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The contamination of fresh produce with foodborne pathogens has been an

on-going concern with outbreaks linked to these commodities. Evaluation of

farm practices, such as use of manure, irrigation water source, and other factors

that could influence pathogen prevalence in the farming environment could

lead to improved mitigation strategies to reduce the potential for contamination

events. Soil, water, manure, and compost were sampled from farms in Ohio and

Georgia to identify the prevalence of Salmonella, Listeria monocytogenes (Lm),

Campylobacter, and Shiga-toxin-producing Escherichia coli (STEC), as well as

Arcobacter, an emerging human pathogen. This study investigated agricultural

practices to determine which influenced pathogen prevalence, i.e., the percent

positive samples. These efforts identified a low prevalence of Salmonella, STEC,

and Campylobacter in soil and water (< 10%), preventing statistical modeling of

these pathogens. However, Lm and Arcobacter were found in soil (13 and 7%,

respectively), manure (49 and 32%, respectively), and water samples (18 and 39%,

respectively) at a comparatively higher prevalence, suggesting different dynamics

are involved in their survival in the farm environment. Lm and Arcobacter

prevalence data, soil chemical characteristics, as well as farm practices and

weather, were analyzed using structural equation modeling to identify which

factors play a role, directly or indirectly, on the prevalence of these pathogens.

These analyses identified an association between pathogen prevalence and

weather, as well as biological soil amendments of animal origin. Increasing air

temperature increased Arcobacter and decreased Lm. Lm prevalence was found

to be inversely correlated with the use of surface water for irrigation, despite

a high Lm prevalence in surface water suggesting other factors may play a

role. Furthermore, Lm prevalence increased when the microbiome’s Simpson’s

Diversity Index decreased, which occurred as soil fertility increased, leading to an
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indirect positive effect for soil fertility on Lm prevalence. These results suggest

that pathogen, environment, and farm management practices, in addition to

produce commodities, all need to be considered when developing mitigation

strategies. The prevalence of Arcobacter and Lm versus the other pathogens

suggests that multiple mitigation strategies may need to be employed to control

these pathogens.

KEYWORDS

farm management practices, fresh produce, Listeria, Salmonella, Campylobacter, STEC,
Arcobacter, structural equation modeling

1. Introduction

Foodborne illness associated with the consumption of fresh
produce, particularly leafy greens, tomatoes, cantaloupes, tree fruit,
and peppers, continues to be a major health concern with numerous
outbreaks linked to these commodities (Iwu and Okoh, 2019). This
diversity in product type suggests that common risk factors should
be considered when evaluating farming practices or developing
on-farm risk-mitigation approaches, not just produce-specific
factors. Numerous studies have identified bacterial pathogens
in agricultural environments, clearly indicating the potential for
contamination of produce during cultivation and harvest (Cooley
et al., 2007; Jeyaletchumi et al., 2011; Micallef et al., 2012; Strawn
et al., 2013a,b; Marine et al., 2015; Belias et al., 2021). An evaluation
of bacterial pathogens linked to foodborne illness, conducted
by the Interagency Food Safety Analytics Collaboration (IFSAC)
implicated four key bacterial pathogens, non-typhoidal Salmonella,
E. coli O157, Listeria monocytogenes (Lm), and Campylobacter spp.,
based on frequency and severity of illness. These findings agree
with other efforts identifying these four bacterial pathogens as the
primary concerns for foodborne illness (Scallan et al., 2011; IFSAC,
2018).

Non-typhoidal Salmonella and Shiga-toxin-producing E. coli
(STEC) are associated with a large proportion of the burden
associated with foodborne outbreaks. Salmonella causes an
estimated one million cases and is responsible for over a third of
the hospitalizations, annually (Scallan et al., 2011). Furthermore,
from data derived from an active and passive surveillance study
between 2000 and 2008, it was estimated that STEC cause roughly
265,000 illnesses annually in the United States (US), resulting in
over 3,600 hospitalizations and 30 deaths (Scallan et al., 2011).
Many serovars of non-typhoidal Salmonella and STEC are also
enteric pathogens to a wide range of wild and domesticated animals
(Hoelzer et al., 2011; Persad and LeJeune, 2015). Due to this burden,
research has evaluated the potential of these pathogens to survive in
manure and in the field environment (Himathongkham et al., 1999;

Abbreviations: AT, 24 h average of air temperature; BSA, biological soil
amendment; BSAAO, biological soil amendments of animal origin; CFI,
comparative fit index; h, hour; DM, dairy manure; LOI, loss-on-ignition; PM,
poultry manure; PR, precipitation; QLR, Quandt likelihood ratio; RMSEA,
root mean square error of approximation; SDI, Simpson’s diversity index;
SEM, structural equation model; SR, solar radiation; VBNC, viable but non-
culturable cells; WS, wind speed.

Sharma and Reynnells, 2016; Hruby et al., 2018; Gu et al., 2019;
Sharma et al., 2019). The presence of animal hosts in the pre-
harvest environment and the application of manure or compost as
a soil amendment may facilitate the dissemination and survival of
Salmonella, as well as other pathogens, in soil (Shah et al., 2019;
Bardsley et al., 2021).

Lm is well-characterized as a saprophytic bacterium and
considered ubiquitous in soil and the environment and the
causative agent of invasive listeriosis, a comparatively rare illness
that causes ∼19% of foodborne illness deaths (Ivanek et al., 2006;
Scallan et al., 2011; Vivant et al., 2013; Iwu and Okoh, 2019).
Due to its established role as a saprophytic organism, Lm may be
better adapted to soil and soil microbiome competition than STEC
and Salmonella (Freitag, 2009). Data have shown an association of
Lm with wet soil environments and rain, but longitudinal studies
evaluating Lm in agricultural fields are limited (Locatelli et al., 2013;
Falardeau et al., 2018; Harrand et al., 2020). Watershed studies have
also demonstrated that Lm, if found in water and sediment samples,
could be introduced into the field environment if contaminated
water is used for irrigation (Gorski et al., 2014; Stea et al., 2015).
Additionally, it has been demonstrated that soil type can impact
Lm survival and/or growth (Dowe et al., 1997; Jiang et al., 2004;
Brennan et al., 2014). Furthermore, manure usage can further
support Lm survival, depending on manure type (Dowe et al., 1997;
Jiang et al., 2004; Brennan et al., 2014). These observations indicate
the need for risk assessments using a variety of conditions to better
understand the factors at play in Lm agricultural prevalence.

Campylobacter species are the leading cause of human bacterial
gastroenteritis (EFSA and ECDC, 2021), and are predominantly
associated with the consumption and handling of improperly
cooked poultry, raw milk, and water. However, Campylobacter
outbreaks have been associated with row crops and other produce,
representing 6 and 1.7% of Campylobacter outbreaks, respectively
(Gardner et al., 2011; IFSAC, 2018; Sher et al., 2021). Similarly,
Arcobacter spp., which belong to the family Campylobacteraceae are
classified as a serious hazard to human health by the International
Commission on Microbiological Specifications for Foods (ICMSF)
(Hoa et al., 2006; Ramees et al., 2017). Recently, Arcobacter
prevalence was reported in fresh produce (Abay et al., 2022, Ma
et al., 2022), and they are widely distributed among animals and
environmental water (Collado and Figueras, 2011; Ramees et al.,
2017; Niedermeyer et al., 2020). Furthermore, Arcobacter spp. have
been associated with foodborne outbreaks (Lappi et al., 2013; EFSA
and ECDC, 2021; Uljanovas et al., 2021). There are few longitudinal
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studies assessing Campylobacter prevalence in farm environments
and in produce, and none for Arcobacter (Chai et al., 2009;
Guevremont et al., 2017). Thus, there is limited understanding of
the presence of these pathogens in the produce farm environment,
and transmission to humans.

Farm practices, including irrigation, soil amendment types, pest
control, and worker hygiene, have been highlighted as potential
sources of pathogen introduction to the farm environment and/or
produce. For example, biological soil amendments of animal origin
(BSAAO) have been associated with higher risk of pathogen
introduction, in particular, when not properly treated prior to
use (i.e., composted), (Iwu and Okoh, 2019). In addition to the
application of BSAAO to the field, dispersal of pathogen-containing
fecal material in the produce preharvest environment could occur
via surface water runoff and/or animal intrusion (Atwill et al.,
2012; Pandey et al., 2014; Sharma and Reynnells, 2016; Alegbeleye
and Sant’Ana, 2020). Enteric pathogens have also been detected
in source water or distribution systems of irrigation water used in
produce farms in multiple US coastal states (Gu et al., 2013, 2020;
Draper et al., 2016; Allard et al., 2019; Weller et al., 2020).

This study evaluated pathogen prevalence and survival in the
pre-harvest environment in two US geographic regions. These data
provide critical information to compare and evaluate the role of
soil characteristics, climate, and farm management practices on
pathogen prevalence, and improve the understanding of pathogen
ecology in agricultural settings. This knowledge, especially when
coupled with commodity-specific risk assessments, may aid in
the development of targeted mitigation strategies to enhance the
microbial safety of fresh produce.

2. Materials and methods

2.1. Farm characteristics

The study was initiated in the 2018 growing season as a
small pilot study to evaluate potential regional differences in
pathogen prevalence, alongside evaluating the effect of some
farm management practices on pathogen prevalence. In 2019,
the study was expanded to include more pathogens, increased
sampling, and the contribution of irrigation water sources. The
study ended in 2020 due to COVID-19 restrictions preventing
monthly sampling, with the heaviest restrictions coinciding with
amendment application.

