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This study evaluates the role of the late viral protein, pA104R, in African swine 
fever virus immunosuppression. ASFV-encoded pA104R is a putative histone-like 
protein that is highly conserved throughout different virulent and non-virulent 
isolates. Previous studies have demonstrated that pA104R plays a vital role in 
the ASFV replication cycle and is a potential target for antiviral therapy. Here, 
we demonstrated that pA104R is a potent antagonist of type I interferon signaling. 
IFN-stimulated response element activity and subsequent transcription of co-
transfected and endogenous interferon-stimulated genes were attenuated by 
pA104R treatment in HEK-293 T cells. Immunoprecipitation assay and reciprocal 
pull-down showed that pA104R does not interact directly with STAT1, STAT2, 
or IRF9. However, pA104R could inhibit IFN signaling by attenuating STAT1 
phosphorylation, and we identified the critical amino acid residues (R/H69,72 and 
K/R92,94,97) involved through the targeted mutation functional assays. Although 
pA104R is a histone-like protein localized to the nucleus, it did not inhibit IFN 
signaling through its DNA-binding capacity. In addition, activation of the ISRE 
promoter by IRF9-Stat2(TA), a STAT1-independent pathway, was inhibited by 
pA104R. Further results revealed that both the transcriptional activation and 
recruitment of transcriptional stimulators by interferon-stimulated gene factor 3 
were not impaired. Although we failed to determine a mechanism for pA104R-
mediated IFN signaling inhibition other than attenuating the phosphorylation 
of STAT1, these results might imply a possible involvement of epigenetic 
modification by ASFV pA104R. Taken together, these findings support that pA104R 
is an antagonist of type I interferon signaling, which may interfere with multiple 
signaling pathways.
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1. Introduction

African swine fever virus (ASFV), the causative agent of the African swine fever (ASF) 
epidemic, is an enveloped complex double-stranded DNA arbovirus (Jia et al., 2017; Alonso 
et al., 2018; Gaudreault et al., 2020). The ASFV genome varies in length, ranging from 170 to 
193 kb, and encodes 150 to 167 proteins that are used not only for viral replication but also for 
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evasion of host defenses (Sánchez-Vizcaíno et al., 2015; Simões et al., 
2019). To date, approximately half of the ASFV genes have not been 
defined as having any known or predictable functions (Dixon et al., 
2017; Alejo et  al., 2018). Morphologically, the ASFV virion is a 
symmetrical icosahedral particle with a diameter of approximately 
200 nm and has a complex multi-enveloped structure consisting of a 
nucleoid, core-shell, inner lipid envelope, protein capsid, and external 
envelope budding through the plasma membrane (Salas and Andrés, 
2013; Wang et al., 2019). ASF is considered one of the most devastating 
and contagious diseases in swine, manifesting symptoms of viral 
hemorrhagic fever that result in high morbidity and mortality in 
domestic swine and wild boars worldwide (Costard et  al., 2013; 
Sánchez-Vizcaíno et  al., 2015; Quembo et  al., 2018). The World 
Organization for Animal Health (WOAH) received notifications of 
outbreaks from 74 countries between 2015 and 2022, indicating a 
marked increase in ASF outbreaks worldwide (Wu et al., 2020). The 
relatively rapid spread of this disease, despite concerted containment 
efforts, is possibly due to the increased transborder movement of pigs 
and pork products resulting from the growth of pork consumption 
and international trade. Due to its approximately 100% mortality rate 
in naive herds and widespread distribution, ASF has caused substantial 
economic losses for the pig industry and seriously threatens ecological 
security (Sánchez-Cordón et al., 2018; Zhou et al., 2018; Sánchez et al., 
2019). Without available vaccine or treatment, the only control 
measures are strict quarantine and biosecurity procedures (Sánchez-
Cordón et al., 2018). However, massive culling campaigns have only 
exacerbated the socio-economic impact on global trade and 
people’s livelihoods.

