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Abstract 
Background: Many studies have demonstrated the utility of machine 
learning (ML) methods for genomic prediction (GP) of various plant 
traits, but a clear rationale for choosing ML over conventionally used, 
often simpler parametric methods, is still lacking. Predictive 
performance of GP models might depend on a plethora of factors 
including sample size, number of markers, population structure and 
genetic architecture. 
Methods: Here, we investigate which problem and dataset 
characteristics are related to good performance of ML methods for 
genomic prediction. We compare the predictive performance of two 
frequently used ensemble ML methods (Random Forest and Extreme 
Gradient Boosting) with parametric methods including genomic best 
linear unbiased prediction (GBLUP), reproducing kernel Hilbert space 
regression (RKHS), BayesA and BayesB. To explore problem 
characteristics, we use simulated and real plant traits under different 
genetic complexity levels determined by the number of Quantitative 
Trait Loci (QTLs), heritability (h2 and h2

e), population structure and 
linkage disequilibrium between causal nucleotides and other SNPs. 
Results: Decision tree based ensemble ML methods are a better 
choice for nonlinear phenotypes and are comparable to Bayesian 
methods for linear phenotypes in the case of large effect Quantitative 
Trait Nucleotides (QTNs). Furthermore, we find that ML methods are 
susceptible to confounding due to population structure but less 
sensitive to low linkage disequilibrium than linear parametric 
methods.  
Conclusions: Overall, this provides insights into the role of ML in GP 
as well as guidelines for practitioners.
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Abbreviations
ANN: artificial neural network
BLUPs: Best Linear Unbiased Predictions
GBLUP: Genomic Best Linear Unbiased Prediction
GP: Genomic Prediction
MLP: Multilayer Perceptron
QTL: Quantitative Trait Loci
QTN: Quantitative Trait Nucleotide
RF: Random Forest
RKHS: Reproducing Kernel Hilbert Spacing
SNP: single nucleotide polymorphism
SVM: Support Vector Machine
SVR: Support Vector Regression
XGBoost: Extreme Gradient Boosting

Introduction
The phenotype of an individual is based on its genetic makeup, the environment and the interplay between them.
In plant and animal breeding, the genomic prediction (GP) model, using a genome-wide set of markers, is an integral
component of the genomic selection-based approach.1 A GP model is constructed on a reference population for which
both genotypes and corresponding phenotypes are known, mostly employing a cross-validation strategy, and applied to
related populations with only genotypes known. The total genomic value, estimated from the GP model, is used as a
pseudo-phenotype to select the best parents for the next generation(s). In general, phenotypes differ from each other in
terms of their genetic complexity, ranging from simple/monogenic to complex/polygenic. These differences impact
the potential performance of GP. Complex traits are predominantly governed by a combination of additive and non-
additive (e.g. dominant/recessive, epistatic etc.) allele effects, which makes GP challenging for these traits.2 The genetic
architecture of complex traits is characterized bymoderate to large numbers of Quantitative Trait Loci (QTLs) with small
to medium effect sizes and no or few large effect QTLs.3 Moreover, the ratio of additive to non-additive genetic variance
may differ even for closely related traits. Besides the actual genetic variance level, its distribution over the genome is also
a determinant of the trait architecture.4 Next to genetic architecture, population structure plays a role as well (Figure 1):
prediction accuracies are influenced by inconsistent relatedness among samples due to ancestral allele frequency
imbalance among sub-populations (population structure) or cryptic structures, e.g. familial relationships; linkage
disequilibrium (LD) structure, due to inbreeding or selection pressure; varying relatedness between training and test
populations, e.g. over the course of a breeding cycle; and sizes of reference and effective populations.5

Figure 1. Genomic prediction characteristics. Factors affecting genomic prediction performance, oftenmeasured
as correlation between true phenotype values and those predicted by a model.

REVISED Amendments from Version 1

Dear readers, based on the reviewer’s comments, we have modified the Figure 3 and equation (9) to accommodate the
epistatic variance explicitly.

Any further responses from the reviewers can be found at the end of the article
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Technological advances and statistical frameworks used bring new challenges (Figure 1). Genotyping and/or phenotyp-
ing technologies can now generate millions of markers and thousands of phenotypic measurements, e.g. in time series,
increasing the dimensionality of the prediction problem. For example, using a high-density SNP array (or imputing SNPs
based on a low-density array) increases the likelihood of getting many markers in LDwith the true QTL (high SNP-QTL
LD). It can increase total explained variance,6 but may induce multicollinearity among SNPs. Consequently, SNP
selection prior to predictive modelling has been reported to provide superior performance compared to simply using a
dense marker set.7 In contrast, low-density genotyping can miss important SNPs in LD with, or weakly linked to, the
QTLs, leading to inferior prediction performance.8

Statistical genetics approaches have traditionally focused on formulating phenotype prediction as a parametric regression
of one or more phenotypes on genomic markers, treating non-genetic effects as fixed or random in a linear equation. The
resulting GP models are biologically interpretable but might yield poor performance for complex phenotypes, as linear
regression fails to capture the more complex relations.9 This approach also requires proper translation of prior knowledge
on the genetics underlying phenotypes into parametric distributions. Although statistical distributions can help describe
genetic architecture, devising a specific distribution for each phenotype is impractical. Therefore, many variations of
linear regressionwere proposed by relaxing statistical assumptions; themain differences lie in their estimation framework
and prior assumptions on the random effects (for an overview, see ‘Models’). Alternatively, machine learning (ML) offers
a more general set of non-parametric methods that can model phenotypes as (non) linear combinations of genotypes.
Moreover, these methods can jointly model the problem, e.g. strong learners can be stacked10 or weak learners can be
combined in an ensemble. Examples include Support Vector Machines (SVMs), (ensembles of) decision trees and
artificial neural networks (ANNs). No statistical assumptions are required in advance; therefore, these methods should be
able to pick up more complex genetic signals that are missed by linear models. The downside is the large amount of data
required for learning these models from the data.

The performance of ML methods in GP problems has previously been compared using simulated and real phenotypes.
Some were found to perform better under non-additive allelic activity11,12; however, a clear link between simulated and
real phenotypes is often missing, or only a specific breeding population structure is considered. For example, Barbosa
et al.13 compared the performance of ML and statistical methods in a simulated F2 population of 1,000 individuals and
2,010 SNPs using 26 simulated phenotypes. They varied the heritability and number of QTLs and included dominant and
epistatic effects. They observed that ML methods performed better at low QTL numbers and hypothesized that a reason
for this is that with fewer controlling genes, epistatic interactions are more important. But it is still unclear if this is a
general conclusion towards a population with different characteristics e.g. natural populations. Moreover, there
are conflicting reports on performance of ML.11,14 For example, ANNs have been reported to perform worse in some
applications and are comparable to competing methods in others.12,15 Ensemble decision tree methods, combining the
output of a large number of simple predictors, have proven better for some traits but not for others.16–18 Gradient boosting
showed improved performances for many real traits19,20 https://paperpile.com/c/ZyQHHy/b9hH+ha6M but was inferior
to random forests on simulated datasets.18 Furthermore, the impact of population structure and low SNP-QTL LD on the
performance of ML methods is still unclear.

In this paper, we investigate which GP characteristics (genetic architecture, population properties and genotype/
phenotype measurement technology) a priori point to a better performance for either traditional statistical approaches
or ML-based methods. We compare GP performance of two ensemble methods, Random Forests (RF) and Extreme
Gradient Boosting (XGBoost), to that of linear mixed models, GBLUP, BayesA, BayesB and RKHS regression with
averaged multi-Gaussian kernels. We focus on typical applications in plant breeding to explore various GP character-
istics, including the ratio of the total number of markers to the number of samples (p/n), genetic complexity, QTN effect
sizes and distributions, additive vs. epistatic heritabilities, sparse vs. dense genotyping and population structure.

Methods
Data
Simulations

In a first experiment, artificial genotypes were simulated, in combination with associated phenotype values. Genotype
data was simulated for a diploid population with a minor allele frequency (MAF) of 0.4, using a binomial distribution,
where each allele was the outcome of a binomial trial. The genotype dataset was coded as {0=AA, 1=Aa, 2=aa}.We fixed
MAF for all SNPs, in order not to incorporate the impact of allele frequencies because MAF of a QTL can impact its
heritability estimation and ultimately prediction accuracy of the GPmodel. Moreover, in this way we observed equal and
reasonably statistical power for each SNP during allele effects estimation. To explore GP characteristics (Figure 1),
different levels of genetic complexity and dimensionality, defined as the ratio of total number of SNPs to the sample size
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(c = p/n), were simulated. For the high dimensionality scenarios, sample size was fixed at n = 500, because reference
populations of this size are feasible for genotyping and phenotyping in genomic selection studies. Using values of c = {2,
10, 20, 40, 120}, the number of SNPs varied up to p = 60,000 (120*500). Similarly, for the low dimensionality scenarios,
the number of SNPs was fixed at p = 500 and sample size was varied up to n = 3,000 to arrive at c = {1, 1/2, 1/4, 1/6}.
Subsequently, Quantitative Trait Nucleotides (QTNs) were randomly selected from these simulated SNP sets to generate
phenotypes. We selected either 5, 50, 100, p/2 or p QTNs, corresponding to a range of low to high genetic complexity,
coupled with a narrow-sense heritability ranging from 0.1 to 0.7. A phenotype with a high number of QTNs and low
heritability is more complex than one with few QTNs and higher heritability.