Farms were recruited in both Georgia (GA) and Ohio (OH)
by voluntary agreement of the farmers. All farms were blinded for
the purposes of this study. Four farms in GA elected to participate
in 2018, two of which also participated in 2019. Two new farms
participated in GA in 2019, for a total of six participating farms
in GA over both years. In each year a single, but different, farm
was removed from the study due to circumstances unrelated to the
study. All GA farms were certified organic farms, growing mixed
commodities. During the 2018 growing season, limited sampling
occurred on three GA farms/fields, with samples (amendment and
soil) collected pre-amendment, post-amendment, mid-season and
at harvest. In 2019, to expand the study as noted earlier, fields
associated with certified organic farms were selected based on
amendment type (BSAAO or green compost). Green compost was

a BSA of non-animal origin, e.g., plant-based. BSAAO samples
included both raw and composted manure samples, which were
not analyzed separately in this study due to the limited number
of composted manure samples. Composite samples were collected
monthly from each field, starting prior to amendment application,
and continuing through harvest. GA fields were subdivided into
four sections that were sampled at each site visit. Some of these
sections had differing amendment types but the sections were
defined by the commodity grown within each section. Each of these
sections were considered separate fields in the analysis.

In OH, 18 farms, using a variety of farm management
approaches, were similarly recruited with six farms for each
amendment type, dairy manure (DM)-amended, poultry
manure (PM)-amended, and non-BSAAO-amended. The farm
management approaches in OH ranged from conventional to
organic with most using a hybrid approach. None of the OH
farms were certified organic. The study included fields in rotation
(i.e., fields that were cultivating a crop with the intention of
restoring soil health). As these fields had crops growing and were
not fallow, these fields are referred to as rotating fields. The OH
farms are characterized as small, ranging from 80 to 120 acres;
each grew mixed commodities on a staggered schedule, and often
had animals residing on the farm, including work animals, or on
neighboring farms.

2.2. Metadata collection

Metadata on farm management practices were collected via
an interview with each farmer at the end of the growing season.
Observations were recorded where available but complete metadata
were not always available due to differences in reporting by
farmers. These metadata include the use of organic management
practices, use and type of fertilizers and pesticides, presence of
domestic animals, evidence of intrusion from wild animals, and
other events of note.

Daily meteorological data, provided by the Ohio Agricultural
Research and Development Center weather system, were
obtained from a local weather station in OH, located within
an ∼24 km radius of all sampled fields. The data included
total liquid precipitation (inches of accumulation, collected
midnight to midnight, melted in case of ice or snow),
average/minimum/maximum air temperature (oF, average
determined with the 24 hourly readings for each day), global solar
radiation measured at 6 m (Langleys units, 1 Ly = 1 cal/cm2,
sum of 5 min readings in 24 h, average/minimum/maximum soil
temperature (oF, top 2 and top 4 inches) (Supplementary Table 1).
Wind speed and relative humidity were excluded from this study
due to errors in data collection.

In GA, daily meteorological data were collected from the
University of Georgia Climatology Research Laboratory and
included maximum rain gauge (inches), i.e., total precipitation,
average air temperature (oF), average solar radiation (watts per
square meter), and average 10 min wind gust (mph), i.e., wind
speed (WS) (Supplementary Table 2). Soil temperature was not
collected in GA. Solar radiation was measured differently in GA
and OH. To correct for this, when comparing GA and OH weather,
solar radiation data were standardized by subtracting the observed
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value from the observed state mean value and then dividing by the
observed state standard deviation.

2.3. Sample collection and processing

2.3.1. Biological soil amendments and manure
A single composite biological soil amendment (BSA, green

compost) or BSAAO sample, consisting of 3–4 sub-samples, was
taken from the compost or manure at the time of application
to the field. DM, which was applied only to fields in OH, was
comprised of a combination of straw/corn fodder and dairy
heifer manure that had accumulated for several months, in the
pen housing the animals, before being transferred to a manure
spreader. Three to four sub-samples were collected from one
of the manure spreaders and combined into a single composite
sample for testing. PM was purchased by the farmers from a
local broiler house and delivered to the farm as a pile with no
covering. Time between delivery and sample collection varied
from farm to farm. In the OH region, monthly DM samples
were collected from farms using DM amendments to evaluate
the longitudinal pathogen prevalence in the herds beyond the
manure that was applied to the field. These samples were formed
by combining 8–10 fresh manure pats into a composite DM
sample and were often found in the housing facilities or grass
pasture areas. Samples were shipped at temperatures consistent
with environmental conditions to minimize changes. The received
samples were aliquoted (25 g) aseptically into sterile, filter Whirl-
Pak R© bags and then processed for pathogen detection. The samples
were tested for the presence of five pathogens, Lm, Arcobacter,
Salmonella, STEC, and Campylobacter. STEC analyses were added
in the 2018–2019 growing season as part of the expansion
mentioned in Section “2.1 Farm characteristics.”

2.3.2. Water
In OH and GA, water samples were collected in 2019 from the

water source (pond, well, or creek/stream) and from the end of the
drip tape. Stream water samples were collected within 3 to 4 ft from
the edge of the stream and near the irrigation system’s pump. Pond
water samples were collected 3 to 10 ft from the shore and near the
irrigation pump. Well source water samples were either sampled
at the well head, directly from the pump, or after the water had
travelled through an irrigation pipe from the well to the field. While
all GA fields used well water for irrigation, water samples were also
collected from surface water adjacent to the GA farms.

Ten liters of source water were filtered using Modified Moore
Swabs (MMS) for pathogen testing including Lm, Arcobacter,
Campylobacter, Salmonella and STEC, as well as for 16S rRNA
gene sequencing analysis. Additionally, two liters of water samples,
collected from the end of the dripline, were filtered through MMS.
The MMS were maintained at refrigeration prior to pathogen
testing. All MMS were then bisected using a disposable sterile
scalpel to ensure open exchange during processing. The bisected
MMS were transferred to sterile, filter Whirl-Pak R© bags and 250 mL
of sterile distilled water was added to each. The MMS were
manually massaged for 15–30 s to evenly distribute the swabs
within the Whirl-Pak

R©

bags and then stomached at 300 rpm for
2 min in 30 s increments, with manual massaging between intervals
to redistribute the MMS. Aliquots of 25 mL were collected from

each sample, with manual agitation between samples to redistribute
any sediment that had settled and processed according to the
appropriate pathogen protocol.

2.3.3. Soil
In the 2017–2018 season, four composite samples were

collected from each field representing pre-amendment, post
amendment, mid-season, and harvest time. Preliminary analysis
indicated more frequent sampling was needed. For this reason, in
the 2018–2019 growing season, one composite sample was collected
monthly per field in OH and GA. Each composite sample was
comprised of three random sub-samplings from different locations
in the field, all collected from between the rows of growing crop,
which were combined as a composite sample weighing∼2 kg. Each
sub-sample entailed collection of soil from an area of 6” x 6” x
1” (width x length x depth) by spade, treated with 70% ethanol
between sampling, with visible debris removed.

The soil samples were shipped and processed for pathogen
detection and 16S rRNA gene sequencing analysis in the same
way described above for the BSA and manure samples. A portion
(∼0.5 kg) of soil samples, collected pre-amendment, post-
amendment, mid-season, and at harvest, was shipped to The Maine
Agricultural and Forest Experiment Station Analytical Laboratory
and Maine Soil Testing Service1 for analysis by their comprehensive
soil test using the Mehlich 3 extraction method (Rutter et al.,
2022). This comprehensive soil test assessed pH, total organic
matter, available nitrogen (nitrate plus ammonium), phosphorus,
potassium, calcium, magnesium, sulfur, boron, copper, iron,
manganese, sodium, and zinc. Separately, 25 g samples were
processed for pathogen detection and an additional 250 mg was
used for DNA extraction for 16S rRNA sequencing gene analysis.

2.4. Pathogen detection methods

2.4.1. Listeria monocytogenes
Cultural enrichment and detection of Lm largely followed ISO

11290, with one modification (Gnanou Besse et al., 2019). Ferric
citrate, which serves as a screening tool, was omitted from the
medium as early testing found limited association with Lm presence
(data not shown) (Donnelly, 2002; Leclercq, 2004; Parsons et al.,
2019). Antibiotics were obtained from MilliporeSigma (Sigma-
Aldrich

R©

, St. Louis, MO). Samples were processed according to ISO
11290 with manual massage, due to the presence of rocks. Detection
was performed by plating 10 µL on Rapid L’mono (RLM) agar
(Bio-Rad, Hercules, CA), according to manufacturer’s procedures,
and then subcultured on RLM to mitigate media changes due to
background flora. Presumptive Lm colonies were then cultured on
Brain Heart Infusion (BHI) agar (Becton, Dickinson and Company,
Sparks, MD) and confirmed via qPCR analysis (Burall et al., 2021).

2.4.2. Arcobacter and Campylobacter
Soil and manure samples were pre-enriched in 75 mL Bolton

broth (ThermoFisher Scientific Oxoid limited, Hampshire, UK)
containing amphotericin B (5 mg/L) in filter Whirl-Pak R© bags
at 37◦C for 3–4 h. This was followed by enrichment of 3 mL

1 https://umaine.edu/soiltestinglab/
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pre-enriched sample in 7 mL Bolton broth containing 5 mg/L
amphotericin B, 20 mg/L vancomycin, 5 mg/L cefsulodin, and
10 mg/L trimethoprim for 48 h under microaerobic (MA)
conditions (5% O2, 7.6% CO2, 7.6% H2, 79.2% N2). Each MMS
rinsate was enriched with 25 mL 2X Bolton broth containing
antibiotics (as above), under MA conditions at 37◦C for 48 h.

