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New insights into autophagy in
inflammatory subtypes of asthma

Hongna Dong1†, Wei Yang2†, Wei Li1, Simin Zhu1, Ling Zhu1,
Peng Gao1* and Yuqiu Hao1*

1Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun,
Jilin, China, 2Department of Immunology, College of Basic Medical Sciences, Jilin University,
Changchun, China
Asthma is a heterogeneous airway disease characterized by airway inflammation

and hyperresponsiveness. Autophagy is a self-degrading process that helps

maintain cellular homeostasis. Dysregulation of autophagy is involved in the

pathogenesis of many diseases. In the context of asthma, autophagy has been

shown to be associated with inflammation, airway remodeling, and

responsiveness to drug therapy. In-depth characterization of the role of

autophagy in asthma can enhance the understanding of the pathogenesis, and

provide a theoretical basis for the development of new biomarkers and targeted

therapy for asthma. In this article, we focus on the relationship of autophagy and

asthma, and discuss its implications for asthma pathogenesis and treatment.
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Abbreviations: AHR, airway hyperresponsiveness; ANCA, anti-neutrophil cytoplasmic antibody; BSMCs,

bronchial smooth muscle cells; COPD, chronic obstructive pulmonary disease; DC, Dendritic Cells; EA,

eosinophilic asthma; EMT, Epithelial mesenchymal transition; HDM, house dust mite; IFN-g, interferon-

gamma; IL-, interleukin; ILC2, Type 2 innate lymphoid cells; LAP, LC3-associated phagocytosis; MC, Mast

cell;MHC, major histocompatibility complex; miRNAs, MicroRNAs; MRSA, Methicillin-resistant

Staphylococcus aureus; NA, neutrophilic asthma; NETs, Neutrophil extracellular traps; NO, nitric oxide;

ORMDL3, orosomucoid-like-3; OVA, ovalbumin; PMA, phorbol myristate acetate; ROS, reactive oxygen

species; TLR, toll-like receptor.
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1 Introduction

Asthma is a chronic airway inflammatory disease characterized

by airway remodeling, airway hyperresponsiveness (AHR), and

increased mucus secretion (1). It is a heterogeneous disease with

multiple phenotypes and complex pathogenetic mechanisms. Various

inflammatory cells and inflammatory mediators have been

implicated in the pathophysiology of asthma. Adaptive and innate

immunity play an indispensable role in the pathogenesis of asthma (2,

3). Corticosteroids are still the first-line treatment for asthma. In

recent years, significant advances have been made in the

identification of high Th2-type asthma-specific biomarkers and the

development of new biologics (4, 5). However, treatment of low Th2

asthma and severe asthma infiltration remains a challenge. Asthma is

classified as eosinophilic asthma (EA) and neutrophilic asthma (NA),

paucigranulocytic asthma and mixed granulocytic asthma based on

the proportion of inflammatory cells in the induced sputum.

Clinically, EA shows good response to glucocorticoid therapy and

newer biologic agents, while there is a paucity of very effective

therapeutic agents for NA. This is likely attributable to the different

pathogenesis of these asthma subtypes. Therefore, better elucidation

of the molecular biology of different asthma inflammatory subtypes is

a key research imperative to help identify novel biomarkers and more

effective therapeutic targets.

Autophagy is an evolutionarily conserved catabolic process for

digesting organelles and cytoplasmic components in lysosomes.

Autophagy includes macroautophagy (hereinafter referred to as

autophagy), microautophagy, and chaperone-mediated autophagy.

Generally speaking, autophagy is macroautophagy, which is a

metabolic process of eukaryotic cells and is essential for the

maintenance of cellular homeostasis (6). Autophagy involves the

following cellular processes: initiation, vesicle nucleation,

elongation, membrane elongation, closure, maturation, and

degradation. A stable ULK-inducible complex induces

autophagosome formation during yeast initiation, and mTORC1

regulates its activity in different nutritional states (6). The

nucleation stage mainly involves the formation of the PIK3C3

complex, and BECN1 is involved in the regulation of this process.