There are still many gaps in the knowledge regarding the 
pathological mechanisms of ASFV, and no safe and effective 
commercial vaccine against the virus has been developed (Dixon et al., 
2017; Alejo et al., 2018; Sánchez-Cordón et al., 2018). Therefore, the 
identification and characterization of ASFV virulence and the 
mechanisms used by its viral proteins to counter and evade immune 
responses are essential to develop a viable vaccine and stall the spread 
of this highly problematic disease. ASFV mainly targets macrophages, 
where it modulates cell function to replicate in the cytoplasm of the 
infected cells (Sánchez-Cordón et  al., 2018). ASFV devotes 
considerable coding capacity to genes that support virus proliferation 
and evasion of host defenses (Randall and Goodbourn, 2008; Reis 
et al., 2017). The host has multiple levels of antiviral protection, of 
which innate immunity is the first line of defense. It is well known that 
viral nucleic acids serve as potent pathogen-associated molecular 
patterns (PAMPs) and are preferentially recognized by DNA sensors 
that trigger downstream signaling to elicit innate immune responses, 
leading to the activation of transcription factors that mediate 
interferon (IFN) production (Cai et al., 2014; Huang et al., 2018). IFNs 
are important cytokines in the innate and adaptive immune systems, 
especially type I IFNs (IFN-α/β), which are produced ubiquitously by 
virus-infected cells and play a central role in combating viral infections 
(Goodbourn and Randall, 2009). The secreted IFN-I binds to its 
cognate receptor subunits (IFNAR1 and IFNAR2) on infected and 
neighboring cells, activating the Janus kinase signal transducer and 
activator of the transcription (JAK–STAT) pathway. Once the central 
mediators STAT1 and STAT2 are activated, these phosphorylated 
proteins form heterodimers that translocate into the nucleus and 
associate with IFN regulatory factor 9 (IRF9), assembling into the 
heterotrimeric transcription factor complex known as interferon-
stimulated gene factor 3 (ISGF3) (Platanias, 2005; Stark and Darnell, 

2012; Wang et al., 2017). ISGF3 is recruited to the IFN-stimulated 
response element (ISRE) and enhances the transcription of interferon-
stimulated genes (ISGs) that possess ISRE in their promoter regions 
(Hoffmann et al., 2015), creating a potent antiviral state in cells and 
limiting viral reproduction (Platanias, 2005; Stark and Darnell, 2012; 
Wang et al., 2017).

To effectively infect and replicate, viruses have, in turn, devised 
various strategies to combat the production of ISGs through the inhibition 
of the JAK/STAT pathway activated by IFN and antagonizing of host 
antiviral defenses (Katze et al., 2002; Goodbourn and Randall, 2009; 
Schulz and Mossman, 2016; García-Sastre, 2017; Nan et  al., 2017). 
Recently, it has been reported that ASFV targets crucial molecules in IFN 
signaling to counteract immune responses, but which viral proteins are 
responsible remains unclear (Portugal et al., 2018; Wang J. et al., 2020; 
Wang T. et al., 2020; Riera et al., 2021; Cui et al., 2022). pA104R is a 
putative histone-like protein encoded by ASFV, analogous to eukaryotic 
histones (Neilan et  al., 1993), that shares structure and sequence 
homology with members of the HU/IHF family (Bonnefoy and Rouvière-
Yaniv, 1991; Borca et al., 1996; Browning et al., 2010), which are primary 
DNA-packaging proteins in prokaryotes (Bonnefoy and Rouvière-Yaniv, 
1991; Swinger and Rice, 2004). Similarly, as the only histone-like protein 
encoded by a eukaryotic virus (Borca et al., 1996), pA104R also binds to 
single-or double-stranded DNA over a wide range of conditions in an 
ATP-independent manner (Frouco et al., 2017). Previous studies have 
demonstrated that pA104R displays DNA supercoiling activity when 
combined with ASFV topoisomerase II (Freitas et  al., 2019); neither 
exhibits this activity alone, suggesting the two proteins cooperate in this 
process. Accumulating evidence suggests that a late viral protein 
colocalizes with the cell nucleus (Alejo et al., 2018) that requires pA104R 
for viral DNA replication, repair, recombination, and transcription 
(Frouco et  al., 2017). pA104R might also be  involved in nucleoid 
compaction and progeny assembly processes (Neilan et al., 1993) or, 
alternatively, act as a transcription factor modulating viral gene expression 
(Neilan et al., 1993; Borca et al., 1996; Frouco et al., 2017). However, the 
biological functions of the pA104R protein are largely unknown. In the 
present study, we revealed that the ASFV pA104R protein antagonizes the 
IFN-I-triggered signaling pathway by attenuating the phosphorylation of 
STAT1. Additionally, we presumed epigenetic modifications that may 
be mediated through the same signaling and have a role in pA104R 
pathogenicity. Our findings demonstrate a previously unidentified 
function of pA104R in ASFV evasion of host innate immunity. These 
findings contribute significantly to the theoretical basis for designing an 
effective ASFV vaccine.