After enrichment, samples were screened microscopically for
the presence of spiral to rod or curved shaped bacteria and
by PCR using Campylobacter (16S rRNA)- and Arcobacter (23S
rRNA)-specific primers (Linton et al., 1996; Kim et al., 2019).
Dilutions of the presumptive positive samples were inoculated
(100 µL) onto 0.65 µm mixed cellulose ester filters (Hiett,
2017) placed on Brucella Blood Agar (ThermoFisher Scientific
Remel, Lenexa, KS) supplemented with lysed Horse blood
(Lampire biological laboratories, Pipersville, PA) for 15 min
and/or streaked (20 µL) onto modified charcoal-cefoperazone-
deoxycholate (mCCDA) plates. Isolated colonies were screened
microscopically and confirmed by PCR.

2.4.3. Salmonella
Pre-enrichment of samples was conducted by resuspending

each sample in a Whirl-Pak R© bag with 225 mL modified buffered
peptone water. Each bag was slowly swirled for 1 h in a shaking
incubator at 30◦C before continuing incubation at 35◦C for 24 h
(± 2 h). Enrichment for Salmonella was performed as described in
the FDA Bacteriological Analytical Manual (BAM) (Andrews et al.,
2022) with Rappaport-Vassiliadis (RV) medium and Tetrathionate
(TT) broth, followed by isolation of black single colonies on XLT-
4 agar and confirmation using the VITEK R© 2 system (BioMérieux,
Inc, Marcy-l’Étoile, France).

2.4.4. Isolation of STEC
Samples were pre-enriched by resuspending each sample in

a filter bag with 225 mL modified buffered peptone water with
pyruvate (mBPWp) and incubated at 37◦C for 5 h (± 1 h).
Acriflavin–Cefsulodin-Vancomycin supplement (3 mL) (Feng et al.,
2020) was added and the samples were incubated at 42◦C for 18 h
(± 2 h). Then, two 1 mL replicate aliquots of the enrichments were
collected from each sample. One was for screening for STEC by
qPCR. The aliquot was centrifuged at 2,500 x g for 3 min for DNA
extraction.

The other aliquot was for isolation. When tested positive by
PCR, three 10 µL replicates from each culture were streaked
onto ChromAgar STEC plates (CHROMagarTM, Paris, France) and
incubated at 37◦C for 18 h. Pink colonies were selected for STEC
verification. The colonies were grown in mBPWp in a 96-well plate
at 37◦C for 5–8 h. Half of the culture was used for DNA purification
and the other half was saved as a seed culture for later use. DNA
was purified and qPCR analysis was performed to detect STEC as
described elsewhere (Li et al., 2017). Wells positive for STEC were
tracked to the seed plate, which was used for secondary culture on
CHROMagarTM STEC plates for further isolation and purification.

2.4.5. 16S rRNA gene sequencing and analysis
Water samples were centrifuged at 7,200 rpm for 30 min.

Cell pellets were then resuspended in DNA/RNA Shield solution
(Zymo Research, Irvine, CA) and stored before batch processing
for DNA extraction. DNA was extracted from environmental

samples with the ZymoBIOMICS DNA Miniprep kit (Zymo
Research, Irvine, CA) utilizing the lysis bead bashing tubes and
validated lysis protocols on either the FastPrep-24 5G homogenizer
(MP Biomedicals, Santa Ana, CA) or a Vortex Genie with
Horizontal-(24) Microtube Adaptor. 16S rRNA gene amplicon
library preparation and sequencing was performed on the MiSeq
benchtop sequencer (Illumina, San Diego, CA) targeting the V4
variable region of the 16S rRNA gene, following the manufacturer’s
recommended protocol with the modification of using Omni
Klentaq polymerase (DNA Polymerase Technology, St. Louis, MO)
in place of KAPA HiFi HotStart Ready Mix, as described elsewhere
(Daquigan et al., 2016). The amplification primers used were 515F-
Y and 926R (Parada et al., 2016). Nextera XT dual indices were
used to allow multiplex sequencing using 600 cycle V3 paired-end
chemistry. Each sequencing run contained 60 to 80 multiplexed
libraries and estimated equimolar library pools were sequenced at
8 pM. with a 15% phiX spike-in.

Taxonomic classification of 16S V4 amplicon microbiome
datasets were processed using an in-house bioinformatics pipeline
written in R, Bash, and Python. Preprocessing and classification
of reads were performed as follows. First, paired-end reads were
merged using FLASH (Magoc and Salzberg, 2011). In cases where
reads could not be merged, either due to insufficient overlapping
base pairs or poor quality within the overlapping region, read 1
was retained in the dataset. This approach allowed retention of
more sequencing data. Next, the paired-merged and read 1 dataset
was then processed using USEARCH (Edgar, 2010; Edgar and
Flyvbjerg, 2015) to perform quality filtering and prepare reads for
taxonomic classification. This included using the fastx_truncate
option to remove the 16S rRNA PCR primers, fastq_filter to
filter based on a minimum fragment length of 150 bp and ee
(expected error) value of 1.0 quality, fastx_uniques to get unique
sequences per sample, and unoise3 to check for and remove
chimeric sequences. The resulting datasets were then classified with
MAPseq (Matias Rodrigues et al., 2017), utilizing their default
curated database. Briefly, this was created using NCBI GenBank
and RefSeq reference sequence databases, extracting any sequences
annotated as ribosomal RNA with 16S or 18S in the annotation. The
data presented in the study are deposited in the NCBI repository,
accession number PRJNA894200.

2.5. Statistical methods

2.5.1. Soil amendment and water
Associations between Lm, Arcobacter, Campylobacter,

Salmonella, and STEC prevalence and type of soil amendment
(DM, PM, and green compost) or water source (surface, including
streams and ponds, or well) were assessed using Fisher’s exact
test, performed in SAS 9.4 (SAS Institute, Cary, NC). Associations
between pathogen prevalence and season were also assessed using
Fisher’s exact test. Small sample sizes prohibited multivariate
modeling analyses.

2.5.2. OH soil
A structural equation model (SEM) was postulated specifying

direct and/or indirect influence of local meteorological data,
soil fertility data, farm management practices (soil amendment

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1141043
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1141043 April 4, 2023 Time: 10:31 # 6

Ferguson et al. 10.3389/fmicb.2023.1141043

FIGURE 1

Conceptual model for Lm and Arcobacter (Arco) prevalence in OH soil. Square boxes are observed variables, Farm management practices (soil
amendment and irrigation source) and Simpson’s diversity index (SDI). Ovals are latent variables, soil fertility and local weather at time t. Arrows
represent the flow of causality. Solid-line arrows indicate positive effects on the to variable, dash-line arrows indicate negative effects on the to
variable. Double-headed curved arrows are covariances (i.e., no causality). Al, aluminum; B, boron; Ca, calcium; Cu, copper; Fe, iron; K, potassium;
Mg, magnesium; Mn, manganese; Na, sodium; P, phosphorus; S, sulfur; Zn, zinc; LOI, loss-on-ignition; PM, poultry manure; DM, dairy manure; AT,
air temperature; SR, solar radiation; PR, precipitation.

and source of irrigation water) and taxonomic diversity on the
presence of the most prevalent pathogens, Lm and Arcobacter
(Supplementary Tables 1, 2, and 5). The conceptual model,
evaluating OH soil data, is outlined in Figure 1, specifying
indicators and direction of causality. There were insufficient
data to inform the model for Salmonella, Campylobacter, and
STEC. Soil samples that were positive for Lm or Arcobacter
after culture enrichment were considered “positive.” The farm
management variables, soil amendment and irrigation water
source, were ordinalized with increasing scores corresponding to
greater observed Lm or Arcobacter prevalence. The water data
were thus coded: 1 = non-irrigated, 2 = well water-irrigated,
3 = surface water-irrigated. Similarly, the manure data were
coded as: 1 = no BSAAO, 2 = PM (including composted
PM), and 3 = DM (including composted DM). To account for
transition from soil amendment to no BSA amendment in a
field from one year to another, i.e., if a field transitioned from
PM or DM soil amendment in 2018 to no BSA amendment
in 2019, the assigned amendment score was adjusted to 1.5
to account for possible lingering PM or DM effects. Similarly,
if a field was irrigated with surface water in 2018 and then
transitioned to no irrigation in 2019, that field was assigned
an irrigation score of 1.5. This allowed the potential to capture
carryover risk from one treatment to another during the SEM
analysis.

The soil elements tested in this study were known to
influence plant and microbial growth and considered indicators
of soil fertility Lines-Kelly, 1992 (Gardner, 1985). These elements,

in the collective, are referred to as "soil fertility” in this
manuscript, despite no direct assessment of fertility via crop
growth or yield. Soil fertility was modeled as a latent variable.
Soil fertility was defined as the underlying driver of the soil
chemical profile values: soil pH, phosphorus, potassium, calcium,
magnesium, aluminum, manganese, boron, copper, iron, sodium,
ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), sulfur,
zinc, and loss-on-ignition, which estimates the organic matter
content of the soil. Increasing values of nutrients and soil
pH were considered as indicators of increased soil fertility
(i.e., positive loadings). In a secondary analysis, both nitrogen
analytes (NH4-N and NO3-N) were analyzed separately from
soil fertility to examine their relationship with Nitrospira,
Nitrosospira, Lm, and Arcobacter. The relative abundance of
Nitrospira and Nitrosospira, the measured values of NH4-N and
NO3-N, and the prevalence of both Lm and Arcobacter were
plotted versus time to assess if prevalence tracked synchronically
or asynchronically with the nitrogen analytes and nitrifying
bacteria.

Weather was incorporated in the model as a latent variable
observed through precipitation (PR), air temperature (AT), and
solar radiation (SR), with increasing temperature and radiation
values (i.e., positive loading) and decreasing precipitation (i.e.,
negative loading) representing increasing “weather” across time.
Minima and maxima measures were not included to avoid
collinearity issues with average daily measures and to reflect the
center rather than the extremes of the data. Due to the high
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TABLE 1 Overall pathogen prevalence by sample type and state.