Subsequently, autophagosomes are formed through the extension of

the phagocyte membrane through the Atg12-Atg5-Atg16 complex

and the Atg8/LC3 ubiquitination system. Autophagosomes

combine with lysosomes to form autophagolysosomes, which are

degraded by hydrolases (6). Autophagy contributes to the

identification and clearance of infectious pathogens (7), and

participates in the occurrence and development of various

diseases by regulating inflammation, including cancer,

cardiovascular diseases, and neurodegenerative diseases (8). In

addition, LC3-associated phagocytosis (LAP) is a novel and

unique form of LC3-dependent process of non-canonical

autophagy that accelerates the degradation of phagosomes by

promoting phagosomal and lysosomal fusion, regulates immunity

and inflammation, and clears dead cells (9–11). Selective

mitochondrial autophagy refers to mitochondria-specific

autophagy that occurs in defective mitochondria following injury

or stress (12). Research suggests that mitochondrial autophagy is a
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factor in asthma airway inflammation and a potential therapeutic

target (13, 14). In recent years, several studies have shown the

significance of regulation of autophagy in the context of asthma.
2 Autophagy and asthma

Aberrant expression of autophagy plays an important role in

asthma. ATG5 single nucleotide polymorphism is closely associated

with the development of childhood asthma (15). Autophagy-related

genes are important in the immune microenvironment of asthma

and may modulate the treatment outcomes. Autophagy-related

genes have good classification function, as patients in the low

autophagy subtype group were found to have more severe,

glucocorticoid-resistant, and poorly controlled asthma (16). In a

house dust mite (HDM)-induced asthma model, chloroquine was

shown to attenuate airway inflammation, AHR, mucus and collagen

production (17). In addition, autophagy also plays a role in severe

asthma, as patients with severe asthma were found to have elevated

levels of autophagy in peripheral blood and sputum granulocytes

compared to those with non-severe asthma and healthy controls

(18). Mice with severe asthma were found to have higher levels of

autophagy compared to mice with relatively mild ovalbumin

(OVA)-induced asthma (19). These findings suggest an important

value of autophagy in the development and prognosis of asthma,

opening up new directions for asthma treatment.
3 Autophagy and immune and
non-immune cells in asthma

Autophagy is involved in the pathogenesis of asthma through

interactions with a variety of immune and non-immune cells

(Figure 1). In this paper we summarize the molecular

mechanisms of the role of autophagy in asthma and its potential

as a therapeutic target.
3.1 Autophagy and T cells

Differentiation of various T-cell subsets and the cytokines

produced by them play an important role in different asthma

inflammatory subtypes. The pathogenesis of EA is dominated by

Th2 cells, whereas Th1 and Th17 cells play a dominant role in NA.

Autophagy plays a vital role in T cell metabolism, and PIK3C3

deficiency impairs T cell metabolism and inhibits differentiation to

Th1. PIK3C3 has a positive effect on aerobic glycolysis and

maintenance of mitochondrial respiration in T cells (20).

Autophagy is an essential regulatory mediator in T cell

homeostasis, survival, proliferation, death, and functional roles

(21–27). Autophagy controls the differentiation and activity of

CD8+ T cells, and defective autophagy was found to result in a

diminished immune response to secondary influenza virus infection

(28). In addition autophagy is activated in activated CD4+ T cells

and the level of autophagy is higher in Th2 than in Th1 (29). mTOR
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is a serine/threonine kinase that plays an important role in

regulating cell growth, proliferation, aging and longevity (30, 31).