Phenotype datasets were generated using the simplePHENOTYPES v1.3.0 (RRID:SCR_022523) R package.21 Additive
polygenic phenotypes were simulated using additive modes of allele effects, as follows:

y¼ β1QTN1þβ2QTN2þβ3QTN3þ…þβkQTNkþ ε (1)

Here, βi describes the effect size of the i
thQTN,whereQTNi is a vector containing the allele dosages for the i

thQTN for all
samples. The residuals (ε) were sampled from a normal distributionN(0,√(1-h2)). Three different approaches were used
to sample the effect sizes: (i) The narrow-sense heritability (h2) determines the variance of effect sizes distribution: one
effect β is randomly sampled from N(0, √h2) and equally divided among all of the q QTNs, such that each QTN
is assigned an effect size of βi = β/q, referred to as ‘simulations with equal/uniform effects’ in the text. This allows,
smaller effect sizes to be generated by increasing the number of QTNs, thereby simulating increasing genetic complexity
by lowering effect sizes. (ii) To further explore genetic complexity, we used equation (1) to generate another set of
phenotypeswhere the first QTN is assigned a larger effect than others. For this, we chose an effect two standard deviations
away from themean of the effect sizes distribution (large effect) and the rest small to mediumwere allowed to be sampled
up to one standard deviation way from the means from N(0, √h2). (iii) As a third case, we sampled all QTN effects
randomly from the effect sizes distribution.

For non-additive phenotypes, broad-sense heritability was set at most to 0.8, so the distribution of residuals isN(0,√0.2).
We considered only epistasis, ignoring other factors such as dominance. Adding an additional term for epistasis to
equation (1) results in:

y¼ β1QTN1þβ2QTN2þβ3QTN3þ…þβkQTNkþβe QTNe1∗QTNe2ð Þþ ε (2)

The epistatic heritability (h2e) was set analogous to the additive heritability (h
2), such that H2 = h2 + h2e. The additive�

additive epistasis model was used, with only a single pairwise interaction. The epistatic effect βe was sampled from N
(0,√h2e) and attributed to a single interacting pair ofmarkers (e1, e2) such that βe= βe1� βe2.We sampled this interacting
pair from the set of additive QTNs; therefore, each interacting marker will always have some main effect. As for additive
phenotypes, we also created epistatic phenotypes with one large effect QTN. The total number of settings (scenarios
considered in Table 1) for the simulated GP characteristics was 135 per phenotype class, i.e. additive and epistatic. For
each class, phenotypes were simulated with and without a large effect QTN. Thus, in total 810 (135� 2� 3) simulated
phenotypic scenarios were generated, each having five independent phenotypic traits.22,23 These will be referred to as
‘simdata’ in the text.

Real datasets

To compare trends observed in simulations with outcomes obtained with real traits, publicly available wheat genotype
and phenotype data were taken from Norman, Taylor.24 This includes 13 traits: biomass, glaucousness, grain protein,
grain yield, greenness, growth habit, leaf loss, leaf width, Normalised Difference Vegetative Index (NDVI), physiolog-
ical yellows, plant height, test weight (TW) and thousand kernel weight (TKW). This particular dataset was chosen as it
contains a fairly large number of genotypes (n = 10,375) each genotyped for p = 17,181 SNPs. The impact of population
structure, training set size, marker density and its interactionwith population structurewas assessed in a study by the same
authors25 and GBLUP prediction accuracies were reported to saturate when training set size was greater than 8,000. We
used the same settings, with five-fold cross-validation repeated for five times (training set size 8,300, validation set size
2,075).

The data was generated from a small-plot field experiment for pre-screening of germplasm containing some genotypes
that are sown in multiple plots, thus containing spatial heterogeneity with correlation between closely located plots and
imbalance in the number of phenotypes per genotype. Soil elevation and salinity, spatial coordinates and virtual blocks
(made available on request by the authors) were taken as covariates:

y¼XbþZuþZggþ ε (3)

Page 6 of 29

F1000Research 2023, 11:802 Last updated: 06 APR 2023



Here,X is the n� 4 designmatrix for the fixed effects and overall mean, b is a 4� 1 vector of fixed effects, i.e. soil salinity
and elevation; Z is an n � 3 design matrix for non-genetic random effects u, i.e. range, row and block; Zg is the n � k
design matrix for genotypes g for a maximum of k replicates, and ε is an n � 1 vector of residuals. The Best Linear
Unbiased Estimates (BLUEs) of genotypes were used for GP; in this way, we take care of the experimental design factors.
Note that equation (3) does not contain any SNP information, instead only genotype accessions are used to obtain their
adjusted phenotypes.22,23

Population structure analysis
To analyse the influence of population structure on the performance of different GPmethods, we used a population of the
Arabidopsis thaliana RegMap panel26 with known structure, containing 1,307 accessions including regional samples
(ExtendedData, Figure S627). Additive phenotypeswere simulated using narrow-sense heritabilities h2 = 0.1, 0.4 and 0.7,
with equal effect QTNs. The genotypes, available from the Arabidopsis 250k SNP array, were further pruned for LD and
minor allele frequency (MAF > 5%) using PLINK v1.9 (RRID:SCR_001757).28 LD pruning was carried out using a
window size of 500 markers, stride of 50 and pairwise r2 threshold of 0.1, using the ‘--indep-pairwise’ command. This
implies that a set of markers in the 500-marker window with squared pairwise correlation greater than 0.1 is greedily
pruned from the window until no such pairs remain. This dataset will be referred to as ‘STRUCT-simdata’ in the text.22,23

The effect of population structure was also assessed on real data: a genotype dataset of 300 out of the 1,307 RegMap
accessions, phenotyped for the sodium accumulation trait with a strongly associated gene.29 This should resemble one of
our simulation scenarios, i.e. high heritability (e.g. h2 = 0.7) with few QTNs (e.g. 5) of large effect. This dataset will be
referred to as ‘STRUCT-realdata’ in the text.22,23

To correct for population structure, we used principal components corresponding to the top ten highest eigenvalues as
fixed effects in the models for GBLUP, RKHS regression, BayesA and BayesB.30 Principal component analysis (PCA)
was performed on the allele dosagematrix using the prcomp() method in R, with centering and scaling. For random forest
and XGBoost, we used these top principal components as additional features in the models.

Analysis of SNP-QTN linkage disequilibrium (LD)
To explore the impact of varying LD between SNPmarkers and actual QTNs on the performance of GPmethods, we used
two other datasets: one with real genotypes and simulated phenotypes, the other with real genotypes and real traits.

For the first dataset, we selected a natural population with minimal structure, balanced LD, genotyped at roughly equal
genomic spacing and mostly inbred lines: the 360 accessions in the core set of the Arabidopsis thaliana HapMap
population.29 Genotype data of 344 out of the 360 core accessions was obtained from Farooq, van Dijk,31 containing
207,981 SNPs. The phenotypes were simulated using one of the scenarios in the Section ‘Simulations’. The total
number of SNPs was kept close to the number of samples and genetic complexity was kept low, to study the impact of
SNP-QTN LD only. To this end, we simulated additive phenotypes with h2 = 0.7 and 5 QTNs with equal effects. Linkage
disequilibrium between SNPs was calculated as squared pairwise Pearson correlation coefficient (r2) using PLINK v1.9
(RRID:SCR_001757).28 Input sets of 500 SNPs were selected randomly from pairs with either low LD (r2≤ 0.5) or high
LD (r2 > 0.9); these two sets were used to train two prediction models using each GP method: one model was trained on
the QTNs that were used to generate the phenotype, another on QTN-linked SNPs (closest on the genome) instead of the
QTNs themselves, from the low or high LD SNPs pool. To avoid spurious correlations between SNPs in both models,
non-QTN-linked SNPs were sampled from a different chromosome. We restricted the sampling of QTNs and the QTN-
linked SNPs to chromosome 1, whereas the remaining non-QTN SNPs were sampled from chromosome 2. We refer to
this dataset as ‘LD-simdata’ in the text.22,23

For the second dataset, we used three soybean traits (HT: height, YLD: yield and R8: time to R8 developmental stage)
phenotyped for the SoyNam population.32 This dataset contains recombinant inbred lines (RILs) derived from 40 bipa-
rental populations and the set of markers have been extensively selected for the above traits. Moreover, high dimen-
sionality is not an issue as the dataset contains 5,014 samples and 4,235 SNPs. We refer to this dataset as ‘LD-soy’ in the
text. A complete list of datasets used in this study has been provided in Table 2 and achieved into public repositories.22,23