2. Materials and methods

2.1. Cells and plasmids

Human embryonic kidney 293 T (HEK-293 T) cells (ATCC 
CRL-3216, Manassas, VA) were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum 
(FBS) and maintained in a humidified incubator with 5% CO2 at 
37°C. The expression vectors IRF9-Stat2(TA) and GAL4-Stat2(TA) were 
constructed by inserting a PCR-amplified STAT2 transactivation domain 
into IRF9 or GAL4-DBD plasmids (Sadowski and Ptashne, 1989). STAT1, 
STAT2, and IRF9 were cloned into the plasmids indicated. The ASFV 
gene A104R was amplified from ASFV CN/SD/2019 genomic DNA and 
cloned into pCAGGS-HA with an N-terminal HA tag. ASFV pA104R 
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residue mutations were generated by site-directed mutagenesis using the 
wild-type plasmid pCAGGS-HA-A104R as a template. All constructed 
plasmids were confirmed using DNA sequencing.

2.2. Antibodies and reagents

The STAT1 (9172), STAT2 (72604), phosphor-STAT1 (9649), 
phosphor-STAT2 (88410), and IRF9 (76684) antibodies were 
purchased from Cell Signaling Technology (Danvers, MA). β-Actin 
(66009-1-Ig), GFP-tag (66002-1-Ig), Flag-tag (20543-1-AP), and 
HA-tag (51064-2-AP) antibodies were purchased from Proteintech 
(Chicago, IL). Recombinant human IFN-α (CYT-204) was purchased 
from ProSpec (Ness Ziona, Israel). The jetPRIME® transfection 
reagent was purchased from Polyplus-transfection® SA (Illkirch, 
France). Streptavidin magnetic beads (HY-K0208) and protein A/G 
magnetic beads (HY-K0202) were purchased from MedChemExpress 
(Monmouth Junction, NJ).

2.3. Dual-luciferase reporter assay

HEK-293 T cells were seeded in 24-well plates and transfected 
with the indicated expression plasmids or empty vector control with 
50 ng pISRE-Luc or pGAL4-UAS-Luc plasmid (Firefly) and 10 ng 
pRL-TK plasmid (Renilla) as an internal control. A constant level of 
total DNA was maintained by adding an empty vector. At 24 h post-
transfection, the cells were stimulated with DMEM or IFN-α (1,000 U/
mL) for 12 h, and whole-cell lysates were then collected to measure 
luciferase activity using the Dual-Luciferase® Reporter Assay System 
(Promega, Madison, WI), according to the manufacturer’s 
instructions. Relative luciferase activity was normalized by the ratio 
of firefly luciferase activity to Renilla luciferase activity.

2.4. RNA extraction and quantitative 
real-time PCR

Briefly, total RNA was extracted using TRIzol reagent (Thermo 
Fisher Scientific, Waltham, MA) following the manufacturer’s 
instructions. Then, real-time PCR was performed using a 
MonAmpTM SYBR® Green qPCR Mixture (Monad Biotech Co., Ltd., 
Wuhan, China) and a QuantStudio 3 PCR system (Thermo Fisher 
Scientific, Waltham, MA). Sample data were normalized to GAPDH 
mRNA levels. Experiments were performed in biological triplicate and 
conducted three times. The specific primers used for RT-qPCR assays 
have been described previously (Li et al., 2022).

2.5. Co-immunoprecipitation and 
immunoblotting assays

Cells were lysed and harvested using cell lysis buffer (Beyotime, 
Shanghai, China) supplemented with Protease/Phosphatase Inhibitor 
Cocktail (Cell Signaling Technology, Danvers, MA). The protein 
concentrations in the supernatants were measured using a BCA 
protein assay kit (Biosharp, Anhui, China). For the 
co-immunoprecipitation experiments, equal amounts of cell lysates 

were incubated by rotation with the indicated antibody or control IgG 
at 4°C overnight. Subsequently, the samples were incubated with 
protein A/G magnetic beads for 4 h, washed five times with lysis 
buffer, and boiled in sodium dodecyl sulfate (SDS) loading buffer. The 
precipitates were subjected to SDS-PAGE and subsequent 
immunoblotting using the indicated antibodies, which were consistent 
with those described previously (Li et al., 2022).