mTOR participates in the pathogenesis of various diseases such as

liver disease, breast cancer, acute lung injury, Alzheimer’s disease,

and asthma by regulating autophagy (32–36). mTOR was shown to

be associated with asthma status. Serum mTOR levels were higher

in asthmatic patients than in healthy controls during acute

exacerbation, but not during remission. In addition, mTOR

showed a positive correlation with Th1/Th2, Th17/Tregs

imbalance (37). Moreover, the mTOR inhibitor rapamycin was

found to increase the proportion of Treg cells in mesenchymal stem

cells and decrease the proportion of Th1 cells, while there was no

significant change in Th17 cells (38). PI3K/AKT is an upstream

pathway of mTOR and is closely related to airway inflammation. IL-

27 was shown to attenuate airway remodeling in OVA asthmatic

mice through the PI3K/AKT pathway (39). In HDM-stimulated

asthmatic mice, brahma-related gene 1 inhibition of PI3K/AKT was

found to exacerbate airway inflammation, whereas PI3K inhibitor

attenuated this effect (40). In mice with OVA-induced allergic

airway inflammation, TLR2 was found to induce autophagy

through PI3K/AKT to promote airway inflammation. Moreover,

the autophagy inhibitor 3 methyladenine alleviated inflammation

(41). Luteolin and pingchuanning decoction improves asthma

inflammation by inhibiting autophagy via activation of PI3K/

AKT/mTOR pathway (42, 43). In addition, LAP supports the

presentation of major histocompatibility complex (MHC)-II class

antigen to helper CD4+ T cells which are key cells in the

pathogenesis of asthma (44–46). In addition, LAP dysregulation

can lead to autoimmune disease and inflammation (10). LAP was

shown to stimulate macrophage dysregulation in chronic

obstructive pulmonary disease (COPD) and cigarette smoke

extracts, which may be involved in the pathogenesis of COPD

(47). However, there is a need for further studies on its role in the

pathogenesis of asthma.

Type 2 innate lymphoid cells (ILC2) are involved in the pathogenesis

of Th2 asthma, and autophagy is involved in ILC2 activation and

immune homeostasis. Lack of autophagy in ILC2 promotes glycolysis,

inhibits fatty acid oxidation and TCA cycle, suppresses Th2 cytokine

production, and attenuates asthma AHR (48). Sepsis caused by

Methicillin-resistant Staphylococcus aureus (MRSA) infection was

associated with elevated levels of autophagic protein and elevated
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serum levels of interferon-gamma (IFN-g) and interleukin (IL)-17; in

addition, rapamycin enhanced autophagy to reduce the ratio of Th1 and

Th17 cells and promote survival in septic mice (49). The complex

interplay between autophagy and T cell subsets and cytokines has given

rise to an in-depth consideration of their role in asthma.
3.2 Autophagy and
monocytes/macrophages

Macrophages are the main immune cells in asthma and are

involved in phagocytosis, secretion of inflammatory factors, antigen

presentation, and regulation of the immune response (50, 51). Studies

have shown impaired phagocytosis of macrophages in children with

non-eosinophilic asthma and poorly controlled asthma (52, 53).

Macrophages can be classified into two phenotypes, i.e., classically

activated M1 and substitution-activated M2, and these two

macrophage states reflect Th1-Th2 polarization. M1 is stimulated

by IFN-g cytokines to produce Th1 cytokines (IL-6, IL-1b) that

promote neutrophil inflammation, while M2 is stimulated by IL-4

and IL-13 to produce eosinophil-promoting cytokines (IL-10, TGF-

b) (54). This has also been verified in animal models of asthma, where

M1 polarisation was predominant in farm dust extracts-induced non-

allergic asthma and where Th1 and Th17 cells and neutrophil

infiltration were predominant. In contrast, in house dust mite-

induced allergic asthma, M2 polarisation was predominant and

Th2 cells and eosinophils were increased (55).

Paucigranulocytic asthma is a milder form of asthma

characterized by macrophages as the predominant cell type. The

molecular mechanisms underlying this type are not well

understood. Macrophage polarization induces Th1 and Th2

cytokines involved in the pathogenetic mechanism of EA and

NA. In contrast, autophagy has regulatory effects on the

differentiation and survival of monocytes (56), phagocytosis,

migration and adhesion functions of macrophages, macrophage

polarization and bacterial killing. High glucose conditions can

inhibit autophagy and promote macrophage migration and

adhesion, providing a new strategy for the treatment of diabetic

nephropathy (57). Autophagy is impaired in obese mice, and

inhibition of macrophage autophagy promotes their polarization

to M1 phenotype (58). In addition, lactobacillus induces autophagy
FIGURE 1

Mechanism of autophagy in asthma.
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by modulating Th1/Th2 cytokine balance to enhance mononuclear

phagocyte response to Mycobacterium tuberculosis infection (59).