Models
A wide range of statistical models have been proposed for GP. Most widely applied are Linear Mixed Models (LMMs),
which usewhole-genome regression to tacklemulticollinearity and high-dimensionality with shrinkage during parameter
estimation, employing either a frequentist approach, e.g. restricted maximum likelihood (REML), or Bayesian theory.33

Below, we briefly describe the GP methods used in our experiments. For (semi) parametric methods, we used BGLR
v1.1.0 (RRID:SCR_022522) with default settings of hyperparameters34; for Random Forests, the ranger R package
v0.14.1 (RRID:SCR_022521)35; and for XGBoost, h2o4gpu v0.3.3 (RRID:SCR_022520).36
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Parametric models

GBLUP

The genomic best linear unbiased prediction (GBLUP) method uses a Gaussian prior with equal variance for all markers
and a covariance matrix between individuals, called the genomic relationship matrix (GRM), calculated using identity by
state (IBS) distances betweenmarkers for each pair of samples.37 SNP effects aremodelled as random effects that follow a
normal distribution with zero mean and common variance, and are estimated by solving the mixed model equation:

y¼μþgþ ε (4)

Here, g is an n � 1 vector of the total genomic value of an individual, captured by all genomic markers; μ is the overall
population mean; and ε is an n-vector of residuals. The genomic values g and residuals were assumed to be independent
and normally distributed as g ~N(0,Gσ2g), ε ~N(0,Iσ

2
ε). HereG is the GRM, calculated using the rrBLUP v4.6.1 (RRID:

SCR_022519) package38 in R, providing variance-covariance structure for genotypes and I is the identity matrix. Due to
the small number of estimable parameters, GBLUP is computationally fast but the assumption of normality only holds
when most effects are close to zero and only a few are larger. The limitation of this approach is that it captures only linear
relationships between individuals and assumption of equal variance for all marker effects may not be truly valid for many
traits.

Bayesian methods

Several Bayesian methods with slight variations in their prior distributions have been proposed to model different
genetic architectures39 e.g. BayesA, using a scaled t-distribution; Bayesian LASSO or BL,40 using a double-exponential;
BayesCπ41 and BayesBπ,1 both utilising two-component mixture priors with point mass at zero and either a Gaussian or
scaled t-distribution, respectively. To control the proportion of zero effect markers, the hyperparameter ‘π’was set equal
to 0.5, resulting in a weakly informative prior. For simplicity, we refer to BayesBπ as BayesB in the text. The model in
equation (5) was solved for posterior means in both BayesA and BayesB with the only difference in priors of βj:

y¼ μþ
XJ

j
xjβ jþ ε (5)

Here, μ is the intercept, xj is an n-vector of allele dosages for each SNP and βj is the effect of SNP j out of a total of
J SNPs.

Table 2. List of datasets.23

ID Description n p

simdata Simulated dataset used to explore GP characteristics of trait genetic
complexity, population properties and dimensionality.

See Methods
section 2.1.1 for
details.

Wheat Real wheat dataset from Norman, Taylor24 containing 13 traits of varying
genetic complexity. These traits are referred to by abbreviations:
BM: Biomass, PH: Plant Height, NDVI: Normalised Difference Vegetative
Index, LL: Leaf Loss, LW: Leaf Width, GY: Grain Yield, GL: Glaucousness, GP:
Grain Protein, Y: Physiological Yellows, TW: Test Weight of grains, TKW:
Thousand Kernel Weight, GH: Growth Habit, GR: Greenness

10,375 17,181

STRUCT-
simdata

Real structured RegMap panel genotype data of Arabidopsis thaliana with
simulated phenotypes data used to analyse the effect of population
structure

1,307 15,662

STRUCT-
realdata

A subset of the real Arabidopsis thaliana structured RegMappanel genotype
data with real phenotype data of the sodium accumulation trait used to
analyse the effect of population structure

300 169,881

LD-simdata An unstructured set accessions from the core set of the Arabidopsis thaliana
HapMap population with known genotype data and simulated phenotype
data to study the impact of LD

344 48,343

LD-soy Real soybeandataset ofwith real phenotypes (R8, HT: height and YLD: yield)
for studying the impact of low SNP-QTN LD32

5,014 4,235
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Semi-parametric models

Reproducing Kernel Hilbert Spaces (RKHS) regression is a general semiparametric method that models pairwise
distances between samples by a Gaussian kernel and can therefore better capture nonlinear relationships than GBLUP.
In fact, GBLUP is a special case of RKHS regression, with a linear kernel42,43 https://paperpile.com/c/ZyQHHy/1oKK+
NO1v. We used RKHS regression as a representative semi-parametric model, because it not only employs prior
assumptions for random components in LMM equation (6), but also learns hyperparameters from the data itself:

y¼μþ
X3

l¼1
glþ ε (6)

In contrast to the GBLUPmodel (4), the RKHS regressionmodel has three random genetic components g¼P3
l¼1gl, such

that gl ~ N(0,Klσ
2
gl); whereKl is the kernel evaluated for the l

th component using lth bandwidth (bl), as described below.
This kernel matrixK is used as genomic relationship matrix, whereK= {k (xi, xj)} is an n� nmatrix of Gaussian kernels
applied to the average squared-Euclidean distance between genotypes:

k xi,x j

� �¼ exp �b
Xp

k¼1
xik � xjk
� �2� �

=p
� �

(7)

The kernel k (xi, xj) is a covariance function that maps genetic distances between pairs of individuals xi and xj onto a
positive real value. The hyperparameter b, called the bandwidth, controls the rate at which this covariance function drops
with increasing distance between pairs of genotypes. Tuning this parameter for range of values between 0 and 1 could be
computationally inefficient. So, instead of tuning b, we used a kernel averaging method,42 such that multiple kernels,
corresponding to possible bandwidth values bl = {0.2, 0.5, 0.8}, were averaged.

Ensemble machine learning models

Random Forest

The Random Forest (RF) regressor uses an ensemble of decision trees (DTs) that are each grown using bootstrapping
(random sampling with replacement of samples), and a random subset of SNPs. The test sample prediction is made by
averaging all unpruned DTs as;

bf DRF xð Þ¼ 1
D

XD

k¼1
τ x,ψkð Þ (8)

Here x is the test sample genotype using an RF τ withD decision trees, for which ψk is the k
th tree. An RF has a number of

hyperparameters that need to be tuned, for which we used grid search using the caret v6.0.92 (RRID:SCR_021138) R
package44 https://paperpile.com/c/ZyQHHy/GaA1. We used 500 trees in the forest for all analyses and tuned ‘mtry’ and
‘nodesize’ hyperparameters to control tree shapes. The total number of SNPs randomly selected at each tree node,
i.e. mtry, was selected from {p/3, p/4, p/5, p/6} and theminimum size of terminal nodes belowwhich no split can be tried,
i.e. nodesize, was selected from {0.01, 0.05, 0.1, 0.2, 0.3} times the number of training samples in each cross-
validation fold.

Extreme Gradient Boosting (XGBoost)

We used XGBoost, a specific implementation of the Gradient Boosting (GB) method. Similar to the Random Forest,
Gradient Boosting is an ensemble method, using weak learners such as DTs. Themain difference is that an RF aggregates
independent DTs trained on random subsets of data (bagging), whereas GB grows iteratively (boosting) by selecting
samples in the subsequent DTs based on sample weights obtained in previous DTs, related to how well samples are
predicted already by these previous DTs.

Hyperparameters were tuned using a grid search through five-fold cross-validation on each training data fold. We
searched overmax_depth = {2, 3, 4, 50, 100, 500}, colsample_bytree = {0.1, 0.2, 0.3, 0.5, 0.7, 0.9} and subsample = {0.7,
0.8, 0.9}.

Performance evaluation

Model performance was evaluated based on prediction accuracy, which was measured as the Pearson correlation
coefficient (r) between observed phenotypic values and predicted genomic values of the test population. For each model,
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five repeats of five-fold cross-validation were performed, so in total 25 values of r were used to compare performances.
Statistical comparison between different models was performed by comparing prediction accuracies of each pair of
models as a whole, i.e. on all values of p/n together using Wilcoxon rank-sum test.

Assessment of trait non-additivity
To link GP performance in simulation scenarios with performance on real data, an assessment of the nature of real traits
(i.e. additive or epistatic) was used. To obtain a proxy for additivity of the trait, we assumed that if a trait has a higher
proportion of additive variance compared to other traits, estimatedwith the samemodel, it will bemore additive. To verify
this on our simulated dataset scenarios (Table 1) for epistatic phenotypes, we used the linear mixed model:

y¼μþ gaþgeð Þþ ε (9)

Here ga defines a set of additive genotype effects such that ga � N(0,σ2aG), whereG is the genomic relationship matrix
(GRM) calculated as described by VanRaden.37 Moreover, ge � N(0,σ2eE) is a vector of epistatic genetic effect and ε
is a vector of residuals. Here,E is the GRM (G oG). The ratio of additive genetic variance to the epistaic genetic variance
(σ2a/σ

2
e) was calculated for both the simulated dataset and real wheat traits to assess their relative non-additivity. We

tested our assumption on simulated phenotypes (Extended Data, Figure S127), showing simulated amounts of non-
additive heritability to indeed be negatively related to empirical additive heritability.