Lm Salmonella Campylobacter Arcobacter STEC

GA OH Overall GA OH Overall GA OH Overall GA OH Overall GA OH Overall

Water Positive n (%) 2 (7) 15 (22) 17 (18) 1 (4) 6 (9) 7 (7) 1 (4) 0 1 (1) 5 (22) 31 (45) 36 (39) 0 2 (3) 2 (2)

# samples tested 26 69 95 26 69 95 23 69 92 23 69 92 26 69 95

Soil Positive n (%) 10 (9) 45 (15) 55 (13) 0 0 0 0 0 0 1 (2) 21 (8) 22 (7) 0 1 (0.4) 1 (0.3)

# samples tested 106 311 417 106 310 416 84 260 344 67 260 327 89 235 324

BSA Positive n (%) 1 (6) 35 (51) 36 (42) 0 2 (3) 2 (2) 0 21 (31) 21 (24) 1 (20) 23 (34) 24 (33) 0 9 (16) 9 (15)

# samples tested 18 69 87 18 69 87 18 68 86 5 68 73 5 57 62

BSA refers to all amendment samples, those associated with field application, as well as those not associated with field application. Positive n, the number of samples in which the pathogen
indicated was detected; %, percent of samples positive for the pathogen indicated.

collinearity (corrPearson = 0.93) between soil and air temperatures,
soil temperature was not included.

The literature indicated a delayed, or lagged, effect of weather
on Lm prevalence, with a peak increase in Lm prevalence 24 h
after a rain event but rain amounts over the preceding 2 days also
increased Lm prevalence (Weller et al., 2015a,b; Harrand et al.,
2020). Based on these data, a 48 h lag was used in this study to
evaluate effects linked to precipitation. The term “lag” is used to
indicate the timeframe prior to sample collection. The choice of
lag (or no lag) or moving average span for the remaining weather
parameters was informed by (1) published results and (2) visual
examination of loess-smoothed plots.

There are two main components to an SEM. The structural
component quantifies potential dependencies (pathways) between
the variables in the model. The measurement component quantifies
how well the latent variables are represented by the observed
indicators (e.g., how well is soil fertility represented by the soil
measurements Al, B, Ca, . . ., Zn). A SEM must have a sound
theoretical basis and is only as successful as the researcher-
hypothesized a priori model, based on researcher knowledge and/or
published results.

The hypothesized OH conceptual model, guided by observed
manure and water prevalence in Table 1 and prior research, is
presented in Figure 1. As the SEM is a model approach driven by
theory and prior research, it was postulated that the use of BSAAO,
the use of surface water for irrigation, increasing soil fertility,
decreasing AT and SR, increasing PR, and decreasing microbiome
diversity would result in an increase in Lm prevalence. It was
also hypothesized that the use of BSAAO, increasing soil fertility,
increasing AT and SR, decreasing PR, and decreasing Simpson’s
Diversity Index (SDI) would result in an increase in Arcobacter
prevalence. SDI is a measure of alpha, or within-sample, diversity
which takes into account the number of species present and the
relative abundance of each species (Roswell et al., 2021). In both
approaches, DM was hypothesized to have a larger effect than
PM. Microbiome diversity, measured as SDI, was hypothesized
to increase with increasing AT, SR, and soil fertility assuming
nutrients in the soil can be utilized by bacteria and plants.

Diagonally weighted least squares was implemented using the
sem function in the R lavaan package, version 0.6.9 (Rosseel, 2012)
and the probit link function, 8 () where 8 is the cumulative
standard normal distribution function. The model was fit by fixing
the variances of the latent variables to unity. As observed weather

and soil parameters, SDI, and prevalence data were on different
scales, they were standardized to the same scale.

The fit of the SEM was assessed by the Bentler Comparative
Fit Index (CFI) and the root mean square error of approximation
(RMSEA). Covariances between the soil or weather manifest
variables, as suggested by large modification indices (MI),
MI > 10 (i.e., χ2

df = 1 p < 0.002), and fitting the model
paradigm, were included in the model. The model was tuned by
removing regression parameters and pathways with Wald z-test
P-value > 0.15.

2.5.3. GA soil
A more parsimonious SEM was conducted to model Lm

prevalence in GA soil samples due to insufficient soil fertility panel
data. No analysis was performed for the other pathogens, due to
limited soil positive samples. Furthermore, all GA fields were well-
irrigated, and no GA fields were amended with DM, eliminating
irrigation source as a variable and reducing the soil amendment
variable to two levels, 1 = green compost, 2 = PM. The hypothesized
conceptual model, used to evaluate GA soil data, is presented in
Figure 2A with local weather incorporated, as in the OH soil
model, with the addition of WS as an indicator. Decreasing AT and
SR, increasing PR and WS, and the use of PM amendment were
hypothesized to result in increased Lm prevalence, similar to the
model evaluating OH data.

2.5.4. Bacterial diversity of OH soil
Metataxonomic analysis of the bacterial community was

conducted on OH soil samples, targeting the V4 region of the 16S
rRNA gene. Families occurring in less than five of the samples
were excluded. SDI was calculated, at the family level, using the R
diversity function in the vegan package Oksanen et al., 2019. SDI
is a measure of taxonomic diversity with 1 representing maximum
diversity and 0 representing no diversity. SDI was included in
the Lm and Arcobacter prevalence models as the measure of
microbiome diversity.

2.5.5. Lm and Arcobacter co-occurrence in OH
soil

Analyses of co-occurrence with Lm or Arcobacter were
conducted to assess which soil genera correlated with the presence
or absence of Lm or Arcobacter. Lm culture positive samples that
were undetected in the 16S analysis were included by setting a
value at half the minimum percent hit versus those positive by
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FIGURE 2

(A) Conceptual model for Lm prevalence in GA soil. (B) Final estimated model for Lm prevalence in GA soil. (C) Weather effect sizes. GC, green
compost. (D) Lm prevalence in GA soil by soil amendment type. PM, poultry manure; AT, air temperature; SR, solar radiation; PR, precipitation; WS,
wind speed; CFI, comparative fit index; RMSEA, root mean square error of approximation.

16S analysis. The relative abundances of genera in the Lm+ (or
Arcobacter+) OH soil samples were compared to those in Lm-
(or Arcobacter-) OH soil samples. Non-parametric bootstrap 95%
confidence intervals (CI) were calculated for the mean relative
abundance of each genus for Lm- (or Arcobacter-) samples and
Lm+ (or Arcobacter+) samples. CIs were calculated using the
np.boot function in the R nptest package Helwig, 2021.

3. Results

3.1. Amendment pathogen prevalence

Amendment samples (n = 87) were tested for the prevalence
of Salmonella, Arcobacter, Campylobacter, STEC, and Lm
(Supplementary Table 3). When comparing pathogen prevalence
in OH and GA, all five pathogens were lower in GA amendments
(0–20% positive samples) than OH (3–51% positive samples)
(P-values, not significant), though this may be due to the absence
of DM in GA (Table 1). Lm, Salmonella, and Arcobacter were
detected in DM and PM samples while Campylobacter was only
detected in DM samples (Table 2). No pathogens were detected
in the green (non-animal) compost samples. The presence of
Campylobacter and Lm was significantly associated with manure
type (PCampylobacter = 0.0002, PLm < 0.0001), being most prevalent
in DM samples (Table 2). To assess seasonal trends in OH,
pathogen prevalence was compared across season (winter, spring,
summer and fall). Lm (P = 0.05) and Campylobacter (P = 0.001)
were most prevalent in the summer and Arcobacter (P < 0.0001)
was most prevalent in the fall, followed by the summer (Figure 3).
There were comparatively fewer samples analyzed for STEC, as

STEC was added in the second year, and a low prevalence was
observed, reducing confidence in the observed results; however, we
note that STEC was only detected in DM samples and appeared
most prevalent in the fall.

3.2. Pathogen prevalence in irrigation
water

Water samples (n = 95) were tested for pathogen prevalence
(Table 1, Supplementary Table 4). Thirty-nine samples (nOH = 31;
nGA = 8) were collected from the end of the dripline, and 56
samples (nGA = 18, nOH = 38) were collected from the water
source. Lm and Arcobacter were by far the most frequently detected
pathogens. Comparisons of pathogen prevalence of GA and OH
water samples, using Fisher’s exact test, found that Arcobacter
was more prevalent in water from OH than GA (P = 0.05).
However, no significant regional differences in prevalence for Lm,
Salmonella, Campylobacter, and STEC were observed for water
samples (Table 1).

Arcobacter was detected in both surface and well source water,
with a higher prevalence in surface water (POverall < 0.0001,
POH = 0.05), whereas Lm, Salmonella, Campylobacter, and STEC
were detected only in surface water (pond or stream) (Table 2).
Campylobacter and STEC were only detected in source samples
whereas Lm, Salmonella and Arcobacter were detected in both
source and dripline samples (Table 2).

To assess seasonal trends, pathogen prevalence in OH surface
water was compared across seasons (spring, fall, or summer). Lm
was significantly more prevalent in the summer OH water samples
(P = 0.02; Figure 3). Some of the subgroups within Figure 3
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had sample sizes too small for any conclusions to be drawn and
are considered observational. No significant seasonal trend was
observed for the other pathogens, either due to the absence of
a significant difference or the dataset’s size preventing statistical
analysis.