Inhibition of autophagy enhances phagocytosis of MRSA in MRSA-

infected mice (60). Pseudomonas aeruginosa infection promotes

macrophage autophagy and limits macrophage intracellular killing,

probably by activating NLRP3 vesicles and reducing the production

of reactive oxygen species (ROS) and nitric oxide (NO); thus,

inhibition of autophagy can promote clearance of bacteria (61,

62). In contrast, in Mycobacterium tuberculosis infection,

autophagy inhibits the survival of Mycobacterium tuberculosis in

a PI3K-dependent manner and contributes to an enhanced immune

response (63). The different roles of autophagy may depend on the

microenvironment and therefore specific studies are needed for

different diseases.
3.3 Autophagy and dendritic cells

Dendritic cells play an important role in adaptive immunity

because of their antigen-presenting role. Autophagy has multiple

effects on the functional regulation of DCs. Ho et al. demonstrated

that autophagy regulates DC antigen presentation (64). Autophagy

promotes the survival of lipopolysaccharide-induced DCs under

hypoxic conditions (65), and defective autophagy protein VPS34

increases MHC-I and class II antigen presentation by DC cells (66).

In contrast, in a DC study of ATG5 and ATG7 deficiency, autophagy

was shown to inhibit MHC-I and promote MHC-II class antigen

presentation (67). DC deficiency of ATG5 promotes antiviral

immune responses involving CD8+ cells (68). Autophagy in RSV-

infected DCs was shown to facilitate CD4 cytokine production and

DC maturation, promoting antiviral responses (69, 70).
3.4 Autophagy and B cells

The necessity of autophagy for B-cell polarization has yet to be

investigated. ATG5 is involved in antigen presentation and B-cell

polarization (71). Basal level autophagy is required for B-cell survival

(72, 73). Dendritic cells and B-cell autophagy deficiency in toll-like

receptor (TLR) 7-deficient mice was shown to promote activation of

inflammatory vesicles and organ damage (74). While TLR7 agonists

are beneficial in asthma, TLR7 agonists are effective airway

diaphoresis substances (75, 76). In OVA-induced asthmatic mice,

TLR7 was shown to attenuate airway inflammation by mediating the

Nrf2 pathway (77). IL-4 induces enhanced B-cell autophagy in

asthmatic mice via IAK, which contributes to antigen presentation

and anti-apoptosis and is involved in asthma pathogenesis (78). B

cells are important in the adaptive immune response and autophagy

and its role in asthma deserves to be explored.
3.5 Autophagy and mast cells

Mast cells are key effector cells involved in the inflammation,

airway hyperresponsiveness, and response to steroid treatment in

asthma (79–81). Asthmatics have increased mast cells in airways (82).
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Mast cell activation correlates with asthma phenotype, and IL-33 and

IgE stimulated activation of mast cells correlates with severe

neutrophilic and eosinophilic asthma phenotypes, respectively (83).

