiang et al., 2020). In addition to the breakthroughs

FIGURE 3
Dual-target therapy against CD137 and Fra1 for BC. (A) Schematic illustration for the preparation of NPs-αCD137 Ab-F4/80. (B) Schematic summary
of treatment model: NPs-CD137 Ab-F4/80 suppress osteoclasts and lessen osteoclast migration by blocking CD137 signaling in macrophages. (C–D)
Statistical results of the number of metastases in lungs and bones in NPs-αCD137 Ab-F4/80 treatment (n = 5mice). (E) Statistical results of normalized BLI
signals (n = 4 mice). (F) Lung metastasis area ratio results (n = 4 mice), Data are represented as mean ± SD (*p < 0.05, **p < 0.01). Reproduced with
permission (Jiang et al., 2019) Copyright © 2019, Ivyspring.
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made outside of vaccines, the advantages of nano-systems for
drug delivery have emerged in recent years. Endoglin-binding
peptide (EBP), Dox, the immunomodulator polyinosinic
(polycytidylic acid), the tumor and vascular target ligand, and
the iron oxide core were chosen as a reliable shape-defining
template for conjugations to minimize size (PolyI:C). Both TNBC
cells and vascular epithelia are targeted by EBP. The nanoparticle
promoted tumor apoptosis through various methods, including
direct tumor cell death, DC mediated innate immune responses
started by DCs, and T cell-mediated adaptive immune responses.
The nanoparticle significantly improved survival in an aggressive
and drug-resistant metastatic TNBC animal model and
significantly reduced tumor growth and metastasis (Mu et al.,
2021).

“Ion trapping”, is a phenomenon associated with the
extracellular acidic pH that creates a physiological drug
barrier, thereby impacting on tumor chemosensitivity. Because
Dox is a weak base, it experiences ion trapping in the acidic tumor
environment, which decreases its cellular uptake and inhibits its
permeation through lipid cell membranes (Raghunand et al.,
1999; Mahoney et al., 2003; Yoneda et al., 2015). Hyaluronic acid
(HA) and Dox were linked to form the polymeric prodrug HA-
Dox by an acid-cleavable hydrazone bond linkage. Then, HA-
Dox/PHIS/R848 nanoparticles were deposited onto nanocores.
The HA-Dox/PHIS/R848 nanoparticle system, which targets
both immune cells and cancer cells, was developed to integrate
immunotherapy with chemotherapy to treat BC. In mice, HA-
Dox/PHIS/R848 nanoparticles demonstrated exceptional tumor-
targeting abilities by reducing tumor immunity and eradicating
tumor cells (Liu Y. et al., 2018).

4.1.3 Natural killer cells
Given that they are less likely than T cell-based treatments to

result in unfavorable events, such as cytokine storms or graft-
versus-host disease, NK cells were identified as a potential
treatment for cancer. Although cytokine therapy and genetic
engineering to activate NK cells have been researched
extensively, the approaches are inefficient, expensive, and
labor-intensive. Clinically, there is a strong correlation
between the beginning of malignancy and limited NK
cytotoxicity (Imai et al., 2000). By contrast, a significant
number of tumor-infiltrating NK cells is a reliable indicator of
good prognosis for in patients with cancer (Ishigami et al., 2000).
The efficiency of NK cell-mediated immunity treatments hinges
on the balancing act between inhibitory and stimulatory signals
sent by receptors and ligands to which they bind. Advances in
nanotechnology have facilitated the development of nanoparticle
technology acting on NK cells. Previously, cytokines or other
stimulating chemicals were encapsulated in nanoparticles and
then delivered to NK cells to activate them (Nakamura et al.,
2018; Phung et al., 2020). Studies have demonstrated that cationic
polymer-based nanoparticles promote the generation of
proinflammatory cytokines and elicit a strong humoral
response (Wegmann et al., 2012; Yim et al., 2014; Mulens-
Arias et al., 2015; Li et al., 2018).