Results
ML outperforms traditional methods for GP
Previously, numerous GP methods were tested for different traits of varying genetic architectures using low or high
density marker sets, but it is still unclear for which (class of) GP problems applying machine learning (ML) can be
beneficial.9 To investigate the role of underlying characteristics (Figure 1), we generated an extensive set of simulated
genotype-phenotype data (simdata: see Section ‘Simulations’). This data was analysed using the linear parametric
methodsGBLUP, BayesA andBayesB; the nonlinear semi-parametric regressionmethodRKHS, using aGaussianmulti-
kernel evaluated as average squared-Euclidean distance between genotypes42; and popular nonlinear ML methods,
i.e. support vector regressor (SVR), random forest regressor (RF), extreme gradient boosting (XGBoost) regression trees
and a fully-connected feed forward artificial neural network i.e. Multilayer Perceptron (MLP). The simulations covered a
variety of trait scenarios (from simple to more complex), as shown in Table 1. Simple oligogenic traits correspond to
simulation scenarios with larger heritabilities, additive allele effects and small numbers of QTNs; complex traits can have
both additive and non-additive allele effects (only epistatic here) with small heritabilities and large numbers of QTNs. For
additive phenotypes, narrow-sense heritability was set equal to broad-sense heritability and for the epistatic phenotypes,
the sum of narrow-sense and epistatic heritability was set equal to the broad-sense heritability. The extent of phenotypic
additivity in both simulations and real datasets was calculated using the ratio of additive genetic variance to the epistatic
genetic variance (σ2a/σ

2
e) using equation (9). In the results presented below, SVR andMLP were excluded because their

performances were significantly lower than the tree-based ensemble ML methods (i.e. RF and XGBoost) on a subset of
our simulation scenarios (ExtendedData, Appendix I45).Moreover, the applicability of neural networks/deep learning for
GP in the feature space is still limited due to their high tendency toward overfitting under high-dimensionality until they
are properly regularized or feature selection is employed.16,46,47

ML methods perform well for simple traits

Many non-mendelian plant traits are fairly simple, where only one or a fewQTLs explain a large proportion of phenotypic
variance, called oligogenic traits. If these QTLs are identified by the GP model, prediction performance can be pretty
high. In our simulations (Table 1), this scenario is investigated using additive phenotypes with narrow-sense heritability
(h2) equal to 0.7 and a total number of QTNs equal to 5.We then alternatively attribute equal effects to all QTNs, assign a
larger effect to the first QTN in equation (1) compared to other the QTNs, or sample the QTN effects from a Gaussian
distribution (see Section ‘Simulations’).

The results in Figure 2A, Figure 2B and Figure 2C illustrate that the performance of Bayesian methods and ML was
significantly better (p value < 0.01; Extended Data, Table S148) than that of genomic relationship-based methods
(GBLUP, RKHS). The performance of ML methods was slightly poorer than that of Bayesian methods when all QTNs
effects were equal (Figure 2A) or sampled from aGaussian distribution (Figure 2C) but comparablewhen one of them had
a larger effect size (Figure 2B). Therefore, although not outperforming the other methods, ensembleMLmethods seem to
be reasonable choices for simple traits.
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ML methods outperform parametric methods for complex traits

Complex polygenic traits may contain a large effect QTL along with many small to medium effect QTLs.49 Despite
assuming perfect LD between SNPs and their corresponding QTLs, their detection remains challenging through
conventional univariate regression models that are followed by strict multiple testing corrections. Moreover, shrinkage
of random effects towards zero in multivariate regression models restricts them from growing too large. Thus, many true
small effects may be ignored in the analysis. SNPs may also have non-additive effects, which could cause a large amount
of variance to remain unexplained and narrow-sense heritabilities to be low, whenmodelled by their additive action only.

This genetic complexity was simulated by increasing the number of QTNs, decreasing the narrow-sense heritability and
keeping overall effect sizes equal, thereby letting the effect sizes per QTN become proportionally smaller. The QTNs
were randomly chosen from the simulated SNPs pool by setting k equal to half of the total number of SNPs (p/2) in
equation (2), keeping equal effect sizes for all QTNs and h2 equal to 0.4. Moreover, similar to simple traits, the other two
scenarios, i.e. unequal effect sizes and normally distributed effect sizes, were also simulated. Two QTNs were randomly
selected to have a fairly large pairwise interaction effect, corresponding to an epistatic heritability h2e equal to 0.4. The
results in Figure 2D illustrate that MLmethods significantly outperformed all methods for complex phenotypes when all
of the QTNs had equal effects (p-value < 0.01; Extended Data, Table S248). Interestingly, when one of the QTN had a
larger effect size orwas attributedwithmost of the variance, theBayesianmethods performed on parwithML (Figure 2E),
but when the effect sizes followed a Gaussian distribution (Figure 2F), ML was outperformed by the other methods. This

Figure 2. Comparison of prediction performances using simulated simple and complex phenotypes. Perfor-
mance of parametric (GBLUP), semi-parametric regression (RKHS), parametric Bayesian (BayesA, BayesB) and
nonparametric ML (RF and XGBoost) methods as average accuracy over 5-fold cross-validation of test data. Here
accuracy is defined as Pearson correlation coefficient between true and predicted values. Each panel is a subset of
the simulated scenarios in ‘simdata’ for a particular heritability and#QTNs. The ratio of the number ofmarkers to the
number of samples (c = p/n) increases from left to right in each subplot. A) Simple traits, simulated as polygenic
phenotypes with only additive effects such that #QTNs is equal to 5 and h2 is 0.7, using equation (1), with all QTNs
having equal effects. The largest standard error of mean for all values of c for each of the model was 0.023, 0.018,
0.007, 0.008, 0.018 and 0.009 for GBLUP, RKHS, BayesA, BayesB, RF and XGBoost respectively; B) similar to A, except
one of the QTN had a large effect than others. The largest standard error of mean for all values of c for each of the
model was 0.022, 0.022, 0.006, 0.007, 0.006 and 0.008 for GBLUP, RKHS, BayesA, BayesB, RF and XGBoost respec-
tively; C) similar to A and B, except QTN effects were sampled from a Gaussian distribution; D) Complex traits,
simulated as polygenic phenotypes with both additive and epistatic effects such that #QTNs equal to p/2 and h2 is
equal to 0.4, using equation (2), such that all QTNs had equal additive effects. Two of theQTNswere attributed to the
epistatic effect such that Broad-sense heritability was set to 0.8 (H2 = h2 + h2e = 0.8). The largest standard error of
mean for all values of c for each of themodels was 0.03; E) similar to D, except one of the QTN had a large effect than
others; F) similar to D and E, except QTN effects were sampled from a Gaussian distribution (see methods).
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confirms that parametric methods work well if the effects distribution matches the statistical prior assumptions. In reality,
genetic variance may not be attributed to a single Gaussian for other than infinitesimal model, instead it could be
decomposed into multiple distributions enriched in multiple chromosomal localisations defined by heritability models.50

This phenotype complexity is usually unknown and difficult to accurately assess, which provides room for the ML
methods.

ML methods are generally suitable for epistatic phenotypes

For complex phenotypes, we observed that ML outperformed LMMs under highly polygenic phenotypes with epistatic
effect and equivalent to Bayesian LMMs when at least one QTN had larger effect (Figure 2D and E). To explore further,
we investigated a range of additive and non-additive fractions of heritabilities, with or without a large effect QTN and
from Gaussian distribution defined in our simulation scenarios (Table 1).

For additive phenotypes with equal QTN effect sizes, performance of ML methods was poorer than that of Bayesian
methods under all scenarios; with an increase in genetic complexity (lowering h2 and increasing the number of QTNs),
performance dropped below that of GBLUP and RKHS as well (Extended Data, Figure S2A27). Therefore, MLmethods
are not beneficial for this setting. For epistatic phenotypes however, ML outperformed all methods including the
Bayesian methods for all scenarios (Extended Data, Figure S2B27), with random forests generalizing the best. ML
methods are thus best suited for epistatic traits and do not necessarily need large main effects to be present. Note that
although RKHS regression has been reported to better capture epistatic relationships between markers,43 it did not
perform well in our simulations; perhaps it needs more careful tuning of the bandwidth of the Gaussian distributions,
rather than usingmulti-kernel averaging or requirematching prior allele effects distributions (seeDiscussion, ‘Tree-based
ensemble ML methods are a reasonable choice for GP’).