Mast cells were also shown to be associated with the response to

corticosteroid treatment; in a study, the inhaled corticosteroid group

showed reduction in mast cells in the epithelium and smooth muscle

compared to the non-inhaled corticosteroid group (84). Autophagy is

involved in mast cell degranulation and ATG7-deficient MC cells

show severely impaired degranulation (85, 86). IL-33 expression is

elevated in nasal epithelial cells in allergic rhinitis, inhibits autophagy

and regulates degranulation and inflammatory factor release in mast

cells via IL-33/ST2 (87). Mast cell autophagy contributes to defence

against pathogenic bacteria. Pseudomonas aeruginosa infection

promotes autophagy of airway epithelial cells and mast cells and

facilitates bacterial clearance (88). Orosomucoid-like-3 (ORMDL3) is

an asthma susceptibility gene. Studies have shown that ORMDL3

inhibits mast cell activation and degranulation and production of

cytokines and chemokines through the activating transcription factor

6-related autophagic pathway, thereby suppressing the immune

response (89). Mast cell autophagy is a potential therapeutic target

in asthma worthy of future research.
3.6 Autophagy and eosinophils

EA is a classic allergic asthma that shows good response to

glucocorticoids. The novel immunologic agents (e.g., anti-IL-4

monoclonal antibody, anti-IL-5 monoclonal antibody, anti-IgE

monoclonal antibody) are also useful in this type of asthma. ATG5 is

the main protein of the autophagic process. In vivo and in vitro

experimental studies have shown that ATG5 deficiency leads to

inhibition of eosinophil proliferation and differentiation, and

enhancement of eosinophil extracellular traps formation and

degranulation, promoting bacterial clearance (90). In addition,

autophagy inhibits the release of the content of mature eosinophils,

whichmay help reduce inflammation in EA (91). Impaired autophagy in

obese HDM-sensitized asthmatic mice was found to aggravate airway

inflammation and increase eosinophilic airway inflammation in ATG5-

deficient mice with resistance to dexamethasone (92). Paradoxically,

autophagy protein expression is increased in the peripheral blood of

patients with severe asthma and IL-5 induces autophagy to promote the

production of eosinophil cationic protein and eosinophil airway

inflammation (18). Studies in asthmatic animals show that autophagy

is associated with a severe eosinophil phenotype and that anti-IL-5 has a

beneficial effect on asthma treatment by reducing autophagy (19).

Moreover, the mTOR inhibitor rapamycin was shown to inhibit

eosinophil differentiation in OVA-induced allergic asthma mice (93).

The complex relationship between autophagy and eosinophils is

inconclusive and may be related to the different pathogenesis of

different asthma phenotypes, which remains to be elucidated.
3.7 Autophagy and neutrophils

Neutrophilic asthma is typically difficult to treat owing to

resistance to glucocorticoid therapy and lack of other effective
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drugs. Moreover, biologic agents are mainly effective in EA.

Autophagy has a multifaceted role in regulating neutrophil

function. A study showed that genetic polymorphisms in the

autophagy genes ATG5 and ATG7 are associated with NA

inflammation (94). Autophagy is essential for neutrophil

maturation and function. Defective autophagy leads to

accumulation of immature neutrophils and impaired function,

and autophagy can facilitate the differentiation process by

inhibiting glycolysis and promoting energy metabolic shifts

during lipolysis (95). In contrast, in immature neutrophils,

autophagy has an inhibitory effect on neutrophil differentiation,

possibly due to regulation of the p38-mTORC1 signaling pathway.

The regulation of neutrophils by autophagy may be due to the

regulation of multiple molecular mechanisms, and further

experimental studies are needed (96). In addition, autophagy

promotes neutrophil degranulation and is an important mediator

in neutrophil inflammation (97). ATG5-deficient mice exacerbate

neutrophil airway inflammation and cause exacerbation of steroid-

resistant asthma involving IL-17A (98). Rapamycin can inhibit IL-

17A production and suppress neutrophil inflammation (99).

Neutrophil extracellular traps (NETs) are trap networks

consisting of DNA and various enzymatic proteins that form after

neutrophils are stimulated to form cytoplasmic extracellular traps. It

has an important anti-infective function and has a crucial role in

asthma. The relationship between autophagy and NET is still

controversial. Autophagy has been shown to be necessary for NET

formation and to promote the formation of NETs (100). In an

autophagy gene ATG5-deficient mouse model of senescence, TLR2

ligands were found to reduce NETs formation in neutrophils (101).

Moreover, NETs formation was shown to be associated with

autophagy and autophagy inducers promoted spontaneous release

of NETs, further confirming that this relationship also exists in the

OVA-induced asthma model (102). Increased levels of peripheral

blood neutrophil autophagy protein were observed in patients with

severe asthma relative to those in patients with non-severe asthma;

in addition, a positive correlation between NET and autophagy was

observed which may be involved in the pathogenesis of severe

asthma by enhancing the eosinophil inflammatory response and

epithelial cell damage (103). NET formation induced by phorbol

myristate acetate (PMA) requires the involvement of autophagy and

superoxide (100). Studies have also suggested a key role of autophagy

in anti-neutrophil cytoplasmic antibody (ANCA)-associated

vasculitis, and autophagy was found to promote anti-LAMP-2

antibody and ANCA antibody-induced NET production (104,

105). However, PMA-stimulated neutrophil studies in ATG5-

deficient mice showed that NET formation does not require the

involvement of autophagy (106). Interestingly, it has been shown

that autophagy has no significant effect on NETs generation.