Cationic nanoparticles (cNPs) were generated by employing
PDA chemistry to immobilize PEI on the surface of magnetic
nanoparticles. In vitro, the cytotoxic activity of cNP-treated

primary NK and NK-92MI cells against TNBC cells was more
than two-fold that of control NK cells. Molecular analysis
revealed that, cNPs changed the way CCR4 and
CXCR4 chemokine receptors were expressed on NK cells. In vivo
TNBC animal models showed significant tumor growth inhibition
by cNP-treated NK cells. The approach offers a promising
framework for NK cell-based ex vivo cancer treatment (Kim
et al., 2020). Exposed after the acid challenge because of the
hydrophilicity and low molecular weight of HEMA (Moreira
et al., 2018; Hu et al., 2021).

4.1.4 Nanoparticle promote adaptive immunity
The most widely used programmed cell death protein 1 and

programmed cell death-ligand 1 (PD-1/PD-L1) blocking medication
only has a 20% response rate in PD-L1 positive TNBC (Adams et al.,
2019). There is an urgent need to develop strategies that
complement PD-1/PD-L1 blockade therapy to boost the
effectiveness of immunotherapy and reverse the
immunosuppressive TME.

The immunological checkpoint receptor PD1, which has
received considerable attention, is primarily expressed on the
surface of T lymphocytes and is overexpressed on the surfaces of
depleted T cells. PD-L1 is expressed primarily on the surface of solid
tumors cells. The association between PD1 and PD-L1 inhibits T cell
growth and activation by inhibiting kinase signaling pathways
(Nixon and Li, 2017). T cells are the most effective antitumor
effector cells. The number of intratumoral CD8+ T cells is critical
after treatment because it correlates with improved immunotherapy
and chemotherapy responses and prolonged patient life.

However, the off-target effects of the antibodies can cause
immune-related adverse outcomes in the skin and liver and
gastrointestinal, endocrine, and respiratory systems (Topalian
et al., 2012; Topalian et al., 2019). In addition to the use of
antibodies, effective delivery of siRNA can inhibit PD-L1, thereby
inhibiting the interaction between PD-L1 and PD1. Studies have
revealed that siPD1/PD-L1 increases the antitumor effects of
chemotherapeutic drugs (Liu B. et al., 2018).

siPD-L1 and an indoleamine 2,3-dioxygenase inhibitor were
delivered through a nano-delivery that contained with a BC homing
and penetrating peptide as a dual immune checkpoint blocker. The
siRNA was endocytosed by tumor cells but, escaped the endosomal
vesicles because the vector could home to BC cells. The medication
then prevented the metabolism of tryptophan in these cells. BC cells
died as a result of the locally produced siPD-L1 and 1-methyl-DL-
tryptophan, which encouraged the survival and activation of
cytotoxic T lymphocytes (CTLs) (Li et al., 2019).

In a study, tumor infiltrating lymphocytes (TILs) and MCF-7
cells were treated with siRNAs against PD-L1 and PD1 using lipid-
coated calcium phosphate nanoparticles. siRNA significantly
increased TIL cytotoxicity in cancer cells by downregulating
PD1 and PD-L1. Combining PD1 and PD-L1 knockdown was
more effective in boosting the TILs ability to kill cancer cells
than either one alone. Combined PD1 and PD-L1 silencing
increased the secretion of proinflammatory cytokines, such as
interferon-γ (IFN-γ) and tumor necrosis factor alpha (TNF-α)
(Prima et al., 2017).