For the phenotypes explained by a large effect QTN and many small effect QTNs (Extended Data: Figures S3A
and S3B27), Bayesian methods perform comparable to ML methods for both additive and epistatic phenotypes under
all simulation scenarios, although RF gave slightly better performance for epistatic phenotypes with large epistatic
heritability (for h2e = 0.7) and dimensionality (p/n > 2). This could be because the large effect QTN explains most of the
additive variance and is easily picked by Bayes and ML methods, but RF has the added advantage of picking up the
nonlinear signal, when main effects got smaller with the increase in number of QTNs. XGBoost gave relatively poor
performance, especially at smaller heritabilities (0.1 and 0.4) and larger p/n ratios, while GBLUP and RKHS regression
performance was consistently poor in all scenarios.

For both additive and epistatic phenotypes (ExtendedData: Figures S4a, and S4b27), the ensembleMLmethods were still
superior over BLUPs and comparable to Bayes when effect sizes were sampled from a Gaussian distribution for a small
number of QTNs (e.g. q = 5, h2 = 0.7, h2e = 0.1), but the advantage diminishes when q increases and approaches the
infinitesimal model i.e. q = p.

In conclusion, our simulation results indicate that ML works well when a fair proportion of broad-sense heritability is
contributed by allele interaction effects or a few large effect QTNs.

ML performance is robust to high-dimensional GP

Genomic prediction is usually employed on a genome-wide set of markers to yield total genomic value, but the training
population size is limited, i.e. a high dimensional problem. This results into more statistical power to detect QTLs with
many SNPs in LD but comes with obscured genetic variance when added together. Consequently, it leads to an
overestimation of allelic variances or genomic relationships, overfitting on training samples and reduced performance
on unseen data. To investigate the susceptibility of different GP methods for this issue, we analysed how prediction
accuracy varied depending on the ratio of markers vs samples (c = p/n > 1).

In general, the results with different simulation settings of ‘simdata’ for additive phenotypes show that performance is
negatively related to an increase in dimensionality when main effects got smaller due to decreasing heritability or
increasing total number of QTNs (Extended Data: Figure S2A, Figure S3A and Figure S4A27). This implies that for
simple traits having one or few large effect QTNs (Figure 2A to C), performance degradation is not a severe issue for
Bayesian and ML methods but it can still be a potential problem for genetic distance-based methods i.e. GBLUP and
RKHS., presumably because of increased uninformative markers in calculating the genetic kinships. For the epistatic
phenotypes, high dimensionality still doesn’t affect ML until we have sufficiently large main effects (Figure 2A and
2B; Extended Data: Figure S2B, Figure S3B and Figure S4B27). Here, for the case when main effects were sampled
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from a Gaussian distribution, increasing polygenicity is analogous to having many small main effects; so, despite having
epistatic effects, performance goes down for all methods. In the nutshell, this shows that the conclusions drawn in
Section ‘ML methods perform well for simple traits’ and Section ‘ML methods outperform parametric methods for
complex traits’ holds under high-dimensionality.

Case study in wheat

To see whether our simulation results hold on real traits, we used a dataset of 13 wheat traits24 for a fairly large number of
samples (10,375 lines) and 17,181 markers (c ≈ 1.6). These markers have been selected by strict screening criteria,
therefore, many of them could be informative. Insights in the genetic complexity for some of these traits were previously
reported in Norman, Taylor24 and Norman, Taylor.25 For example, glaucousness was reported to be a simple trait, but
grain yield to be more complex.25 The results in Figure 3 clearly indicate that five-fold cross-validated prediction
accuracies (r) were higher for both ML methods when the fraction of additive variance was small (i.e. traits were fairly
non-additive) and slightly lower or comparable to both Bayesian and GBLUP/RKHS regressionmethods otherwise. This
is in line to what we observed in our simulations: for simple traits (Figure 2A and B) ML performance was either
comparable to Bayesian or slightly poorer, but for complex traits it was consistently better (Figure 2C). For example, leaf
width, glaucousness, growth habit, leaf loss, plant height, test weight and thousand kernel weight traits had greater than
80% of their genetic variance explained only by additive variance components and performance of ML relative to
Bayesian methods and GBLUP/RKHS regression was either at par or lower than that. On the other hand, biomass, grain
protein, grain yield, yellowness and in particular NDVI had smaller fractions of additive variance and, relative to the other
methods,ML performed better. Hence, results on this experimental dataset matchwith the findings in our simulations that
ML is best suited for the prediction of more complex traits and a potential candidate for simple traits as well.

ML methods are sensitive to population structure
Population structure (PS) is a well-known confounding factor that results in decreased diversity in training populations25

and unrealistic inflated parameter estimates, e.g. for (co) variances of random effects in LMMs51 https://paperpile.com/c/
ZyQHHy/ByqH. Parametric and nonparametric ML methods, based on their modelling assumptions and approaches,
may be differently sensitive to PS. To assess the impact of population structure on ML methods, we used real genotype
data with a known population structure and combined it with both simulated (STRUCT-simdata) and real phenotypes
(STRUCT-realdata). Only additive phenotypes were simulated, with varying complexity and dimensionality scenarios,
as described earlier in Section ‘Simulations’. The STRUCT-simdata contains all 1,307 Arabidopsis RegMap acces-
sions.26 To exclude the impact of multicollinearity among SNPs, only uncorrelated markers were retained after pruning
with pairwise squared correlation coefficient (r2 < 0.1, see Section ‘Population structure analysis’), leaving 15,662 SNPs,

Figure 3. Prediction accuracies ofwheat traits. Top: prediction accuracies for GPmodels onwheat traits, reported
as the mean Pearson correlation coefficient (r) of 5-fold cross-validation. Trait abbreviations are given in Table 2.
Bottom: fraction of additive to residual genetic variance calculated using equation (9) for each trait. Traits were
sorted in ascending order of additive variance fraction (left to right); therefore, the leftmost trait (NDVI) can be
considered more complex than those to the right.
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but keeping the population structure intact (Extended Data, Figure S727). This results in a ratio c = p/n of approximately
12 (15,662/1,307), a setting comparable to the simulation results presented in Figure 2A.

Correction for PS was carried out by including the top ten principal components corresponding to the largest eigenvalues
as fixed effects into the mixed model equations or as additional features for ML methods. For the simulated phenotypes
(Extended Data, Figure S627), average pairwise difference of test accuracies before and after correcting for PS was
slightly higher for ML methods (RF: 0.03 and XGBoost: 0.04) than for LMMs (GBLUP: 0.01, RKHS: 0.01, BayesA:
0.01 and BayesB: 0.00). Moreover, the correction resulted into relatively elevated accuracies for the scenarios with
larger number of QTNs or low heritabilities. This illustrates that with smaller #QTNs and larger heritabilities (h2 = 0.7,
#QTNs = 5), effect sizes per QTN were larger; therefore, confounding due to PS was less of a concern. With the
decrease in effect sizes per QTN (increase in #QTNs and decrease in h2), correction became more important for reliable
predictions. From this, we can argue that confounding due to PS should be generally corrected for, but particularly for
complex phenotypes having low heritability and large numbers of QTNs with small-medium effect sizes.

To further explore this behaviour, we used real phenotypes of the sodium accumulation trait in Arabidopsis thaliana
(STRUCT-realdata) using a subset of the same genotypes dataset. Here, we expected to have at least one large effect QTN
for this trait, because AtHKT1;1 locus, encoding a known sodium (Na+) transporter, has been reported to be a major
factor controlling natural variation in leaf Na+ accumulation capacity.29 Similar to the outcomes on ‘STRUCT-simdata’,
correction for PS increased prediction accuracies of all methods on test data; whereas, GBLUP showed the lowest average
difference (Δμ = 0.03) in performance before and after correction (Figure 4). In contrast to ‘STRUCT-simdata’, XGBoost
had the largest average difference (Δμ = 0.1) but for RF the difference was comparable to LMMs (Δμ = 0.05). From the
above outcomes, we conclude that ML methods, like other GP methods, are sensitive to confounding due to PS and
correcting for this can further improve performance for complex phenotypes. However, it is still unclear to which extent
or for which GP problem characteristics different methods are more advantageous or more sensitive to PS.

ML methods can tackle low SNP-QTN LD
The utility ofGP in genomic selection is based on the assumption that there are amplemarkers within a densely genotyped
set of markers which are in LD with the QTLs.1 The actual QTNs are generally unknown, but SNPs in LD can be used to
(partially) capture their effect, depending on the actual correlation and allele frequencies. Therefore, it is worthwhile to
investigate the impact of SNP-QTN correlation levels on GP performance52 https://paperpile.com/c/ZyQHHy/Q1iWE.
We used two settings, one with real genotypes and simulated phenotypes (LD-simdata), a secondwith real genotypes and
real traits (LD-soy).

Figure 4. Effect of correction for population structure for the sodium accumulation trait in Arabidopsis
thaliana. Boxplots present Pearson correlation coefficients (r) found in 5-fold cross-validation, on test data from
‘STRUCT-realdata’. Here Δμ is the average difference between pairwise predictions before and after correction and
for each model, the nonparametric Wilcoxon rank sum test was used to assess statistical significance.