Autophagy gene ATG5 is not necessary for extracellular traps of

neutrophils and eosinophils (97). Autophagy and NETs are

associated with airway inflammation in severe asthma, and further

studies are required for in-depth characterization of the relationship

of autophagy and NETs with asthma. Mice lacking autophagy

showed increased inflammation in IL-17-mediated bands of lung

neutrophils. Absence of autophagy in lung CD11c cells induces

neutrophil airway inflammation and airway hyperresponsiveness
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leading to exacerbation of asthma (98). Targeting autophagy-

dependent NETs is a novel therapeutic strategy for asthma.
3.8 Autophagy and airway epithelial cells

Autophagy plays an important role in airway epithelial

regeneration, lung development and morphogenesis (107, 108). IL-

13 expression is elevated in EA, which can activate airway epithelial

cell autophagy to promote mucus secretion and production of ROS

(109). In addition, experiments in OVA-induced asthma mouse

models and airway epithelial cells demonstrated that TGF-b3
promotes MUC5AC production for mucus secretion by regulating

autophagy (110). Interestingly, specific knockout of mTOR in the

airway epithelium induces autophagy and promotes allergic airway

inflammation in mice (36). Epithelial mesenchymal transition (EMT)

plays a key role in promoting asthma airway remodeling. In OVA-

induced asthmatic mice, azithromycin was found to inhibit EMT and

improve asthma airway remodeling (111). The link between

autophagy and EMT has been widely studied in the context of

cancer treatment and is gaining attention in asthma (112, 113).

Autophagy is a key link in mesenchymal-to-epithelial transition

(114). In vivo and in vitro studies have shown that FSTL1 activates

autophagy and promotes EMT, thereby facilitating asthma airway

remodeling (115). Further studies are required to demonstrate the

mechanisms linking autophagy and EMT in asthma and to provide

new strategies for asthma treatment.
3.9 Autophagy and airway smooth
muscle cells

Airway smooth muscle is an important cell for airway

remodeling in asthma. Azithromycin is one of the promising

drugs for the treatment of NA; however, its exact mechanism of

action remains to be elucidated. In addition, azithromycin was

shown to reduce the proliferation of airway smooth muscle cells and

induce autophagy (116). Knockdown of p62 in chronic asthma

model inhibited the proliferation and migration of airway smooth

muscle cells (117). Autophagy has important implications for the

pathogenesis of cells and cytokines involved in asthma (Figure 2).

Further studies are required for in-depth elucidation of its role.
3.10 Autophagy and vitamin D

Several studies have suggested that vitamin D may be an

important mediator in different asthma phenotypes. However,

there is no clear consensus regarding its specific mechanism of

action. In a clinical trial including 54 adults with asthma, elevated

serum vitamin D levels were associated with reduced AHR,

improved lung function and increased sensit iv i ty to

glucocorticoids and exercise-induced bronchoconstriction (118,

119). In addition, vitamin D may be involved in the pathogenesis

of asthma associated with obesity, and Vitamin D deficiency was

shown to impair lung function in these patients (120). Vitamin D
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deficiency was also implicated as a factor in worsening of asthma

control (121, 122). In asthmatic mice, administration of vitamin D

was found to inhibit AHR and suppress inflammation (123).

Moreover, a study showed that vitamin D and vitamin D receptor

can regulate autophagy (124), although the mechanism of action in

the context of asthma remains to be elucidated. Infection is a

common trigger for worsening of asthma, and vitamin D plays a

critical role in lung infection. In Aspergillus fumigatus-infected

mice, the survival rate of vitamin D-sufficient mice was higher

than that of the deficient group (125, 126). Vitamin D may protect

against damage caused by Aspergillus fumigatus infection by

reducing the expression of inflammatory factors such as NF-kB

and IL-1b, IL-6 and inhibiting lysosome formation to reduce

autophagy (125, 126). Autophagy-related proteins ATG5 and

Becilin1 were increased in the OVA-induced asthma mouse

model in the vitamin D-deficient group, compared with the

vitamin D-sufficient group (127). In respiratory syncytial virus-

induced asthmatic mice, vitamin D has the same effect of reducing

inflammation, and it may act through the Notch1-HIF-1a signaling

pathway to promote autophagy (128). Vitamin D has an important

role in asthma, and the link between it and autophagy is worth

exploring to provide new ideas for targeted asthma therapy.