The use of nanomaterials not only improves the efficiency of
siRNA delivery, but also enhances the therapeutic efficacy of
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FIGURE 4
Immune checkpoint therapy was made easier by P/PEALsiCD155, which asynchronously inhibited PD-L1 and caused immunogenic cell death (ICD) in
a spatiotemporal way. (A) Schematic illustration of P/PEALsiCD155. (B) Schematic representation of the treatment of P/PEALsiCD155-mediated combined
immunotherapy in tumor model. (C) Examining the CD155 and PD-L1 intensity to determine the percentage of 4T1 cells that were subjected to various
treatments. (D–G) ICD in 4T1 cells including CRT (D), ATP (E), and HMGB1 (F) is triggered by P/PEALsiCD155. (G) DC maturation in vitro. Data are
represented as mean ± SD (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001). Reproduced with permission (Chen et al., 2021) Copyright © 2023, Elsevier.
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antibodies. For temporary chemo-immunotherapy against lung
metastasis, Zhao et al created “walking dead” TNBC cells by
genetically modifying cell corpses with PD-1 and Dox-loaded
liposomes. Disulfide linkages were used to couple PD-1 to the
cell, allowing for reduction-triggered release onto activated T
lymphocytes. Maleimide-thiol coupling, which secures the Dox-
loaded liposome to the cell, enabled the continuous release of Dox.
The walking dead TNBC cells increase mouse survival by generating
a local drug delivery depot, extending drug retention duration, and
greatly suppressing lung metastasis, thereby promoting lung
metastasis-targeted drug delivery (Zhao et al., 2022).

Using positively charged mPEG-PLGA-PLL (PEAL) as the
backbone, P/PEALsiCD155 polymeric nanoparticles were created
for PD-L1 and CD155 asynchronous blockade (Figure 4A). In
CD8+ TILs, PD-1 and DNAM-1 were upregulated early, whereas
CD96 and TIGIT were upregulated later (Figure 4B). In the
4T1 orthotopic model, P/PEALsiCD155 NPs may modify the
CD155/DNAM-1, CD155/TIGIT, CD96, and PD-L1/PD-1 axis to
prevent the spread of TNBC and block CD155-mediated immune
surveillance in the early stages (Figures 4C–G) (Chen et al., 2021).

Immune checkpoints control CTL activity negatively. CTLs are
the primary effector cells that mediate immune antitumor responses
and identify tumor antigens. The interaction between co-
stimulatory pathways and checkpoints controls CTL activity.
After the tumor antigen is presented, the B7 (CD80/CD86)
receptor on the surface of APCs is bound by the CTL-associated
CD28 receptor, thereby activating CTL. Then, the cytotoxic T
lymphocyte associated antigen 4 (CTLA4) is transferred to the
CTL membrane, where it competes with CD28 for B7 and
attaches to it with a greater affinity, blocking the previously
active pathways (Qureshi et al., 2011). In patients with cancer,
CTLA4 overexpression is a key immune evasion mechanism.
Initially, CTLA4 was thought to be a T cell-associated molecule.
Nevertheless, data suggests that CTLA4 is expressed in numerous
non-lymphoid cell types (Mao et al., 2010). Additionally, normal
breast tissues do not express CTLA4, although ~50% BCs do
(Kassardjian et al., 2018). CTLA4 inhibits the development of
T cell effector function by promoting transendocytosis and ligand
degradation (Krummel and Allison, 1995). CTLA4 induces T cell
tolerance by inhibiting T cell expansion and IL-2 release (Greenwald
et al., 2001; Qureshi et al., 2011). CTLA4 balances T cell receptors
(TCRs)/CD3-mediated phosphorylation and prevents TCR signal
transmission through the immunoreceptor tyrosine-based
inhibitory motif (ITIM) (Rudd et al., 2009). Thus,
CTLA4 participates in a large population of T lymphocytes and
acts as an essential immune checkpoint, ultimately inhibiting T cell
effector functions and suppressing antitumor immune responses.