2.6. Biotinylated-DNA immunoprecipitation

The probe used in DNA immunoprecipitation was obtained by 
annealing biotin-labeled ISRE or control oligonucleotides and their 
complement. The biotin probe was incubated with nuclear extracts for 
4 h at 4°C. Samples were then pulled down using streptavidin 
magnetic beads at 4°C for 2 h. After washing, ISRE-binding proteins 
were immunoblotted using the indicated antibodies. The biotin-
labeled control oligonucleotide was an ISRE sequence in which the 
core region was replaced by GFP. Nuclear extracts were prepared from 
cells treated with IFN-α after transfection with the plasmids described 
previously in the “cells and plasmids” subsection of our methods (de 
Lucas et al., 2005).

2.7. Statistical analysis

Statistical analysis was performed using GraphPad Prism software 
(version 7.0, GraphPad Software, La Jolla, CA, United  States) to 
perform a Student’s t-test or one-way analysis of variance (ANOVA) 
on at least three independent replicates. For each test, p values <0.05 
were considered statistically significant (* p < 0.05, ** p < 0.01, and *** 
p < 0.001). Data are presented as the mean ± standard error of the 
mean (mean ± SEM) from at least three replicates.

3. Results

3.1. ASFV pA104R antagonizes type I IFN 
signaling

It is well known that IFN-I initiates a series of signaling cascades, 
inducing the expression of many ISGs. The resulting gene products 
collaboratively fight viral infections and contribute to the 
implementation of adaptive immune responses (Platanias, 2005). 
ASFV is an immunosuppressive virus that encodes various proteins 
to counter key signal transduction processes in innate immunity 
(Zheng et al., 2022). However, the functions of many of these proteins 
remain unclear. To determine whether pA104R could inhibit 
signaling downstream of IFN-I, we  assessed its effect on the 
expression of an ISRE-dependent luciferase reporter gene. HEK-293 T 
cells were co-transfected with pISRE-Luc (containing a consensus 
sequence for the IFN-stimulated response element of the ISG 
promoter), pRL-TK (internal control plasmid), and different 
concentrations of pA104R vectors. Treatment of HEK-293 T cells 
with IFN-α led to the induction of luciferase expression, and 
we demonstrated that pA104R attenuated ISRE promoter activity in 
a dose-dependent manner (Figure  1A). To confirm the ability of 
pA104R to inhibit IFN-I signaling, the effect of pA104R on the 
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induced transcription of endogenous ISGs was assessed. IFN-α 
treatment of cells resulted in the induction of well-characterized 
ISGs, including IFN-stimulated gene 15 (ISG15), ISG54, ISG56, and 
2′-5′-oligoadenylate synthetase 1 (OAS1). However, the presence of 
pA104R significantly inhibited the induction of ISGs expression 
compared to that in the controls (Figure 1B). These results confirm 
the antagonistic role of ASFV pA104R in type I IFN signaling.

3.2. pA104R attenuates IFN-α-mediated 
phosphorylation of STAT1

Considering the importance of the transcription factor complex 
ISGF3  in type I  IFN signaling, we  investigated whether the 
overexpression of pA104R inhibited ISGF3-mediated signaling. As 
shown, activation of the ISRE promoter was markedly induced by 

A

B

FIGURE 1

ASFV pA104R inhibits type I IFN signaling. (A) HEK-293T cells cultured in 24-well plates were transfected with various concentrations of pA104R plasmids (0, 
0.2, 0.4, 0.6 μg/well), or empty vector along with pISRE-Luc and pRL-TK plasmids. After 24 h, cells were treated with 1,000 U/mL IFN-α for 12 h, and 
luciferase assays were then performed. The protein levels of pA104R were evaluated using immunoblotting analysis. (B) HEK-293T cells were transfected 
with pA104R, or empty vector. At 24 h post-transfection, cells were treated with 1,000 U/mL IFN-α for 8 h, and the mRNA levels of ISGs were analyzed by 
RT-qPCR. Statistical analysis was performed using Student’s t-test. All experiments were performed in triplicate, and the data represent mean values ± SEM 
for triplicates. ** p < 0.01; *** p < 0.001.
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co-expression of the components of ISGF3 (STAT1, STAT2, and IRF9) 
compared with the empty plasmid control. However, pA104R 
significantly inhibited ISGF3-induced activation of the ISRE promoter 
in a dose-dependent manner (Figure 2A), suggesting that the pA104R 
exerts its inhibitory effect on IFN-I signaling either during or 
immediately following the assembly of ISGF3 components.