3.3. Soil pathogen prevalence

OH soil samples were tested for Salmonella (n = 310),
Campylobacter (n = 260), STEC (n = 235), Lm (n = 311), and
Arcobacter (n = 260; Table 1). These samples were collected from
21 farms/fields in 2018 and 29 farms/fields in 2019, for a total of 29
different farms/fields across both years with 20 of them sampled
in both years. All OH soil samples were negative for Salmonella
and Campylobacter, and only one was positive for STEC. Given the
low yield for those three pathogens, prevalence analyses focused
on Lm and Arcobacter. There were 154 (for Lm) and 144 (for
Arcobacter) complete cases, i.e., samples which had complete data
on soil fertility, weather, farm management data, and metagenomic
to model the pathogen prevalence. Rotating fields (nOH = 13)
were included in the analysis as non-amended fields (SA = 1)
or previously amended fields (SA = 1.5) unless amendment was
applied to the rotating field (n = 3, DM-amended). Fifteen percent
of OH soil samples tested positive for Lm and 8% tested positive for
Arcobacter (Table 1). However, when limited to the 154 (Lm) OH
soil samples with complete data, 26 (20%) samples tested positive
for Lm. Likewise, limiting the analysis to the 144 (Arcobacter) OH
soil samples with complete data, 12 (8%) samples tested positive for
Arcobacter.

Among the GA soil samples, 106 were tested for Lm and
Salmonella, 89 for STEC, 84 for Campylobacter, and 67 for
Arcobacter (Table 1). While no GA soil samples tested positive
for Salmonella, Campylobacter, or STEC, one (2%) tested positive
for Arcobacter and ten (9%) tested positive for Lm. Of the 10
Lm+ GA soil samples, seven were from PM-amended fields (14%
of PM-amended fields) and 3 were from green compost-amended
fields (6% of green compost-amended fields), indicating increased
Lm prevalence in GA PM-amended fields versus green compost-
amended fields (Table 2). There were 99 complete GA soil cases to
model Lm prevalence.

Lm and Arcobacter prevalence of GA and OH soil samples were
compared using Fisher’s exact test. Arcobacter was more prevalent
in OH soil than GA soil (P = 0.06), while no differences were
observed in Lm soil prevalence between the two regions.

Trends of OH soil Lm and Arcobacter prevalence and GA Lm
prevalence versus weather were explored, with weather parameters
observed at various hours (24, 48, 72, 96, and 120 h) prior to the
day of soil collection or averaged across various moving averages
(spanning 48, 72, 96, and 120 h) (data not shown). PR averaged over
the 48 h prior to and including the day of soil collection correlated
most closely with Lm prevalence in GA and OH soil and inversely
correlated with Arcobacter prevalence in OH soil. AT and SR, also
averaged over 48 h, inversely correlated with Lm prevalence in OH
and GA soil and directly correlated with Arcobacter prevalence in
OH soil. These findings largely agreed with prior literature results
for Lm (Strawn et al., 2013a,b; Weller et al., 2015a; Harrand et al.,
2020). WS averaged over the 48 h prior to and including the day
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FIGURE 3

Pathogen prevalence in amendment and water samples by season. Amendment includes the actual BSA applied to fields as well as dairy manure
samples that were not associated with field application. Data is plotted to show the percent of the samples tested that were positive for the indicated
pathogen evaluated within each season.

of soil collection was observed to correlate most closely with Lm
prevalence in GA soil.

3.3.1. Effects of environmental conditions on Lm
and Arcobacter prevalence

Most soil characteristics analyzed in OH soil samples were
good indicators of soil fertility, as defined in the methods, i.e., had
large effect sizes (large, standardized regression coefficients), with
the exceptions of Ca, Na, and S. Soil characteristics with larger
size effects were considered as good indicators of soil fertility. All
indicators had positive loadings, i.e., increasing values indicated
increasing “fertility,” except for NO3-N and S, which had negative
loadings, i.e., increasing NO3-N and S indicated decreasing fertility
(Figure 4).

The strongest indicators of local weather’s ability to predict Lm
and Arcobacter prevalence in OH soil were AT and SR (Figures 4C,
D), which is expected given seasonal patterns associated with
changes in temperature due to increased solar radiation. AT and
WS were significant indicators in predicting Lm prevalence in
GA soil but SR and soil amendments were not (Figure 2). Lm
prevalence in GA soil was directly impacted by weather (PGA = 0.04;
Figure 2B) and, in OH, the impact of weather on soil Lm prevalence
was mediated by soil fertility, with decreasing fertility correlating

with decreasing Lm prevalence (P = 0.05; Figure 5). Observed Lm
prevalence was highest during the coolest part of the year, winter
and spring (Figure 6A and Supplementary Figure 1). Arcobacter
prevalence in OH soil was directly impacted by weather (P = 0.04;
Figure 5) but in an opposite direction, with observed Arcobacter
prevalence highest during the warmest part of the year (summer
and fall) (Figure 6A). The observed effect of PR was not nearly as
prominent as AT or SR in OH or GA (effect sizeLm, = 0 in GA, effect
sizeLm, =−1 and effect sizeArcobacter =−2 in OH).

OH soil fertility itself was significantly impacted by both soil
amendment (PLm = 0.02, PArcobacter = 0.01) and local weather
(PLm < 0.0001, PArcobacter = 0.003; Figure 5). Soil fertility was
highest when a DM-BSAAO was used, followed by PM-BSAAO.
Increasing AT and SR and, to a lesser extent, decreasing PR were
correlated with decreasing soil fertility in the summer. Soil fertility
was highest in winter when AT was low and PR was largely in
the form of snow and ice. Altogether, these factors contributed
to improved soil fertility in the winter. AT and SR had a more
pronounced effect on soil fertility than PR (Figure 4C and D).
Soil fertility had a correlative effect on Lm but not Arcobacter
prevalence, but had a direct effect on diversity (PLm = 0.005;
Figure 5) in OH, where diversity decreased as soil fertility
increased. Decreasing diversity, in turn, was correlated with higher
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FIGURE 4

Effect sizes (z-statistic) of the observed soil chemistry variables composing the predicted (standardized) soil fertility latent variable for the Lm (A) and
Arcobacter (B) models. Effect sizes (z-statistic) of the observed weather variables composing the predicted (standardized) Weather latent variable for
the Lm (C) and Arcobacter (D) models. Blue dots are positive effect sizes and orange dots are negative effect sizes. The larger the dot, the larger the
effect size, i.e., the more important the indicator. Al, aluminum; B, boron; Ca, calcium; Cu, copper; Fe, iron; K, potassium; Mg, magnesium; Mn,
manganese; Na, sodium; P, phosphorus; S, sulfur; Zn, zinc; LOI, loss-on-ignition; AT, 24 h average of air temperature; PR, precipitation; SR, solar
radiation.

Lm prevalence (P = 0.02), indicating an indirect effect of soil fertility
on Lm prevalence. These results were in line with the expected
results, suggesting the observations that informed the model overall
were likely consistent with environmental factors.

While the role of plant nitrogen utilization could not be
properly evaluated in this study, some intriguing patterns were
observed between the levels of ammonium and nitrate, local
weather, and soil amendment in OH with Lm showing an increased
prevalence late in the year in PM-amended fields compared to
DM- and non-BSAAO-amended fields (Figure 7). Evaluation
of the presence of Nitrospira and Nitrosospira, along with Lm
prevalence, nitrate levels, and ammonium levels, showed a potential
relationship between these factors, possibly initiated by the large
increase in ammonium levels observed only in PM-amended fields
(Figure 7). Two genera associated with nitrification are Nitrospira
and Nitrosospira (Daims, 2014). Their role in nitrogen processing
may be affected by the nitrogen source provided based on the use of
DM or PM, the latter with a higher content of ammonium Herbert
et al.,2 and could explain the observed inverse relationship between
the levels of ammonium (high to low) and nitrate (low to high)
during the growing season in OH (Figure 7). PM, rich in urea

2 Herbert, S., Hashemi, M., Chickering-Sears, C., Weis, S. M., Carlevale,
J., Campbell-Nelson, K., et al. Conserving Ammonia in Manure. UMass
Extension Crops, Dairy, Livestock and Equine Program. Available
online at: https://ag.umass.edu/crops-dairylivestock-equine/fact-sheets/
conserving-ammonia-in-manure

and uric acids, was shown to boost ammonium levels, as expected,
when (Figure 7). In these fields, an increase in Lm prevalence was
observed late in the year, but not in non-BSAAO-amended fields,
and was lower in DM-amended fields (Figures 6B, 7). Additionally,
there are marked differences between these field groups when
evaluating the relative abundance of Nitrospira and Nitrosospira.

To concentrate on regional differences in Lm soil prevalence,
possibly due to different weather patterns, the GA and OH weather
was compared. The AT and SR values for GA and OH (Figure 8A),
and PR data for OH (Figure 8B) were cross-plotted. PR trends were
similar cross year (2018, 2019) and were analogous cross both states
(GA, OH). The SR trends were also similar cross year (2018, 2019)
but the GA SR peaked around May, about two months before the
OH SR peaked, around July. To ascertain when the prevalence of
Lm in soil first significantly decreased, a structural change analysis
was conducted. The mean monthly Lm prevalence in OH soil was
calculated, over both years aggregated. Unlike OH, where soil was
sampled throughout the year, the soil in GA was only sampled
March through October, due to different amendment application
times, resulting in insufficient longitudinal samples to conduct a
structural change analysis in GA as mentioned earlier for other
analyses.