4 miRNA mediated autophagy
in asthma

MicroRNAs (miRNAs) represent a new tool for targeted therapy

for asthma. The link between miRNAs and autophagy in asthma has

received increasing attention. Studies have demonstrated the

involvement of miRNA-targeted autophagy in the pathogenesis of

asthma. MiR-192-5p, miR-20a-5p, miR-34/miR-449, miRNA-335-5p,

and miR-30a inhibit autophagy in asthma through different pathways.

Overexpression of miR-192-5p was found to reduce the expression of

MMP-16 and ATG7, attenuate airway remodeling and inhibit

autophagy in asthmatic mice (129). Overexpressed miR-20a-5p acts

as an autophagy inhibitor, targeting ATG7 to inhibit autophagy,

apoptosis, fibrosis and airway inflammation in asthma (130). MiR-

335-5p and miR-30a target ATG5 to suppress asthma inflammation

(131, 132). MiR-34/miR-449 overexpression promotes Nur77 nuclear

translocation and inhibits autophagy by downregulating IGFBP-3,
Frontiers in Immunology 06
reducing airway fibrosis and inflammation (133). Studies of the

relation between miRNA and autophagy provide a basis for the

elucidation of the mechanism of asthma. However, further studies

are required to unravel the detailed process of miRNA regulation of

autophagy to provide new ideas for the development of targeted drugs

for asthma treatment.
5 Autophagy and asthma treatment

Corticosteroids are the drugs of choice for asthma treatment;

however, they are not always effective, and some patients develop

steroid resistance. Respiratory tract infections are a common cause of

acute exacerbations of asthma. In recent years, several drugs targeting

autophagy (inhibiting autophagy or activating autophagy) have been

identified for their potential use in asthma (Table 1). However, there

are some contradictory results, and there may be many mechanisms

involved, which still needs further research. In vitro, budesonide and

simvastatin inhibited mTOR-mediated autophagy in macrophages,

decreased Beclin-1 and LC3 expression, increased p62 and IL-10

expression, inhibited autophagy and reduced asthma inflammation

(135). In contrast, budesonide and simvastatin were found to activate

autophagy through other pathways to reduce asthma inflammation.

Budesonide can activate autophagy to exert anti-rhinovirus effect and

has a protective effect against asthma attacks (138). Simvastatin

activates autophagy in bronchial smooth muscle cells (BSMCs) to

inhibit airway inflammation and airway remodeling for the treatment

of asthma (137). In addition, a novel biologic anti-IL-5 antibody

significantly reduced LC3 II expression in lung homogenates (19).

High-dose luteolin, yeast-fermented prebiotic, ketamine and a1-
antitrypsin inhibit autophagy in lung tissue ameliorating asthmatic

mice (42, 134, 136, 144). Chinese herbal medicines can also regulate

autophagy and can be potentially used for asthma treatment.

Paeoniflorin modulates mitochondrial function by suppressing

autophagy and reducing the expression of pro-inflammatory factors

to alleviate asthmatic inflammation (145). Astragalin can alleviate

ROS-promoted bronchial fibrosis by inhibiting the formation of

airway autophagosomes (142). Acupuncture was shown to reduce

airway inflammation and AHR by modulating endoplasmic

reticulum stress and CD4+ T lymphocyte differentiation by

inhibiting ATG5-mediated autophagy (146).
FIGURE 2

The cells and cytokines involved in asthma and autophagy.
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TABLE 1 Mechanisms of action of drug-mediated autophagy on allergic airway inflammation in vivo and in vitro.

Drug Species tissue Cell line Autophagy-
related
target

Signal
pathway

Effect on
autophagy

Function Ref

a1-Antitrypsin mouse – BEAS-2B LC3BII/LC3BI,
BECN1,
SQSTM/p62

– Inhibition a1-Antitrypsin attenuates asthmatic
inflammation and oxidative stress by
inhibiting autophagy.

(134)

budesonide and
simvastatin

– – PBMC beclin-1, LC3,
p62

– Inhibition Glucocorticoids and statins reduce asthma
inflammation by promoting IL-10
production by inhibiting autophagy in
macrophages.