Page 14 of 29

F1000Research 2023, 11:802 Last updated: 06 APR 2023

https://paperpile.com/c/ZyQHHy/Q1iWE


In simulations, GP model performance is evaluated based on the difference in prediction accuracies between a model
trained on the actual QTNs and amodel trained on SNPs in LD (QTN-linked SNPs). Our results show that when SNPs are
highly correlated to QTNs (which is likely the case for densely genotyped markers set and r2 > 0.9), all methods perform
equally well and the SNP-based model predictions are very close to those of the actual QTN based models (Extended
Data, Figure S827). On the other hand, for low LD between SNPs and QTNs, there was in general a difference between
median prediction accuracies (Δr) of the QTN and SNP-based models (Figure 5A). This difference varied between
methods, from 0.18 for RKHS regression to 0.43–0.46 for the Bayesianmethods, with GBLUP andMLmethods between
these (0.32–0.37). The relative robustness of particularly the Random Forest model in these circumstances compared to
the Bayesian methods, in combination with its good performance in many simulations, supports its usefulness for GP.

As a real genotype and phenotype dataset, we used three Soybean traits, i.e. height, time to R8 developmental stage
and yield (LD-soy). The motivation was to choose a low-dimensional real dataset with highly correlated SNPs to
understand the impact of SNP-QTL LD only. The complete set of markers (4,235 SNPs) hadmany correlated SNPs, such
that only 261 were left with low LD (r2≤ 0.5). Here, in contrast to LD-simdata, where we knew the QTNs in advance, we

Figure 5. Effect of SNP-QTN LD on prediction accuracy. Prediction accuracy of different GPmethods on simulated
(A) and real soybean (B) datasets for high and low LD between SNPs and actual QTNs. The difference in median
accuracies between these scenarios is indicated as Δr. A) LD-sim data, low SNP-QTN LD (r2 ≤ 0.5). B) LD-soy data, low
(r2 ≤ 0.5) SNP-QTN LD vs. all SNPs (high LD).
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assumed that many SNPs could be linked to QTNs, because ~94% of all markers had r2 > 0.5. So, we compared two
models: one with all markers (the benchmark model), and one with low LD (r2≤ 0.5). A similar pattern was observed, as
shown in Figure 5B, i.e. RKHS regression, RF andXGBoost weremost robust against lowSNP-QTNLD,with negligible
differences between median accuracies, where GBLUP and the Bayes methods had higher differences. Moreover, the
prediction accuracies were similar to previously reported values for these traits.16

In conclusion, GP methods that model SNP-QTN or SNP-SNP relation as a nonlinear function (RKHS, RF, XGBoost)
weremore stable under low SNP-QTNLD compared to othermethods (GBLUP, BayesA, BayesB).Moreover, RF seems
to couple good prediction performance with reliability under low SNP-QTN LD.

Discussion
There is room for ML in genomic prediction
Genomic prediction has long been the realm of parametric methods, but recently nonlinear supervised MLmethods have
become increasingly popular. Yet literature is unclear on the characteristics of GP problems that warrant application
of ML methods. This study fills this gap and concludes that nonlinear tree-based ensemble ML methods, especially
Random Forests, can be a safe choice alongwith traditional methods for simple as well as complex polygenic traits where
epistatic allele interaction effects are present. We simulated different scenarios mimicking the reality at a broader level e.
g. the case of simple oligogenic traits (Figure 2, panel A, B & C), where they outperformed BLUPs but not Bayesian
LMMs. A similar trend can be observed in real data of Sodium accumulation trait (Figure 4), where we studied the impact
of LD. On the other hand, for complex traits scenarios (Figure 2, panel D, E, F). Random Forests either outperformed
when again a large effect was present (panel D & E) or were inferior to other methods, when all effects followed the
Gaussian distribution (panel F). The latter (panel F) is prevalently observed formany complex traits, where accuracies are
roughly comparable for all methods. Moreover, ML methods are robust to high dimensionality, although further
improvements, e.g. statistical or prior knowledge driven regularization, may improve performance. ML methods are
particularly useful compared to the frequently usedGBLUP and RKHS regression given their higher performance.While
Bayesian methods often perform on par withMLmodels, this is mainly when there are large effect QTNs and/or additive
phenotypes. Moreover, Bayesian methods are prone to overfitting in case of small sample sizes (p/n > 1), which is less of
an issue with ML, especially with RF (Extended Data: Figures S9A and S9B27).

Tree-based ensemble ML methods are a reasonable choice for GP
A wide range of parametric, semi-parametric and nonparametric methods can be used for GP, but it is impractical to test
all for a particular application. The choice for a suitable method strongly depends on the GP problem characteristics,
described in Figure 1. While GP methodology can be compared using various model evaluation metrics (BIC, AIC, log
likelihoods), we focused on their utility from a breeder’s perspective, so we compared only their prediction accuracies.
We found that GP methods based on modelling the distance between genotypes using covariance structure(s), inferred
from genomic markers (GBLUP and RKHS), were generally inferior to Bayesian and ML methods and less robust to
high-dimensional problems likely because all of the p SNPs were used always to calculate the kinship matrices, whereas,
either 5, 50, 100, p/2 or exactly p SNPs were chosen as QTNs. When q is fairly less than p,makes the kinship matrix too
noisy due to the large number of markers that are unrelated to the phenotype but are used in the calculation of the GRM.
Hence, we expect equal accuracies for increasing number of QTNs (q), keeping the other factors (p, n and h2) fixed.
Figure S5 (Extended Data27) clearly illustrates that these methods indeed have constant prediction accuracies with
increasing q values, while the accuracies of the other methods drop due to decreasing effect sizes. This further explains
that their performance can be improved by removing unrelated markers from the GRM, for instance using biological
knowledge about markers.31,53

The parametric LMM equations can be solved using a Bayesian framework. Bayesian methods define prior SNP effects
distributions to model different genetic architectures. Instead of a single distribution for all marker effects (e.g. BRR), it
could be defined for each individual marker (e.g. BayesA). Mixture distributions have also been proposed (e.g. BayesC,
BayesB). From the Bayesian alphabet, we used BayesA and BayesB as representatives because the first scenario, i.e. a
single distribution for all markers, has been covered by GBLUP. Our results illustrate that these methods outperform
GBLUP and RKHS regression when large effect QTNs are present, for both additive and epistatic phenotypes. On the
other hand, tree-based ensembleMLmethods had either comparable performance to Bayesian methods (for simple traits)
or superior performance (for complex traits). Capitalising on the results fromAppendix-I (Extended data27) that theseML
methods had better performances than other ML methods (SVR and MLP), we can argue that these tree-based ML
methods are a reasonable choice to conduct GP.

Population structure analysis
Population structure can affect GP performance. Our results show that without correcting for population structure,
test accuracies were lower than after correction for all methods. However, ML seems to be slightly more sensitive

Page 16 of 29

F1000Research 2023, 11:802 Last updated: 06 APR 2023



because the average difference between each pairwise test data accuracies was higher than other methods in the
simulated data.

Confounding due to population structure can also be due to the frequently employed random cross-validation strategy for
predictive modelling.25 In random cross-validation, the reference population is randomly divided into subsets, one of
which is iteratively selected for testing while the remaining subsets are used to train the model. While samples are all part
of a test set once, under population structure some subpopulations may be over or under-represented in the training set. As
a result, the model may get overfitted. A solution could be to use stratified sampling instead. On the other hand, parameter
estimation may get misguided by within subgroup allele frequency differences rather than the overall true phenotype
associated variance.

The impact of population structure can be dealt with in many ways. Conventionally, principal components of the SNP
dosages or genomic relationship matrix are introduced as fixed effects in the mixed model equations.54,55 Alternatively,
phenotypes and genotypes can be adjusted by the axis of variations before predictive modelling.5 Nevertheless, some
residual structure often remains in the datasets, so it is important to check sensitivity of GP models to this confounding
factor. Since ML methods (RF and XGBoost) do not employ any statistical prior and learn the association patterns from
the data itself, theymay bemore sensitive to structure, as we found in our simulation results. But this is not clearly evident
from the real phenotypes, so we cannot generalize this conclusion from our simulations.

Effect of SNP-QTN linkage disequilibrium
Despite technological improvements, low density SNP panels are usually cost-effective for routine genomic selection.
Increasing marker density does not necessarily increase prediction accuracy, since accuracy is not a linear function of
SNP density only.56–58 Instead, many GP problem characteristics (Figure 1) jointly affect performance. However, using
low density SNP panels can negatively affect prediction performance, since relevant SNPs in LDwith theQTLs can either
be completely missing or SNPs only in low LD may be present. As a result, allele frequencies between SNPs and
QTNs can be quite different, resulting in incorrect predictions.52 Despite this, low SNP density can still be sufficient for
populations with larger LD blocks, e.g. F2 populations, where QTL detection power is highest and in this case, we
shouldn’t expect much improvement by increasing marker density. But it becomes an important consideration when LD
starts to decay and population relatedness decreases in the subsequent crosses of the breeding cycle. In this context, our
study addresses the question of whether certain GPmethods, especiallyML, aremore sensitive to low SNP-QTLLD. The
results using both simulated and real traits indicate that SNP-QTL LD could also be an important determinant of suitable
GP methodological choice and that ML is robust against low LD.