Subsequently, we examined the endogenous protein levels and 
phosphorylation status of STAT1, STAT2, and IRF9 in HEK-293 T 
cells expressing pA104R following IFN-α treatment. The results 
demonstrated that no reduction was observed in the endogenous 
protein levels of the ISGF3 components (STAT1, STAT2, and IRF9) in 

the presence or absence of pA104R. However, the inhibition of STAT1 
phosphorylation was observed in the presence of pA104R. In contrast, 
the phosphorylation of STAT2 was maintained at a steady-state level 
with or without pA104R (Figure 2B). These observations indicate that 
pA104R prevents IFN-α-induced phosphorylation of STAT1.

3.3. pA104R does not interact with STAT1, 
STAT2 or IRF9

Several viral proteins can interact with components of the ISGF3 
complex to inhibit IFN-I signaling (Zhang et al., 2012, 2015; Oda 
et al., 2015). Therefore, we speculated that the observed inhibition of 
STAT1 phosphorylation resulted from interactions of pA104R with 
STAT1 or other components of ISGF3. To this end, an 
immunoprecipitation assay using FLAG-tagged ISGF3 was 
performed. As shown in Figures 3A,B, the reciprocal pull-down of 
pA104R and ISGF3 components confirmed no interaction between 
them. To exclude the possibility of interaction between pA104R and 
some component of ISGF3 occurring at endogenous protein levels, 
co-precipitated overexpression of pA104R (or empty vector control) 
with endogenous STAT1, STAT2 or IRF9 was followed by 
immunoblot assays. Western blot analysis showed that pA104R did 
not interact with endogenous STAT1, STAT2, or IRF9 (Figure 3C). 
Collectively, these data indicate the inhibitory effect of pA104R on 
IFN-I signaling was not caused by direct interaction with the ISGF3 
complex or its constituents.

3.4. pA104R-mediated inhibition of IFN-I 
signaling is associated with its 
DNA-binding catalytic residues

Key catalytic residues that mediate the DNA-binding activity 
of pA104R and their essential roles in the ASFV replication cycle 
have been characterized (Liu et  al., 2020). Therefore, 
we hypothesized that these DNA-binding catalytic residues play 
a role in disturbing type I IFN signaling. Based on their structural 
properties and the known residue requirements, five catalytic 
residues (Arg69, His72, Lys92, Arg94, and Lys97) were identified 
to be directly involved in DNA-binding activity (Frouco et al., 
2017; Liu et al., 2020). We thus determined whether mutation of 
these residues would negate the ability of pA104R to inhibit 
STAT1 phosphorylation. Two residue mutations, R/H69,72D and 
K/R92,94,97E, were introduced into pA104R and the 
corresponding eukaryotic expression plasmids. As we speculated, 
immunoblot analysis suggested that the mutant protein 
attenuated the reduction in phosphorylated STAT1 compared to 
wild-type pA104R (Figure 4A).

In addition, we found that mutations in the pA104R DNA-binding 
catalytic residues reversed the inhibition of IFN-α-induced ISRE 
promoter activity (Figure 4B). Furthermore, we examined the ability 
of the pA104R mutant to inhibit ISG expression. As shown in 
Figure  4C, each mutation (R/H69,72D and K/R92,94,97E) also 
attenuated the pA104R-mediated inhibition of IFN-α-induced 
transcription of ISGs. These results suggest that the pA104R-mediated 
inhibition of type I  IFN signaling is closely associated with these 
DNA-binding catalytic residues.

A

B

FIGURE 2

ASFV pA104R inhibits ISGF3-induced ISRE promoter activity and 
attenuates the phosphorylation of STAT1. (A) HEK-293 T cells were 
transfected with various concentrations of pA104R plasmids, along 
with ISGF3 complex (STAT1, STAT2 and IRF9) and pISRE-Luc and pRL-
TK plasmids. After 30 h, a luciferase assay was performed. Data are 
shown as means ± SEM from three independent experiments. 
Statistical analysis was performed by one-way ANOVA. * p < 0.05;  
** p < 0.01; *** p < 0.001. (B) HEK-293 T cells were transfected with 
pA104R or empty vector. After 24 h, cells were treated with 1,000 U/
ml IFN-α for 2 h. The levels of total or phosphorylated STAT1, STAT2, 
and IRF9 were detected by immunoblotting analysis.
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A B

C

FIGURE 3

ASFV pA104R does not interact with STAT1, STAT2, and IRF9. HEK-293 T cells were transfected with pA104R alone (C) or co-transfected with STAT1, 
STAT2, and IRF9 (A,B). After 24 h, cells were treated with 1,000 U/mL IFN-α for 8 h. Cell lysates were prepared and subjected to immunoprecipitation 
analysis. The whole-cell lysates and immunoprecipitation complexes were analyzed by immunoblotting with the indicated antibodies.