The Quandt Likelihood Ratio (QLR) statistic (Quandt, 1960)
was used to detect the presence of structural breaks in the OH data
and was calculated using the Fstats function in the strucchange
R package (Zeileis et al., 2002, 2003). To determine when the
structural break(s) occurred, the breakpoints function in the same
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FIGURE 5

Final (parsimonious) model for OH soil Lm and Arcobacter (Arco) prevalence. Numbers on single-headed arrows are the standardized regression
path estimates (z-statistic) and p-values (in parentheses). The thickness of the arrow reflects the strength of the relationship, with solid-line arrows
indicating positive relationships and dash-line arrows indicating negative relationships. For plot simplicity, the soil nutrient covariances are provided
in Supplementary Figure 2. Al, aluminum; B, boron; Ca, calcium; Cu, copper; Fe, iron; K, potassium; Mg, magnesium; Mn, manganese; Na, sodium;
P, phosphorus; S, sulfur; Zn, zinc; LOI, loss-on-ignition; PM, poultry manure; DM, dairy manure; AT, air temperature; SR, solar radiation; PR,
precipitation; SDI, Simpson’s diversity index.

FIGURE 6

Seasonal trends in OH air temperature (AT), precipitation (PR), and solar radiation (SR). Overlaid are Lm soil prevalence, Arcobacter (Arco) prevalence,
and Simpson’s diversity index (SDI) in OH soil. AT, PR, and SR are 48 h moving averages. All variables are standardized to the same scale using the R
standardize function in the robustHD package (Alfons, 2019). Soil amendment groups are aggregated in (A) and grouped in (B). BSA, biological soil
amendment; BSAAO, biological soil amendments of animal origin; PM, poultry manure; DM, dairy manure; N, not amended with BSA or BSAAO; AT,
24 h average of air temperature; SR, solar radiation; PR, precipitation; SDI, Simpson’s diversity index.
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FIGURE 7

Seasonal Trends in Lm and Arcobacter (Arco) prevalence,
Nitrosospira relative abundance, Nitrospira relative abundance,
ammonium-nitrogen and nitrate-nitrogen levels in Ohio soil,
grouped by soil amendment. All variables are standardized to the
same scale using the R standardize function in the robustHD
package. BSA, biological soil amendment; BSAAO, biological soil
amendments of animal origin; PM, poultry manure; DM, dairy
manure; N, not amended with BSA or BSAAO.

R package was used. The QLR tests detects structural changes of a
regression of the Lm soil prevalence at month j regressed on the
previous month’s (month j-1) prevalence, i.e., detects month-to-
month prevalence changes. Only one structural break in OH was
detected in March (PQLR = 0.05) and is evident in Figure 6A.

3.3.2. Listeria monocytogenes and Arcobacter
The final parsimonious Lm and Arcobacter model for OH

revealed a causality effect associated with the type of soil
amendment (PLm = 0.01, PArcobacter = 0.08) with prevalence highest
for DM-amended fields (Figures 5, 9). Although the direct effect
of soil amendment on Lm prevalence in GA was not significant,
the observed Lm prevalence in PM-amended fields was marginally
higher than for green compost-amended fields. A causal effect

of irrigation source in OH (P = 0.06) on Lm prevalence was
observed with prevalence highest for non-irrigated OH fields
(Figures 5, 9A). Although, in OH, surface water samples presented
the highest observed Lm prevalence and well water samples
presented zero observed Lm prevalence (Table 2), soil samples from
surface water-irrigated fields had similar Lm prevalence to well-
irrigated fields, while the soil samples from non-irrigated fields
had the highest Lm prevalence (Figure 9A). Since the decision
regarding whether to irrigate may be influenced by known on-farm
risk factors, such as resident animals, amendment practices were
evaluated to determine if they might influence irrigation practices.
When evaluating whether amendment choice might correlate with
irrigation choice, it was found that: PM-amended fields were
equally likely to be irrigated with surface or well water; DM-
amended fields were more likely to be irrigated with well water; and
non-amended fields were more likely to not be irrigated.

3.3.3. Diversity of bacterial community in soil
Metataxonomic sequence analysis was performed for 305 of

the 311 OH soil samples. For purposes of informing the model,
samples that were positive for Lm after enrichment (culture
positive) were considered positive for Lm, even if the culture-
independent sequencing results did not indicate the presence
of Lm. In fact, an evaluation of the sensitivity of microbiome
metataxonomics when detecting Lm in soil samples, only two
OH soil samples were found to contain Lm by 16S rRNA
sequencing analysis whereas 45 OH soil samples were culture-
positive for Lm. Additionally, the two samples from which Lm
levels were detected by metataxonomics, were culture-negative
for Lm. These data highlight the need for culture enrichment of
foodborne pathogens from environmental samples. Furthermore,
the two samples which were Lm culture-negative but contained
detectable levels of Lm in the metataxonomic analysis were
included as Lm-containing samples in the analysis. The detection
of Arcobacter using metataxonomics was also incongruous with
culture results. Four OH soil samples had levels of Arcobacter
detected by metataxonomics, three of which were culture-negative
for Arcobacter and one of which was not cultured for Arcobacter.

FIGURE 8

(A) GA and OH monthly average air temperature (AT) and average solar radiation (SR) for study years 2018 and 2019. (B) GA and OH monthly average
precipitation (PR) for study years 2018 and 2019. SR and PR were standardized to the same scale as they were measured differently in GA and OH.
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FIGURE 9

Distribution of Lm and Arcobacter (Arco) prevalence in OH soil by irrigation source (A,C) and soil amendment (B,D). BSA, biological soil amendment;
BSAAO, biological soil amendments of animal origin; None, no irrigation of the field; Surface, irrigation performed with surface water; Well, irrigation
via well water; N, not amended with BSA or BSAAO; PM, poultry manure; DM, dairy manure.

FIGURE 10

(A) Top (most abundant) twenty genera detected (16S) in Lm negative (–) samples vs. top 20 genera detected in Lm positive (+) samples in OH soil.
(B) Top twenty genera detected in Arcobacter negative (–) samples vs. top 20 genera detected in Arcobacter positive (+) samples in OH soil. The
darker the color, the more abundant the genus, i.e., the higher the relative abundance (%). An asterisk (∗) denotes genera with significantly different
mean relative abundance between positive and negative samples. RA, mean relative abundance.

Of the 21 OH soil samples, which were culture-positive for
Arcobacter, none had levels of Arcobacter detected by 16S rRNA
gene amplicon sequencing. These 21 samples were included in
the analysis as containing Arcobacter and the Arcobacter relative
abundance (percent hit) was set to half the minimum relative
abundance of the four Arcobacter containing metataxonomic
samples, 0.002.

Diversity of the microbiome was calculated at the family level
with the SDI ranging from 0.89 to 0.98. The type of soil amendment
did not appear to influence bacterial diversity (Figure 6B).
Although weather did not have a direct impact on bacterial

diversity, diversity was visibly lower in the winter through spring,
reaching its nadir in April/May (Figure 6A). This observation
indicated that April/May represented an inflection point in
bacterial diversity, perhaps due to increased temperatures that
were disadvantageous for cold-adapted bacteria, while growth of
more warm-adapted microorganisms had not yet occurred to levels
detectable by metataxonomics. Diversity increased significantly
with decreasing soil fertility in the Lm model (PLm = 0.005;
Figure 5). As previously mentioned, fertility decreased with
increasing AT and SR; as such, the effect of weather on diversity
appeared mediated through soil fertility.
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3.3.4. Co-occurrence in OH soil
The top twenty most abundant genera in Lm and Arcobacter

negative (–) samples were compared to the top twenty most
abundant genera detected in Lm and Arcobacter positive (+)
samples (Figure 10). In general, the top twenty genera are similarly
abundant in positive and negative samples for Lm and Arcobacter
(Figure 10) with two exceptions, mentioned below. As such, the
profiles of dominant genera in soil appeared similar and their
influence on pathogen prevalence did not appear substantial. The
relative abundances of Flavobacterium and Gemmata, however,
were significantly different (i.e., non-overlapping 95% CI, Table 3)
between Lm+ and Lm-samples, with the former more abundant
in Lm+ samples and the latter more abundant in Lm- samples.
Regarding the genera with significantly different mean relative
abundances between pathogen negative and positive samples in the
Arcobacter co-occurrence analysis, the mean relative abundances
(Figure 11A) were much lower (max∼0.5) than the mean
relative abundances for Lm co-occurrence analysis (Figure 11B),
max = 2.5); this signifies that for Arcobacter the genera differences
observed between positive and negative samples were generated by
genera that represented a smaller proportion of the soil microbiome
than those genera associated with Lm presence or absence.

4. Discussion

4.1. Pathogen prevalence in dairy manure

While green compost, PM, and DM were evaluated in this
study, there was a higher prevalence of the evaluated pathogens in
DM. Additionally, as green compost and PM were only collected
around the time of application, analysis of seasonality trends was
not possible. However, due to the collection of DM throughout the
growing season, it was possible to determine the prevalence data
for Arcobacter and Lm and evaluate potential patterns associated
with season, leading to a possible explanation for the observed
pattern. In the spring and summer, dairy herds associated with this
study shifted to grazing in pastures around the farm. A similar shift
likely occurred at other farms in the region. As a result, there was
likely increased interaction of cattle with surface water that could
lead to transmission of Lm to or from neighboring animals. This
exposure could be by drinking contaminated surface water, which
could occur independent of pasture access, as well as by the animals
entering surface water that cross through the pasture, transmitting
pathogens to and from pastures. This increased potential for
exposure and transmission could explain the observed increase in
Lm prevalence in OH DM in the spring that continued through the
fall but declined in the winter (Figure 3) when herds were generally
kept within barns, which could potentially reduce direct interaction
with surface water. However, the possibility remains that dietary
shifts associated with these seasonal shifts could be affecting Lm
prevalence in DM as well. Although Lm DM prevalence was lowest
in the winter, the regional herd, encompassing all cattle evaluated
for Lm via manure testing, carried some level of Lm year-round.
This presence of Lm in some cattle within the region would provide
an opportunity for re-introduction of Lm to the agricultural region
in the spring. Higher Lm prevalence in DM and surface water
(Figure 3) samples during the summer was not observed in OH
soil (Figure 6A). Soil Lm prevalence, instead, was higher in the

spring than the summer. This reduced prevalence could be due to
reduced runoff in the summer as precipitation was lowest in the
summer and/or increased competition with other soil organisms in
the warmer months. Similarly, Arcobacter prevalence in DM was
much higher in warmer months than in the winter. Others have
similarly reported higher frequency of Arcobacter in feces from
cows in southern dairy herds than in those in the northern states,
which may reflect higher transmission in warmer climates (Wesley
et al., 2000).