A nanoparticle comprising three FDA-approved
substances—PLGA, indocyanine green (ICG), and imiquimod
(R837) was developed to increase the immunotherapy efficacy of
anti-CTLA4 checkpoint-blockade. Although R837 is a powerful
TLR7 agonist that triggers immunological responses, ICG serves
as the near-infrared dye to enable photothermal therapy (Kasturi
et al., 2011; Le Mercier et al., 2013). The released tumor-associated
antigens and R837-loaded nanoparticle adjuvant would
demonstrate vaccine-like functions upon near-infrared-induced
photothermal ablation of primary tumors injected with
PLGA–ICG–R837, resulting in potent immune reactions, which

with the aid of the anti-CTLA4 checkpoint-blockade would
inhibit the immune suppressive Tregs could target distant tumor
cells present in the mouse. The immune memory protected mice
from cancer recurrence, as demonstrated by the ability of anti-
CTLA4 therapy in conjunction with PLGA–ICG–R837–based
photothermal treatment to protect treated mice from tumor cells
rechallenged 40 days after first tumor ablation. This therapy.

The immunosuppressive molecules that seem to restrict TILs in
vivo include T cell immunoglobulin and mucin domain-containing
protein 3, lymphocyte activation gene 3 protein, PD1/PD-L1, and
CTLA4 (Watanabe et al., 2003; Curran et al., 2011; Woo et al., 2012).
Blocking these negative regulators on T cells using nanomaterials
enhances the antitumor T cell response and thus improves the
outcome of immunotherapy for patients with cancer.

4.2 Cytokine therapy

In the TME, VEGF-a and VEGF-c play crucial roles in
angiogenesis and lymphangiogenesis, respectively (Kadowaki
et al., 2005). Chemokines, in particularly CCL2, produced by
both cancerous and stromal cells, control the recruitment of
TAMs to solid tumors (Saji et al., 2001; Ben-Baruch, 2003). The
CCL2 system and its main receptor CCR2 were reported to
encourage tumor cell survival and motility (Fang et al., 2012),
metastasis (Qian et al., 2011), and angiogenesis (Saji et al., 2001).
Immunogenic chemotherapy mediated the anticancer immune
response, and CCL2 mediated monocyte or myeloid cell
recruitment (Ma et al., 2014). As a compensatory mechanism,
CCL2 has been shown to counteract the antitumor effects of
vascular-targeted therapies, such as VEGF inhibitors (Bergers and
Hanahan, 2008).

Numerous tumor cell types, including MCF-7, have been found
to overexpress somatostatin receptors (SSTRs), especially SSTR
subtype 2 (SSTR2) (Bruns et al., 1994; Kahan et al., 1999; Kumar
et al., 2005). Vapreotide (RC-161) is an endogenous somatostatin
octapeptide analog with a strong affinity for SSTR2 (Coy and Taylor,
1996). The PLPC/siRNA nanoparticle was composed of a
chondroitin sulfate core with a negative charge that was
condensed by protamine and coated with a cationic lipid shell
that contains the hydrophobic PTX. PEG phospholipid (DSPE-
PEG) and/or vapreotide were then added to the surface of the
lipid-shell nanoparticle. The targeted and non-targeted PEG-PLPC/
siRNA nanoparticles had similar physicochemical properties.
However, the VAP-PLPC/siRNA nanoparticles significantly
slowed tumor development (Feng et al., 2014).