(135)

Luteolin mouse lung – LC3B, p62,
PI3K,AKT

PI3K/Akt/
mTOR,
Beclin-1-
PI3KC3

Inhibition Inhibition of autophagy in lung tissue of
asthmatic mice by luteolin ameliorates
airway inflammation and reduces airway
mucus secretion and collagen deposition
in allergic asthmatic mice.

(42)

Yeast
Fermentate
Prebiotic

mouse lung ATG5, Beclin1,
LC3BII/I

– Inhibition YFP exerts anti-inflammatory and
antiasthma effects by inhibiting autophagy
and regulating oxidative stress in
asthmatic mice.

(136)

Simvastatin mouse lung BSMCs ATG5, LC3B,
Beclin1

– Activation Simvastatin increases autophagy protein
expression in the lung tissue of asthmatic
mice, and autophagy inhibits
inflammation and airway remodeling in
activated BSMCs in vitro.

(137)

Budesonide mouse lung HeLa cells, HeLa
cells

P62, LC3 – Activation Budesonide can increase mitochondrial
reactive oxygen species levels, activate
autophagy, inhibit inflammatory response
and IL-1b production, and participate in
anti-rhinovirus and anti-inflammatory
effects.

(138)

Cycloastragenol mouse lung – LC3B, p62,
Beclin 1

– Inhibition Cycloastragenol inhibits autophagy levels
and exerts anti-inflammatory effects in
asthmatic mice.

(139)

Qingfei oral
liquid

mouse lung 16 HBE cells LC3B, Beclin-1,
p62, Atg5

mTOR Inhibition QF may alleviate inflammation induced by
respiratory syncytial virus infection in
asthmatic mice by inhibiting autophagy
through mTOR pathway.

(140)

Wuhu
Decoction

mouse lung DC LC3-II, Beclin-
1, LC3-I

AMPK/
ULK1

Activation Wuhu Decoction promotes autophagy in
lung tissue DCs through AMPK/ULK1
signaling pathway to alleviate RSV-
induced asthma inflammation.

(141)

Pingchuanning
decoction

rat lung RTE LC3‐I,
LC3‐II, P62,
beclin‐1, Atg3,
Atg5, Atg7

PI3K/Akt/
mTOR,
HMGB1/
TLR4/NF-
kB

Inhibition Pingchuanning decoction attenuates
airway inflammation by inhibiting
autophagy through PI3K/Akt/mTOR
signaling pathway in asthma.

(43)

Astragalin mouse lung BEAS-2B beclin-1,
LC3A/B

– Inhibition Astragalin inhibits the formation of
autophagosomes in the airway epithelium
and alleviates oxidative stress-induced
airway fibrosis.

(142)

Trehalose – – Normal human
tracheobronchial
epithelial

LC3 I, LC3 II,
ATG5

– Activation Trehalose-induced autophagy impairment
reduces IFN-l1 expression, impairs
antiviral responses, and increases the risk
of HRV-infection in normal human
primary airway epithelial cells.

(143)

Ketamine Mouse lung – LC-I, LC-II,
Beclin-1

mTOR Inhibition Ketamine attenuates allergic airway
inflammation by inhibiting autophagy
through the mTOR signaling pathway.

(144)
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6 Prospects and conclusion

Collectively, the available evidence suggests a key role of autophagy

in the pathogenesis of asthma. Autophagy abnormality leads to the

process of asthmatic airway inflammation and airway remodeling,

indicating its promising role as a therapeutic target. This review also

discusses the complex relationship between miRNAs and autophagy in

asthma pathogenesis. However, there is a paucity of research on the

underlying mechanism by which miRNA regulates autophagy in

asthma. Most of the available evidence emanates from in vitro and

in vivo preclinical studies. Development of targeted therapy for asthma

is a key research imperative. The process of autophagymay be involved

in regulating the immune response in different asthmatic inflammatory

subtypes by influencing the antigen presentation, and secretion of

cytokines by cells involved in asthma pathogenesis (e.g., B cells, T cells,

macrophages, mast cells, neutrophils, and eosinophils). Based on the

central role of autophagy in innate and adaptive immune responses,

autophagy may play a beneficial or detrimental role in asthma,

depending on the cellular microenvironment in asthmatic

inflammatory subtypes. Further studies are required to unravel the

specific mechanisms of the regulatory role of autophagy in asthma.
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