3.5. pA104R does not prevent the 
association of ISGF3 with DNA

Previous studies have characterized pA104R as a histidine-like 
protein with DNA-binding activity and a higher affinity for dsDNA than 
for ssDNA (Frouco et al., 2017). Considering that the downstream 
effects of IFN-I require the binding of ISGF3 to ISREs (Kessler et al., 
1990), we hypothesized that pA104R may act by directly interacting 
with the promoters of ISGs, except for its inhibiting the phosphorylation 
of STAT1. To determine whether pA104R inhibited IFN-α signaling by 
preventing the binding of the ISGF3 complex to ISREs in ISG promoters, 
we performed a DNA pull-down assay to determine whether pA104R 
disrupted ISGF3 binding to ISREs. HEK-293 T cell were co-transfected 
with pA104R and green fluorescent protein (GFP)-tagged ISGF3 
components (STAT1, STAT2, and IRF9). A biotin-labeled ISRE probe, 
optimized previously for ISGF3 binding (Biotin-ISRE), or a control 
biotin-labeled sequence that replaced the ISRE core region with a 
sequence from GFP (Figure 5A) were incubated with nuclear extract 
followed by applying the streptavidin beads to immuno-precipitate the 

biotinylated DNA probe and associated proteins (Schmid et al., 2010; 
Qin et al., 2019). ISGF3 components were pulled down by biotin-labeled 
ISRE but not by biotin-labeled control (Figure 5B; Shen et al., 2020). 
These findings agree with a previous report that pA104R can interact 
with the biotin-labeled ISRE and control (Frouco et  al., 2017). 
Unexpectedly, the expression of pA104R did not inhibit the binding of 
ISGF3 components to biotin-labeled ISRE, suggesting that the 
DNA-binding activity of pA104R does not govern its ability to block 
ISGF3-induced, ISRE promoter-associated gene expression.

3.6. pA104R repression of IFN signaling 
may occur through epigenetic 
transcriptional regulation

We further investigated whether pA104R played a repressive role 
downstream of transcription factor binding to promoter regions. The 
plasmid IRF9-Stat2(TA), a chimera containing the full length of IRF9 
and the transactivation domain of STAT2, was used to verify the role 
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of pA104R. As shown in Figure  6A, IRF9-Stat2 (TA) expression 
significantly activated ISRE promoter activity. Consistently, activation 
of the ISRE promoter by IRF9-Stat2(TA) was inhibited by the presence 
of pA104R. Interestingly, this result suggests that the inhibitory effects 

of pA104R on IFN signaling are STAT1-independent. It is generally 
accepted that the C-terminus of STAT2 serves as a transcriptional 
activation domain (TA), which is essential for ISGF3-driven 
transcription (Qureshi et  al., 1996). To further clarify this, 

A B

C

FIGURE 4

ASFV pA104R-Mediated Inhibition of IFN-I signaling is associated with its DNA-binding catalytic residues. Cells were transfected with pA104R or its 
DNA-binding activity-defective mutants. After 24 h, cells were treated with 1,000 U/mL IFN-α for 2 h (A), 8 h (B), or 12 h (C). Cell lysates were used for 
immunoblotting analysis with the indicated antibodies (A), used for luciferase assay (B), or used for analyzing the mRNA levels of ISGs (C). Data are 
shown as means ± SEM from three independent experiments. Statistical analysis was performed by one-way ANOVA. * p < 0.05; ** p < 0.01;  
*** p < 0.001.
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we constructed the pGAL4-Stat2(TA) plasmid (Zhang et al., 2008) and 
examined whether pA104R inhibits the transactivation function of 
STAT2. The expression of the reporter gene from the pGAL4-UAS-Luc 
plasmid in HEK-293 T cells was markedly activated by co-transfection 
with pGAL4-Stat2(TA). However, no noticeable reduction was 
observed in the transactivation activity driven by pGAL4-Stat2(TA) 
in the presence or absence of pA104R (Figure 6B), demonstrating that 
pA104R-mediated inhibition was not due to impairment of the 
general transcription machinery. It has been demonstrated that STATs 
and STAT-containing ISGF3 function in transcriptional activation 
partly through the recruitment of CBP/p300, a ubiquitously expressed 
global transcriptional coactivator with histone acetyltransferase 
(HAT) activity (Bhattacharya et al., 1996; Zhang et al., 1998, 2008). As 
shown in Figure  6C, exogenously expressed CBP/p300 could not 
restore the reduced ISRE promoter activity by pA104R in response to 
IFN-α, indicating that pA104R does not exert an inhibitory effect by 

targeting CBP/p300. Considering all aspects of these data, we speculate 
that pA104R functions as an antagonist of IFN signaling and may also 
have epigenetic modification effects involved in the ISG transcription 
process, which requires further investigations.