A weak SNP-QTL correlation implies that the SNP is a weak predictor of phenotype and there is an imperfect match
between the genotypic distribution and the actual underlying genetic distribution of the phenotype.When using penalized
regressions, this can result in different shrinkage for the SNP than that required by the actual QTN, thereby leading to a
low genetic variance attribution to that SNP. Therefore, we may expect better prediction by nonparametric MLmethods,
as they may better learn weak genetic signals and are more robust to low SNP-QTL LD problems. On the other hand,
the semiparametric RKHS regression method, which measures genetic similarity between individuals by a nonlinear
Gaussian kernel of SNP markers, also performed better than GBLUP and Bayesian methods under low SNP-QTN
LD. The reason could be that under low SNP-QTN LD, true pair-wise genetic covariance estimation would be less
accurate due to losing many important markers and considering all of them equal contributors towards total genetic
covariance. In case of RKHS regression, a Gaussian distribution defines a SNP’s probable contribution towards total
genetic covariance, which becomes more realistic in this scenario because fewer important SNPs are left than in the high
SNP-QTNLD case. The Bayesian methods (BayesA and BayesB) had the largest decrease in test performance under low
SNP-QTN LD compared to high SNP-QTN LD. This could be due to the application of penalties on individual marker
effects, which shrinks the weak SNP-QTN associations towards zero for each SNP.

ML outperformed parametric methods for predicting complex wheat traits
Breadwheat breeding has huge impact onworldwide food security and socio-economic development.59 Therefore, minor
improvements in GP methodology leading to overall genetic gain can have high impact. In this study, we used a large
(10,375 lines) Australian germplasm panel, genotyped with a high quality custom AxiomTM Affymetrix SNP array and
phenotyped for multiple traits with varying complexity levels.24 The authors showed that genomic selection was superior
to marker-assisted selection (MAS) by employing GBLUP with two random genetic components (referred to as full-
model in their text). Our results clearly indicate that ML can performwell for complex bread wheat traits, e.g. grain yield,
yellows, greenness, biomass and NDVI. However, for NDVI, the larger difference between LMMs andML could be due
to low phenotypic variance and heritability for this trait in this dataset. All of these traits except grain yield can be
measured using high-throughput automated phenotyping.60 This is an interesting finding since, with the rapid advances in
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low cost high-throughput phenotyping systems, attention is shifting towards measuring component traits, e.g. vegetative
indices, rather than final yields. ML methods can predict these traits more accurately, as evident from our analysis.

Conclusions and outlook
Based on simulated and real data, we conclude that tree-based ensembleMLmethods can be useful for GP for both simple
and complex traits. Moreover, these methods can work for both low- and high-density genotyped populations and can be
a competitive choice for practical plant breeding. In practice, which method works best depends on the particular
problem, i.e. genetic architecture of the trait, population size and structure and data dimensionality. Between bagged
(Random Forests) or boosted (XGBoost) decision tree ensemble methods, random forest seems to be a good first choice
for GP given their generalization performance. Furthermore, population structure should properly corrected for to obtain
stable performance. It would be interesting to investigate to what extent these MLmethods can benefit from statistical or
prior knowledge-based regularization techniques.

Data availability
Underlying data
All datasets analysed during the current study are already published and publicly available22,23 and references to their
authors or repositories have been mentioned in the text.

Extended data
Figshare: Extended data for ‘Genomic prediction in plants: opportunities for ensemble machine learning based
approaches’.

This project contains the following extended data:

‐ Supplementary Figures: Farooq, Muhammad (2022): Supplementary Figure V2. figshare. Figure. https://doi.
org/10.6084/m9.figshare.21705944.v125

• Figure S1. Assessment of phenotypic class (additve or epistatic).

• Figure S2. Comparison of test data prediction performance using simulated phenotypes with equal
effects QTNs.

• Figure S3. Comparison of test data prediction performance using simulated phenotypes with unequal
effects QTNs.

• Figure S4. Comparison of test data prediction performance using simulated phenotypes with QTN effects
sampled from Gaussian distribution.

• Figure S5. Effect of increasing number of QTNs to the total number of SNPs ratio on prediction
performances using simulated phenotypes additive phenotypes.

• Figure S6. Effect of population structure correction on GP model accuracies.

• Figure S7. Principal Component Analysis (PCA) of Arabidopsis thaliana RegMap 1,307 accessions using
uncorrelated set of markers.

• Figure S8. Effect of high SNP-QTN LD (r2>0.9) on prediction accuracy.

• Figure S9. Comparison of training data prediction performances using simulated phenotypes with one large
effect QTN.

• Figure S10. Comparison of prediction performances of parametric, semi-parametric and MLmethods using
simulated phenotypes without a large effect QTN for epistatic phenotypes.

‐ Supplementary Tables: http://www.doi.org/10.6084/m9.figshare.1991872946

• Table S1. Simple Traits

• Table S2. Complex Traits
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The paper descries comparison study of performances between various types of machine learning 
models and statistical models to find the best model for genomic prediction using SNP data. To 
compare the prediction performance, simulation was performed with several different ratio of 
causal and non-causal variants, the number of samples and variants, heritability, effect size 
distribution, existence of population stratification, LD structure, and different genomic 
assumptions. In the simulation study, ML methods generally performed better than statistical 
models.  
 
The paper seems written well and the structure looks good. However, I think that it needs some 
more improvement, and there are some my suggestions below. 
 
First, the paper seems little bit long, so it would be better to reduce the length of paper by putting 
some introduction of methods to supplement. Also, I think that discussion section can be reduced 
by merging first, second, and fifth section of discussion. 
 
Second, in many prediction model studies, the marker selection step before constructing main 
model is essential to improve the prediction ability of statistical model. I think that if you perform 
SNP screening first, parametric models would perform better than current results. See Shigemizu 
et al1. 
 
Third, it would be great to know how much time will take for each model development with 
various settings. I think that RKHS regression takes much longer times than the other methods so 
that it would be one of the great reason why ML need to be used for efficient prediction modeling. 
 
Fourth, in population structure analysis, I think that you need to calculate principal components 
with only training dataset and projects the PCs for testing dataset with those results.  
 
I don't think authors need to do all of above suggestions to index the paper, but those things 
should be described in the paper. 
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Authors present an ample study on ML and linear methods for GP. Their conclusion is very clear 
(RF and XGBoost end to outperform linear methods); However, they overinterpret, - RF and related 
methods are better when a few variables are of large influence, as multiple studies have shown. It 
is true that ensemble methods tend to be a safe choice (see eg Azodi et al., 20191). As many 
studies have shown, the best method is trait and scenario dependent. Therefore, I suggest to 
include a small dose of caution in the conclusions. The paper is perhaps overlong. 
 
I am not sure a clear rationale on choosing between ML and LMM is lacking, but you do not solve 
it. 
 
The term 'non linear phenotypes' is misleading, if it refers to the degree of non additivity, I am not 
sure we can tell so easily between linear and non linear phenotypes. 
 
A clear link between simulated and real phenotypes is often missing? 
 
The simulation of allele frequencies is completely unrealistic; not detailed on how effects are 
sampled. 
 
Table 1: you use up to 60k QTLs? 
 
Table 2, provide also n and p. 
 
GBLUP can also include dominance and epistasis (work by Vitezica, Varona, et al., 20182). 
 
What are the 'Ith' components in equation 6? 
 
Equation 9, not clear how genetic residual is calculated nor its meaning? The estimated non 
additive variance? 
 
A negative relation by the way of additive and non additive part cannot be generalized. 
 
Out of all scenarios simulated, the most realistic is panel F (Fig 2), which shows similar behavior 
across methods, as usually observed. 
 
Fig 3: weird some very big differences (e.g., NDVI phenotype).  
 
Some review refs
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We thank the reviewer for constructive criticism and providing a valuable input to the article 
that helped us to improve it further. We have tried to address the comments one by one 
and made some changes to the text accordingly. 
 
Reviewer) I suggest to include a small dose of caution in the conclusions. I am not sure 
a clear rationale on choosing between ML and LMM is lacking, but you do not solve it. 
 
Authors) We agree that the choice of a particular method is scenario dependent. We also 
concur that despite simulating many scenarios, we do not find a definitive rationale for 
choosing between ML and LMM. Instead, our study could provide some general guidelines 
that can be helpful when considering this issue. We have revised the conclusion section to 
clarify this and modified the abstract to avoid over-interpretation. 
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Reviewer) The term 'non-linear phenotypes' is misleading, if it refers to the degree of 
non-additivity, I am not sure we can tell so easily between linear and non-linear 
phenotypes. 
 
Authors) Thank you for pointing this out. Although we did define non-linear phenotypes as 
those exhibiting epistatic interactions, we agree the use of this term can be misleading. We 
have therefore replaced all uses of linear and non-linear phenotypes by additive and 
epistatic, respectively. 
 
Reviewer) The simulation of allele frequencies is completely unrealistic; not detailed 
on how effects are sampled. 
 