4.2. Pathogen prevalence in water

Surface water had a higher pathogen prevalence when
compared to well water. Although some ponds and streams
evaluated were not used directly for agricultural irrigation, their
relatively high Lm and Arcobacter prevalence should be considered
since they could still be sources of pathogen introduction.
Pathogens could be introduced into the field via animal movement
and/or precipitation events could lead to flooding of surface water,
introducing contaminated water into the field. This study did not
examine surface water during the winter since it was not used
for irrigation. However, an assessment of Lm prevalence in winter
water samples could provide better information about how Lm
survives and circulates in an agricultural region and how those
factors contribute to the potential for Lm contamination of fresh
produce. This is of particular interest after the observations of
Lm prevalence in DM, indicating the potential for circulation
between the regional herd and surface water. Lm prevalence in
OH surface water was observed to peak in the summer when the
domestic animals were more likely to be outside with possible
direct interaction with surface water. This prevalence decreased to
undetectable levels in the fall (Figure 3). Unlike Lm prevalence,
Arcobacter presence in surface water was not significantly different
in spring, summer and fall seasons. Similarly, others have shown
that the prevalence of Arcobacter and five associated virulence
genes in water samples from various sources were not impacted by
weather in the Kathmandu Valley in Nepal (Ghaju Shrestha et al.,
2019). These results, revealing differences in how each pathogen
survives and persists in the agricultural environment, highlighted
the need to consider pathogen-specific risk assessment models and
mitigation strategies in agricultural practices.

4.3. Pathogen prevalence in soil

The SEM approach used to evaluate factors associated with
pathogen prevalence in soil is in line with the exploratory and
confirmatory attitude of this study. Lam and Maguire provided
a good description of SEM and its uses (Lam and Maguire,
2012). Lm and Arcobacter were both directly impacted by soil
amendment, with pathogen prevalence being highest for DM
amendment, second highest for PM amendment and lowest
for no amendment (Figures 5, 9B, D). Lm presence in non-
amended fields was marginally higher than Arcobacter presence
(Table 2), suggesting Arcobacter prevalence in soil was primarily
driven by BSAAO usage. BSAAO usage may serve as either the
vehicle for Arcobacter introduction or provide a more favorable
environment for pathogen survival. Other factors (e.g., irrigation
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TABLE 3 Top thirty genera whose mean relative abundance was most significantly different between (A) samples with no detectable Lm (Lm-) and samples with detectable Lm (Lm+) and (B) samples with no
detectable Arcobacter (Arco-) and samples with detectable Arcobacter (Arco+).

A B

Lm+ Lm- Arco+ Arco-

Genus Mean Lower CL Upper CL Mean Lower CL Upper CL Genus Mean Lower CL Upper CL Mean Lower CL Upper CL

Aeromicrobium 0.0945 0.0745 0.1589 0.0524 0.0451 0.0595 Acinetobacter 0.0063 0.0030 0.0129 0.3052 0.1552 1.3559

Aerosphaera 0.0669 0.0238 0.4378 0.0065 0.0027 0.0194 Agrococcus 0.0057 0.0019 0.0131 0.0169 0.0137 0.0227

Anaeromyxobacter 0.1799 0.1457 0.2210 0.2572 0.2355 0.2864 beta proteobacter. 0.0223 0.0129 0.0480 0.0071 0.0048 0.0106

Azospirillum 0.2054 0.1701 0.2372 0.2627 0.2461 0.2831 Chitinophaga 0.1874 0.1535 0.2548 0.3065 0.2602 0.4093

Bacteroides 0.0009 0.0003 0.0027 0.0889 0.0223 1.0358 Coxiella 0.0098 0.0060 0.0148 0.0191 0.0155 0.0222

Candidatus Accumu. 0.0382 0.0323 0.0459 0.0559 0.0475 0.0681 Cupriavidus 0.3111 0.2750 0.3656 0.2323 0.2189 0.2463

Candidatus Koriba. 1.6213 1.4506 1.8140 1.8997 1.8285 1.9825 Enhygromyxa 0.0171 0.0081 0.0263 0.0503 0.0338 0.0958

Chitinimonas 0.0272 0.0209 0.0352 0.0416 0.0378 0.0469 Halothiobacillus 0.0540 0.0382 0.0694 0.0319 0.0281 0.0360

Chthonomonas 0.1749 0.1479 0.2040 0.2384 0.2278 0.2526 Herbiconiux 0.0088 0.0050 0.0180 0.0249 0.0195 0.0323

Corynebacterium 0.5816 0.1749 2.2222 0.0662 0.0455 0.1005 Hippea 0.0054 0.0034 0.0090 0.0017 0.0013 0.0024

Cyanothece 0.0291 0.0186 0.0414 0.0544 0.0449 0.0730 Janibacter 0.0378 0.0288 0.0471 0.0808 0.0644 0.1051

Edaphobacter 0.2888 0.2295 0.3304 0.3829 0.3605 0.4106 Leucobacter 0.0085 0.0043 0.0147 0.0417 0.0296 0.0825

Flavobacterium 2.6550 1.7939 3.9411 1.3286 1.0864 1.6932 Lewinella 0.0268 0.0140 0.0392 0.0464 0.0392 0.0632

Gemmata 0.9593 0.8502 1.1113 1.2336 1.1648 1.3119 Magnetospirillum 0.0044 0.0024 0.0074 0.0133 0.0102 0.0157

Geoalkalibacter 0.1516 0.1210 0.1856 0.1960 0.1872 0.2091 Methylovorus 0.0274 0.0070 0.4757 0.0039 0.0032 0.0057

Geobacter 0.7395 0.5791 0.9095 0.9872 0.9373 1.0455 Microterricola 0.0228 0.0145 0.0346 0.0625 0.0470 0.0804

Geopsychrobacter 0.0584 0.0491 0.0676 0.0820 0.0763 0.0885 Mucilaginibacter 0.0090 0.0035 0.0250 0.0660 0.0500 0.1124

Labrys 0.0341 0.0279 0.0420 0.0474 0.0432 0.0576 Novispirillum 0.1357 0.0937 0.1881 0.0739 0.0658 0.0813

Lachnoclostridium 0.0232 0.0174 0.0311 0.0518 0.0324 0.0926 Oerskovia 0.0074 0.0043 0.0134 0.0231 0.0146 0.0379

Nitrosospira 0.5063 0.4379 0.5947 0.6386 0.6055 0.6780 Polaromonas 0.0171 0.0054 0.0460 0.0944 0.0784 0.1305

Paraclostridium 0.0499 0.0395 0.0605 0.0782 0.0638 0.0989 Ramlibacter 0.4620 0.3519 0.5496 0.2794 0.2470 0.3084

Pelobacter 0.5541 0.4913 0.6278 0.6886 0.6513 0.7335 Rhodopseudomonas 0.0578 0.0401 0.0684 0.1059 0.0970 0.1155

Pseudoxanthomonas 0.0550 0.0351 0.0882 0.0255 0.0198 0.0301 Rubinisphaera 0.1719 0.1428 0.2007 0.1181 0.1083 0.1269

Rhodocyclus 0.1117 0.0912 0.1407 0.1495 0.1409 0.1574 Salinirepens 0.0209 0.0141 0.0330 0.0069 0.0056 0.0084

Rhodoferax 0.2179 0.1186 0.4360 0.0879 0.0804 0.1029 Sanguibacter 0.0194 0.0091 0.0586 0.1479 0.0671 0.4369

Roseiflexus 0.3678 0.3107 0.4119 0.4701 0.4288 0.5204 Skermanella 0.1631 0.1376 0.1893 0.2035 0.1893 0.2168

Ruminiclostridium 0.0268 0.0191 0.0355 0.1216 0.0523 0.6547 Tepidimonas 0.1730 0.1096 0.2612 0.0735 0.0617 0.0945

Spongiibacter 0.1220 0.1017 0.1511 0.1668 0.1519 0.1858 Thermodesulfatator 0.0819 0.0602 0.1164 0.0477 0.0418 0.0532

Terriglobus 0.0754 0.0562 0.0922 0.1169 0.1091 0.1284 Thiorhodococcus 0.0388 0.0222 0.0661 0.0147 0.0111 0.0182

Thermobaculum 0.4798 0.4055 0.5699 0.6090 0.5878 0.6370 Turneriella 0.0067 0.0035 0.0134 0.0012 0.0008 0.0017

Lower CL, lower limit of 95% CI; Upper CL, upper limit of 95% CI; CL, confidence limit.
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FIGURE 11

Top thirty genera detected (16S) with significant differences between their mean relative abundance (%) when comparing Arcobacter negative (–)
and positive (+) OH soil samples (A) and between Lm negative (–) and Lm positive (+) OH soil samples (B). Genera names were truncated at twenty
characters. Bacteriodes RA in Lm+ samples was 0.000883. RA, mean relative abundance.
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source) appeared to have critical influence on Lm prevalence,
though BSAAO usage did contribute to Lm prevalence. BSAAO
serving as a primary driver for Arcobacter prevalence may explain
the differences in prevalence observed between GA and OH farms
in this study, with the former having reduced BSAAO usage and no
use of DM and a concurrent reduction in Arcobacter prevalence.
It is intriguing that this difference was also seen in surface water,
suggesting added factors may be reducing Arcobacter prevalence
in GA though it could simply be the absence of introduction from
reduced BSAAO applications, potentially limited to the lack of DM.