4. Discussion

The continuous evolutionary arms race dynamically shapes the 
diverse survival strategies of viruses and their hosts. Innate immunity 
serves as the first line of defense against invading pathogens, inducing 
the expression of hundreds of ISGs via the IFN signaling pathway to 
establish an antiviral state. In turn, viruses have evolved various 
strategies in concert, targeting different steps in the IFN signaling 
pathways to subvert the antiviral response for their survival (Stetson 
and Medzhitov, 2006; Hervas-Stubbs et al., 2011; Riera Romo et al., 

A

B

FIGURE 5

ASFV pA104R does not prevent the association of ISGF3 with promoter. (A) The ISRE DNA and control oligonucleotides used for DNA pull-down. 
(B) HEK-293T cells were co-transfected with ISGF3 complex (STAT1, STAT2, and IRF9), along with pA104R or empty control. After 24 h post-
transfection, cells were treated with 1,000 U/mL IFN-α  for 12 h. Nuclear extracts were incubated with a Biotin-labeled ISRE or control probe and 
subjected to pull-down analysis with streptavidin magnetic beads. The whole-cell lysates and pull-down complexes were analyzed by immunoblotting 
with the indicated antibodies.
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2016). The primary target cells of ASFV replication are macrophages, 
which specialize in innate immune responses to pathogens. Therefore, 
to overcome barriers to replication in macrophages, ASFV devotes 
considerable coding capacity to genes that help the virus survive and 
inhibit host defense pathways (Reis et al., 2017; Portugal et al., 2018). 
Recently, increasing evidence suggests that several proteins encoded 
by ASFV can circumvent innate immunity by targeting IFN signaling 
through different mechanisms (Correia et al., 2013; Wang et al., 2018; 
García-Belmonte et al., 2019; Zhuo et al., 2020; Li et al., 2021).

ASFV pA104R is a histone-like protein mainly translated during 
the late phase of infection. Its nuclear localization supports that 
pA104R primarily participates in viral DNA replication, transcription, 
and genome packaging (Simões et al., 2015a). However, the role of 
pA104R in negating host innate immunity strategies remains to 
be  explored. In the present study, we  found that ASFV pA104R 
inhibited IFN-α-induced ISG production and ISRE promoter 
activation and identified pA104R as a potential suppressor of innate 
immunity (Figure  1). ISGF3 is well characterized as a central 
mediator of type I IFN signaling (Chen et al., 2017). In response to 
IFN-α stimulation, STAT1, STAT2, and IRF9 assemble to form the 

transcription factor complex ISGF3 (Qureshi et  al., 1995; Wang 
D. et al., 2019), which is transported to activate ISRE (Wang D. et al., 
2019; Zhang et  al., 2022). We  have demonstrated that pA104R 
inhibited ISGF3-mediated ISRE luciferase signaling (Figure  2A), 
suggesting that pA104R is a suppressor of IFN signaling that likely 
targets ISGF3 itself or a related downstream process. Previous studies 
have shown that many viral proteins can subvert the IFN-I signaling 
pathway by targeting IRF9 or STATs to reduce phosphorylation or 
stimulate degradation (Palosaari et al., 2003; Fanunza et al., 2021; 
Feng et al., 2021). Further studies revealed that although pA104R did 
not interact with any component of ISGF3 (Figure  3), it still 
attenuated the phosphorylation of STAT1 (Figure 2B). Considering 
the essential role of the DNA-binding activity of pA104R in ASFV 
replication (Simões et al., 2015a), we focused on the significance of 
the corresponding catalytic residues in IFN signaling. As expected, 
the mutation of the corresponding DNA-binding residues could 
revert the inhibitory effect of pA104R (Figure  4). Besides, some 
viruses could directly inhibit ISGF3 binding to DNA (Vidy et al., 
2007). Therefore, it is also possible that pA104R recognizes and binds 
to ISRE to prevent ISGF3 binding. Although the DNA-binding 