Tumor angiogenesis is essential for tumor growth and metastasis.
Antiangiogenic therapy alone did not achieve powerful and long-
lasting therapeutic effects. To treat BC metastases by combining
antiangiogenesis and immunological activation, RGD-PEG-b-PGA-
g-(TETA-DTC-PHis) (RPTDH), a copper chelating coil-comb block
copolymer, was developed and used tomake nanoparticles for loading
R848, a TLR7 and TLR8 agonist. RPTDH/R848 nanoparticles
demonstrated excellent targeting ability against primary BC and
lung metastases. Zhou et al reported a dramatic reduction of
tumor growth and metastasis by inducing antiangiogenesis in
response to copper deficiency and immune activation in response
to R848 (Zhou et al., 2019).
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PTX inhibits primary tumor growth, but there is accumulating
evidence that it may encourage metastasis by increasing
proinflammatory cell-free nucleic acids levels that damaged cells
discharge into the TEM (Wu et al., 2019). Polymeric nanoparticles
that administer chemotherapeutics while scavenging proinflammatory
factors are being developed to limit chemotherapy-induced BC spread.
Based on charge–charge interactions, cationic polyamidoamine
(PAMAM) dendrimers modified with drug-binding dodecyl groups
and surface groups of diethylethanolamine (PAMAM-G3-C125-
DEEA20) can adsorb cell-free nucleic acids, which downregulate
TLR expression, and thus, reduce inflammatory cytokine secretion.
Cancer progression was inhibited at both the primary and metastatic
locations by encapsulating a chemotherapy in a cationic nanocarrier
(Li et al., 2022).

5 Summary, future challenges, and
opportunities

BC is a common cancer with high incidence that endangers
women health. Nanoparticle-mediated therapies can be an effective
substitute for conventional treatment methods, including surgery,
radiation therapy, chemotherapy, hormone therapy, and
immunotherapy. Nanomaterials enable prolonged drug activity
with precise and controlled drug targeting to overcome the
limitations of BC. Targeted and non-targeted nanocarrier-
mediated transport of anticancer drugs has yielded promising
results in the treating BC (Jiang et al., 2022).

Nanoparticle-based drug delivery is a promising new strategy.
Targeted drug or gene delivery with BC treating nanomedicine is
rapidly developing and promises to overcome the drawbacks of
traditional treatments. Nanoparticles have the potential to
revolutionize BC gene therapy because they can effectively
transport a drug or gene by increasing circulation time, increasing
bioavailability, lowering immune detection, and increasing delivering
accuracy. Systemic administration of siRNAs is considered more
relevant and practicable than local treatment to target a wider
range of malignancies, including advanced cancer or metastasis.

Drug resistance and metastasis are a serious challenge in BC
subtypes. All types of BC have responded to combination therapy,
but cancer cells are exceptionally skilled in altering signaling pathways
and thwarting pharmaceuticals from reaching their targets.
Nanodelivery systems reverse drug resistance and metastasis by
altering the mode of action of drugs through their own biological
characteristics. Furthermore, conventional BC combination therapy
regimens are based on sequential and independent dosage. The time
window for drug cohabitation over therapeutic levels in the plasma and
tissues is often small, and pharmacokinetics may increase resistance in
cancer cells while producing toxicity in healthy tissues. The limitations
of chemotherapy will be circumvented by deploying rationally designed
combination therapeutic vehicles that preferentially target cancer cells.
Advanced drug delivery technologies will be able to simultaneously

deliver the drugs in the combination regimen to the body,
synchronizing pharmacokinetics. Not all drugs are suitable for
combination from a pharmacological point of view. A system that is
pH or redox sensitive is unstable in the internal environment. As a
consequence, combining a drug with nanomaterials may not always be
effective. Therefore, the drug’s mode of action, pharmacokinetics, and
other factors must be evaluated.

The main application of nanotechnology includes fabrication of
nanoparticles with various components that may be useful in the
fight against cancer. Delivery of nanoparticles improves cancer
therapy effectiveness while reducing toxicity to normal cells.
Another possible strategy for treating MBC is nanoparticle-
mediated immunotherapy, which has shown good outcomes in
preclinical investigations. The involvement of scientists from the
disciplines of physics, engineering, and chemistry has helped
develop nanoparticle-based immunotherapy for BC. Fortunately,
the BC treatment industry recognizes the promise of nanoparticles,
and investment is increasing rapidly. However, many uncertainties
prevail that must be studied and many obstacles need to be
overcome. Despite the difficulties at this stage, the development
of effective clinical applications of nanomedicines is not impossible,
but will require interdisciplinary collaboration.
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