Lm prevalence in soil was highest during the winter and spring
when AT was lowest and precipitation amounts were marginally
higher (Figures 6A, B). The impact of increasing AT (|effect size|
∼6) on decreasing Lm prevalence appeared more salient than
the impact of increasing PR (|effect size| ∼1) on increasing Lm
prevalence (Figure 4C). Although this study found, as others
did (Strawn et al., 2013a,b; Weller et al., 2015a; Falardeau et al.,
2018; Harrand et al., 2020), that Lm positivity increased with
increased rainfall or soil moisture, AT appeared to suppress Lm
more (i.e., higher effect size) than the moisture supported Lm.
This observation is intriguing however, as GA weather had higher
AT and similar PR compared to OH, but GA Lm prevalence
was only slightly lower than that of OH in both soil and water
samples. This suggests the possibility that AT alone may not be
suppressing Lm or that temperatures during winter may provide
a basal level of support for Lm prevalence throughout the year.
However, it may also be that the microbiome population dynamics
or other factors, such as soil texture, may vary between the
different regions resulting in equivalent Lm prevalence despite the
differences in temperature. SDI was highest during the summer and
fall (Figure 6A), the same seasons where Lm prevalence is at its
lowest, and the model (Figure 5) showed a direct role for diversity
in the reduction of Lm, suggesting that competition played a role in
suppression of Lm. It should be considered that AT, therefore, could
impact Lm directly and indirectly.

Weather had a stronger direct effect on Arcobacter with
prevalence increasing as AT increased and PR decreased
(Figure 6A). A predictive model to measure the growth rate
of A. butzleri showed that growth was directly proportional to
increasing temperature, achieving maximum growth at a storage
temperature of 40◦C (Park and Ha, 2015). A more recent study
has shown optimal growth of the three major human pathogenic
Arcobacter species (A. butzleri, A. cryaerophilus, and A. skirrowii)
at 35◦C, followed by growth on agar plates at 30◦C under
microaerophilic conditions (Nguyen et al., 2021). Given average
temperatures never exceeded 95◦F (35◦C), these prior data support
the findings of this study, which indicated warmer temperatures
supported Arcobacter prevalence, potentially by improved growth.

Soil fertility was directly impacted by both weather and soil
amendment, as expected. Soil fertility decreased with rising AT
and decreasing PR and was highest in DM-amended fields, with a
slight decrease in PM-amended fields and a substantial decrease in
non-amended fields. While some elements (anions) in the fertility
panel may naturally leach out of soil through water percolating
through soil column or surface erosion (water/wind whose speed
increased through the growing season), all the elements in the panel
are affected by weather through plant/crop uptake. Greater AT
and SR enhance crop growth and thereby nutrient consumption,
resulting in decreased soil fertility as the growing season progresses.

While soil fertility was only correlated with Lm prevalence, the
improvement of soil fertility associated with soil amendment usage
could have indirectly affected Lm and Arcobacter prevalence via
improved nutrient content. Although there are no studies to test the
effect of soil fertility on the prevalence of Arcobacter, it is important
to recognize its global presence in water bodies and various animals,
including food and farm animals, domestic birds, wildlife, and zoo
animals (Hsu and Lee, 2015).

The preliminary assessment, evaluating NO3-N and NH4-N
separate from soil fertility, indicated the possibility of a relationship
between ammonium, nitrate, Nitrospira, Nitrosospira, and Lm
prevalence, though this observation requires further analysis since
AT or other variables could play a role as well. However, within
this study, given that manure was applied at a set time in the year
and AT varies throughout the year and correlates with the season,
it was not possible to disconnect these variables to evaluate their
impact on nitrifying bacteria and Lm prevalence independently.
The observed increase in Lm prevalence in PM-amended fields late
in the year suggested the possibility that the ammonium increase
associated with PM might impact nitrifying microorganisms, with
one nitrifying genus, Nitrosospira, found to have a significant
difference in relative abundance between Lm+ and Lm- fields
(Figure 11A).

There are hypotheses that a healthy, robust soil, i.e., high
soil fertility, may limit pathogen prevalence (Devarajan et al.,
2021; Jayaraman et al., 2021). In fact, one recent study found
that the use of cover crops and compost boosted soil diversity,
improving suppression of Salmonella and Lm (Devarajan et al.,
2021). However, in our study, while we found soils with higher
SDI had reduced Lm prevalence, soils with higher soil fertility,
which was improved with the use of BSAAO, which included
both raw and composted manure, had a decreased SDI (Figure 5
and 6A). Additionally, the use of BSAAO was associated with
an increased prevalence of Arcobacter and Lm, suggesting added
complexity within these relationships. In particular, the Lm model
showed that increased soil fertility resulted in decreased SDI, which
could indirectly increase Lm prevalence as decreased SDI was
correlated with higher Lm prevalence, though the same was not
true for Arcobacter (Figure 5). Therefore, careful consideration of
the attributes of a pathogen is important when testing how farm
management practices could impact its prevalence.

This finding that there could be differing impacts on pathogens
was further highlighted when evaluating the impact of irrigation
on pathogen prevalence. Irrigation was found to have no impact
on Arcobacter prevalence (Figures 5, 9C). However, irrigation
source had a direct impact on Lm prevalence, though the result
was counter to the expected results. Lm prevalence was highest
for non-irrigated fields when compared to both well and surface
water-irrigated fields (Figures 5, 9A). One explanation could be
that farm management practices could have been impacted by
observable risks, such as known proximity to animals, when
deciding whether to use surface water for irrigation. Evaluation
of farm practices found that non-BSA amended fields were more
likely to not be irrigated, suggesting that other factors, such as
economics or neighboring animals, may have influenced these
decisions. However, metadata to evaluate what factors farmers used
to inform their irrigation choice were not available. It is important
to note, though, that the soil evaluated was not the soil directly
irrigated but adjacent so it is possible that a different observation
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would have been made closer to the dripline. These possibilities
suggest that more studies are needed to understand what could be
creating the observed result, given that Lm prevalence was highest
in surface water samples.

4.4. Evaluation of study

SEMs are uniquely suited for (1) identifying relationships
(pathways) between latent variables (weather and soil fertility),
(2) modeling complex (intermediary) relationships between factors
and (3) explicitly identifying covariances between indicators and
factors (Nachtigall et al., 2003). SEMs directly estimate both the
effect sizes and direction of the effects, simultaneously for all
factors, a notable strength of this analysis.

Some factors that indicated possible associations with soil
pathogen prevalence but were not included in the soil analyses due
to insufficient or incomplete data include comparing organic and
non-organic farming, equipment hygiene, insecticide/fungicide
application, presence of animal activity, water additives, and soil
moisture measurements. The impact of these candidate factors
would need a much larger study to be evaluated. Broader
and more complete metadata collection was desirable for the
study but attaining such on a voluntary basis was challenging,
especially with potential for differences in memory to recall specific
practices and/or events.

Year to year variability also cannot be eliminated as a
factor in this study given 2018 and 2019 were not evaluated
to determine if weather related factors were representative of
overall weather trends.

5. Conclusion

Pathogen prevalence in soil, for both Lm and Arcobacter, was
found to be associated with the use of BSAAO but not the use
of surface water as an irrigation source. In fact, the Lm model
indicated that not irrigating increased Lm prevalence, suggesting
that other factors that might be linked to the decision to not
irrigate, such as animals residing at neighboring farms, wildlife
presence, equipment sanitation activities, land topography, or
unidentified/unknown variables may be contributing to increased
Lm prevalence in non-irrigated fields. As noted earlier, BSAAO
usage was not correlated with the practice of not irrigating fields.
This indirectly suggests that the presence of cattle on farms,
which served as the source of DM, did not impact irrigation
choices. AT appeared to play a more significant role on pathogen
prevalence in soil rather than the use of BSAAO, although the
effect of AT was in opposing directions for Arcobacter and Lm.
Additionally, data showed key differences in how environmental
conditions impacted pathogen prevalence, indicating that a one
size fits all approach to risk mitigation would not control certain
pathogens. While the sample size was small and metadata were
limited, this real-world comparison of multiple farms in two
regions based on BSAAO and irrigation provided critical data to
inform and validate controlled studies. The results of this study
have identified other factors, i.e., not irrigating could increase
pathogen prevalence, that may need further study and the need

to better understand how pathogens are established and circulated
within the agricultural environment.
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SUPPLEMENTARY FIGURE 1

Seasonal trends in GA air temperature (AT), precipitation (PR), solar radiation
(SR), and wind speed (WS). Overlaid is Lm soil prevalence GA soil. AT, PR, SR

and WS are 48 h moving averages. All variables are standardized to the

same scale using the R standardize function in the robustHD package. Soil

amendment groups are aggregated in (A) and grouped in (B). GC, green

compost; PM, poultry manure; AT, 24 h average of air temperature; PR,

precipitation; SR, solar radiation; WS, wind speed.

SUPPLEMENTARY FIGURE 2

Covariances between the soil nutrient covariances included in the OH Lm

and Arcobacter (Arco) soil prevalence models. Ca, calcium; Mg,

magnesium; Mn, manganese; P, phosphorus; S, sulfur; Zn, zinc; LOI,

loss-on-ignition; NO3_N, nitrate nitrogen; NH4_N, ammonium nitrogen.
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