A B

C

FIGURE 6

ASFV pA104R does not exert repressive effects on trans-activation domains and transcriptional co-stimulatory factors. (A) HEK-293 T cells were co-
transfected with pA104R and IRF9-Stat2(TA) (A) or GAL4-Stat2(TA) (B), along with pRL-TK and pISRE-Luc (A) or pGAL4-UAS-Luc (B) plasmids. After 30 h, 
a luciferase assay was performed. (C) HEK-293 T Cells were co-transfected with pA104R and CBP or p300 along with pISRE-Luc and pRL-TK plasmids. 
After 24 h post-transfection, cells were treated with 1,000 U/mL IFN-α for 12 h, followed by luciferase assays. Data are shown as means ± SEM from 
three independent experiments. Statistical analysis was performed by one-way ANOVA. *** p < 0.001.
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activity of pA104R was observed, the interaction of ISGF3 and DNA 
was not prevented (Figure 5B). Previous reports have shown that high 
levels of STAT2 and IRF9 can form heterodimers and contribute to 
the activation of ISG expression via a non-classical pathway (Fink 
and Grandvaux, 2013). Although it lacks intrinsic transcriptional 
capacity, IRF9 is a DNA sequence recognition subunit of ISGF3 that 
is essential for the ISGF3 complex to bind to consensus ISREs (Levy 
et al., 1989; Martinez-Moczygemba et al., 1997). On the other hand, 
modular STAT2 provides essential transcriptional activation signals 
for the induction of target gene transcription (Horvath, 2000). The 
interaction of IRF9 and the STAT2 transactivation domain can 
activate antiviral signaling independent of the activity of the ISGF3 
complex, indicating an approach for active antiviral responses in the 
absence of IFN-I stimulation (Kraus et al., 2003). Interestingly, the 
results in Figure  6A show that pA104R also attenuated IRF9-
Stat2(TA)-activated ISRE promoter activity, suggesting there may 
be a second mechanism by which pA104R inhibits IFN signaling. In 
addition to the binding of the promoter, the transactivation domain 
of STAT2 and transcriptional co-stimulator, CREB-binding protein 
(CBP/p300), are essential for normal IFN signaling (Tang et al., 2007; 
Zhang et al., 2008; Shen et al., 2020). However, these proteins were 
not disrupted by pA104R treatment (Figures 6B,C). It is noteworthy 
that a variety of cellular proteins involved in epigenetic transcriptional 
regulation have been identified as essential components of ISGF3-
driven transcription, such as chromatin remodeling complexes 
histone and deacetylases, or acetyltransferases (HATs or HDACs) 
(Bhattacharya et al., 1996; Huang et al., 2002; Liu et al., 2002; Lau 
et al., 2003; Nusinzon and Horvath, 2003; Cui et al., 2004; Gnatovskiy 
et al., 2013). A case in point, influenza A virus NS1 and Adenovirus 
E1A have inhibitory effects downstream of ISGF3 promoter binding 
through interaction with a complex involved in transcriptional 
elongation (hPAF1C) and histone ubiquitylating complexes, 
respectively (Fonseca et al., 2012; Marazzi et al., 2012). Therefore, it 
is not rare that viruses alter the epigenetic state of host cell 
chromosomes to control cellular gene expression for their benefit (de 
Souza et al., 2010; Knipe et al., 2013). It is possible that ASFV can 
interfere with the epigenetic status of the host chromatin (Simões 
et  al., 2019), and pA104R might participate in the 
heterochromatinization of the genome (Simões et al., 2015b), which 
could facilitate viral infection by silencing genes required for immune 
response (Frouco et  al., 2017). In addition to inhibiting STAT1 
phosphorylation, pA104R may function as an antagonist of IFN 
signaling through such epigenetic modifications.

Previously, it was believed that pA104R is an essential viral 
protein for ASFV replication (Freitas et  al., 2019), and we  are 
currently unable to generate a pA104R-defective virus to further 
evaluate the role of pA104R in IFN signaling. However, the 
development of a recombinant virus lacking the pA104R gene has 

recently been reported. These differences may be due to differences 
in the genomes of different viral isolates. Interestingly, deletion of the 
pA104R gene in ASFV induces an apparent decrease in virulence 
(Ramirez-Medina et al., 2022), probably due to the elimination of 
immunosuppression mediated by pA104R, which also supports our 
conclusions. However, future studies are needed to assess further the 
exact consequences of pA104R involvement in epigenetic 
modifications and to validate these mechanisms using a pA104R-
deficient ASFV infection model.
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