Authors) We fixed MAF=0.4 and decided not to incorporate the impact of allele frequencies 
in our analysis because MAF of QTLs can impact heritability estimation and ultimately 
prediction accuracies (Yoshinobu Uemoto et al., 2015). This allowed us to observe equal and 
reasonably enough statistical power for each SNP during allele effects estimation. To clarify 
for the readers, we have also mentioned this in the text now (lines 105-109). 
The effect sizes were sampled from a Gaussian distribution ~N(0, √ h 2), to simulate three 
different cases. For the first case, one effect β was sampled and then all q QTNs were 
allocated βi = β / q, i.e. all QTNs had equal effects. This allowed us to evaluate a trait 
complexity scenario where effect sizes could decrease with increasing numbers of QTNs. In 
the second case, we sampled two effect sizes (a large effect for a single QTN, a smaller 
effect for all other QTNs) from the effect size distribution. For the third case, all effects were 
randomly sampled from the Gaussian distribution. The Methods section now contains a 
more elaborate description of our approach on lines 130-141. 
 
Reviewer) Table 1: you use up to 60k QTLs? 
 
Authors) Yes; for the case in which we had 60k SNPs, one possible scenario was to use 60k 
QTNs. This was simulated to illustrate the infinitesimal modelling scenario. 
 
Reviewer) Table 2, provide also n and p. 
 
Authors) Thank you for the suggestion. Table 2 has been updated. 
 
Reviewer) GBLUP can also include dominance and epistasis (work by Vitezica, Varona, 
et al., 2018). 
 
Authors) Indeed it can, and there are many other variations. We believed a full comparison 
of these methods to be out of the scope of this manuscript. However we did use RKHS as a 
general class of BLUPs with a three-kernel averaging scheme (De los Campos et al., 2010) 
using bandwidth values b={0.2,0.5,0.8}. 
Reviewer) What are the 'Ith' components in equation 6? 
 
Authors) The RKHS method contains three random genetic effects. The ith component is the 
ith random genetic effect, with a genomic relationship matrix determined by Gaussian 
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kernels corresponding to i = first, second or third value of bandwidth from {0.2,0.5,0.8}. We 
clarified this on line 294. 
 
Reviewer) A clear link between simulated and real phenotypes is often missing? 
 
Authors) We agree that a direct link between simulated and real traits is difficult to 
establish because simulations simplify things to a large extent. A better link could perhaps 
be established if the same population was utilised for simulated phenotypes. However, the 
purpose of our simulations was to give a general idea of where RF/XGB could be a potential 
choice, not for a specific population. We observed these methods work well for the case 
with a few QTNs with large effect or when the phenotype contains interaction effects. When 
the trait is highly polygenic and additive, such that the effect sizes distribution resembles a 
Gaussian (Figure 2), similar performance can be expected for RF/XGB and LMMs. 
 
Reviewer) Equation 9, not clear how genetic residual is calculated nor its meaning? 
The estimated non additive variance? A negative relation by the way of additive and 
non-additive part cannot be generalized. 
 
Authors) We agree that this was not clear and have changed equation (9) to accommodate 
the additive and epistatic random genetic components explicitly. Thus, the additive 
component is governed by the additive covariance matrix, whereas the epistatic component 
has a covariance matrix accommodating a fraction of the SNP interactions, as proposed by 
the E-GBLUP methodology (Yong Jiang and Jochen C Reif 2015). With both of these random 
components, we were able to extract the proportion of additive (σ 2a) and epistatic (σ2

e) 
variances for a trait and therefore, the σ2

a /σ2
e , should in principle, be higher when 

epistatic variance is low and vice versa. We have mentioned this in the text for clarification 
on lines 349-355. This negative relation was also found in our simulated data (Figure S1). 
Accordingly, for the real wheat traits, we observed a negative relation between σ2

a /σ2
e and 

the maximum difference between LMMs and RF/XGB accuracies. There was a clear 
separation between the traits, as plotted in Figure R1, with a lower additive:epistatic 
variance ratio (e.g. GY, GP, NDVI, BM etc) and those with a higher ratio (e.g. TW, TKW, GL, 
PH, LW). 
 
We agree that this negative relation cannot be generalized, but given our results testing the 
modified equation (9) on multiple phenotypes of the same population, we believe it to be an 
extrapolation for the same population. In the above Figure R1, we can see that for traits that 
are predominantly additive and polygenic, LMMs and RF/XGB perform quite similar (as for 
the cases in Figure 2-panel F); but for traits with a predominant epistatic component, for 
example, grain yield and biomass, RF/XGB outperform LMM. 
 
Reviewer) Out of all scenarios simulated, the most realistic is panel F (Fig 2), which 
shows similar behavior across methods, as usually observed. 
 
Authors) We agree to some extent that F is more realistic for many complex traits, but the 
scenarios in panels B and C can also be observed, e.g. for oligogenic traits. An example is 
the sodium accumulation trait (Figure 4), where ML performed well due to the large effect 
QTN. The panels with equal effects were meant (as a theoretical exercise) to illustrate the 
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impact of many small effect QTNs and small narrow-sense heritabilities. We have clarified 
this point further in the text on lines 658-666. 
 
Reviewer) Fig 3: weird some very big differences (e.g., NDVI phenotype). 
 
Authors) The large difference in prediction accuracy for grain yield and biomass could be 
attributed to their larger epistatic variance compared to the other traits. For the NDVI trait, 
phenotypic variance and narrow-sense heritability were low in this dataset, so this should 
be specific to this dataset only. We have explicitly mentioned this issue on lines 773-775 in 
the text.  

Competing Interests: N/A

Reviewer Report 28 September 2022
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© 2022 Azhar M. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Muhammad Tehseen Azhar   
Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 
Pakistan 

All the components are written according to international standards and latest information is 
cited.  
 
The statistical designs are used according to the demand of hypothesis and nature of data for the 
interpretation of the results. The protocols are elaborated in this manuscript so that one can 
repeat these experiments for more interpretations. The needed statistical analyses are conducted 
for the interpretation of the data. 
 
Methods-Data-Simulations: Explain the reason why you selected 500 for the sample size. What was 
the rationale behind choosing fixed MAF=0.4 and not other than that? 
 
In Figure 5B, why does yield have more accuracies than height and R8; whereas, yield is usually 
considered as a relatively more complex trait than others. 
 
The data is submitted in the relevant repository and authors would be available to answer any 
query from the researchers. 
 
The conclusion is to the point based on results and will be guideline for later studies. The Ref#55. 
Patterson N, Price AL, Reich D: Population Structure and Eigen analysis. PLoS Genet. 2006; 2(12): 
e190. should be removed because Ref#54 is its follow up study.
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes
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Reviewer Expertise: Plant Breeding and Biotechnology, Genetics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 26 Dec 2022
MUHAMMAD FAROOQ 

We thank all reviewer for providing a valuable input to the article that helped us to improve 
it further. We have tried to address their comments one by one and made some changes to 
the text accordingly. 
 
Methods-Data-Simulations: Explain the reason why you selected 500 for the sample 
size. What was the rationale behind choosing fixed MAF=0.4 and no other than that? 
We chose 500 samples since a reference population of this size is common for many 
genomic selection applications in plant breeding, as mentioned on lines 112-113. For 
example, Nonoy et al., 2022 used 457 soybean breeding lines, Sandhu et al., 2021 used 650 
spring wheat lines etc. We fixed MAF=0.4 for all SNPs, and decided not to incorporate the 
impact of allele frequencies because the MAF of QTLs can impact SNP heritability estimation 
and ultimately prediction accuracies (Yoshinobu Uemoto et al., 2015). With this setting, we 
obtained enough statistical power for each SNP during allele effects estimation (line 105-
109). 
 
In Figure 5B, why does yield have more accuracies than height and R8; whereas, yield 
is usually considered as a relatively more complex trait than others. 

 
Page 28 of 29

F1000Research 2023, 11:802 Last updated: 06 APR 2023



We used the ~4.2k SNPs extracted by Azodi et al., 2019 from the complete SoyNAM 
genotype dataset after rigorous feature selection. The motivation was to choose a real, low-
dimensional dataset with highly correlated SNPs to understand the impact of SNP-QTL LD 
only, while benchmark accuracies were also available in that study. Note that in general the 
accuracy of a genomic prediction model depends on whether and how many of the SNPs 
causal for a trait are included in the model. It might be that the feature selection performed 
by Azodi et al. had a stronger impact on height and R8 compared to yield. In any case, our 
results do match with those of Azodi et al., 2019 (Figure 5A), who found lower accuracies for 
predicting height and R8 than for yield, given this selected subset. We thank the reviewer 
for pointing this out, and now explicitly mention this in the text on lines 636-638 and 645-
646. 
 
The Ref#55. Patterson N, Price AL, Reich D: Population Structure and Eigen analysis. 
PLoS Genet. 2006; 2(12): e190. should be removed because Ref#54 is its follow up study. 
Thank you for pointing it out. This reference has now been removed.  
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