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Abstract: Impulsive is the affinity to do something without thinking. In this effort, we model
a mathematical formula types integro-differential equation (I-DE) to describe this behavior. We
investigate periodic boundary value issues in Banach spaces for fractional a class of I-DEs with non-
quick impulses. We provide numerous sufficient conditions of the existence of mild outcomes for I-DE
utilizing the measure of non-compactness, the method of resolving domestic, and the fixed point result.
Lastly, we illustrate a set of examples, which is given to demonstrate the investigations key findings.
Our findings are generated some recent works in this direction.
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1. Introduction

Many scholars have been drawn to fractional differential equations in recent decades, and many
good results have been obtained. This class of the differential equations with instantaneous impulses
is utilized to represent sudden events such as shocks and natural disasters, were explored by the many
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researchers and investigators. Some dynamics difficulties in the evolution process cannot be explained
by differential equations with instantaneous impulse. Drug transport through the bloodstream, for
example, is a gradual and ongoing process. Non-instantaneous impulse models, on the other hand,
can explain these issues. Mathematically, researchers modeled this situation in different types
of differential, integral and integro-differential styles. I-DEs can be used to model a variety of
circumstances in science and engineering [1], such as circuit analysis. It is, in essence, a form of
energy conservation. These types of I-DEs have been used in epidemiology and epidemic mathematical
modeling, especially when the models include age-structure or depict spatial epidemics [2, 3].

Newly, many researchers investigate the impulsive problem by using the I-DEs. For example, Wang
and Zhu modeled the BVP design of [4]

CANo(r) = A1)o(r) + @ (T, o(1), fT o(1,¢,0(5))d g‘) T€(Gir1,Tiv1l,1=0,1,...,n
(1) = pi(T) + 0T, 7)) [ pls, o (s))ds T€(T61i=0,1,...n
a(0) = o(T),

where “A” indicates the Caputo’ s fractional derivative of order v € (0, 1], A is a linear operator, o,
fractional supported functions and the numbers 7; and g; satisfy

O0=¢<T1 << <. <Tp1 =T.

Also, they defined continuous functions ¢; : (1, 6;] X 2 — =, where Z indicates a Banach space, o, is
the resolvent operator generated by A and p; are nonlinear functions in Z.

This BVP involved many recent designs, that can be seen in the efforts of Ibrahim [5], Malik and
Kumar [6], Pierri et al. [7], Agarwal et al. [8], Ahmed et al. [9], Sitho et al. [10], Saadati et al. [11],
Lu et al. [12], Chaudhary and Reich [13], Zhu and Liu [14], Hemant et al. [15] and Hadid and Ibrahim
[16].

We investigate the periodicity of fractional multi-evolution equations (FME) via non-instantaneous
impulses, which is created by the previous work:

CAo(7) = A@)o(7) + $(1,6)

+ 30 [y et = @i, o(e)ds  TE (St Tili=0,1,..,n
O-(T) = pi(Ta O-(T))QV(T’ Ti) TE (Tia gi]’ i = 1a s
(0) = o(T),

(1.1)

The existence of mild outcomes for the FDEs (1.1), via the criteria of the non-compact semigroups
is investigated in this study; nonetheless, the linear operator A is 7-dependent. Moreover, we clime the
FME, where n = 1 is studied in [14]. As a result of utilizing a different strategy, the outcomes provided
in this effort improve and extend the primary conclusions in many researches.

Iterative enhancement is based on the principle of incrementally developing a engineering system,
letting the designer to benefit from what was learnt during the enlargement of previous, incremental,
deliverable varieties of the system. Wherever possible, knowledge comes from both the improvement
and usage of the system. Starting with a rudimentary implementation of a subset of the system
requirements and alliteratively improving the evolving sequence of versions until the whole system
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was developed was a key phase in the process. Every iteration includes strategy changes as well as the
addition of new functional features [17].

The article is devoted into the following sections: Section 2 deals with all preliminaries that we
request in our investigation, such as the definitions of the fractional operators and the theory of
fixed points; Section 3 pretenses, our outcomes, which are grouped into two parts depending on the
compactness of o, (7, 7;); Section 4 offers an example and Section 5 involves the conclusion.

2. Preliminaries
We have two sets of information, as follows:

2.1. Theory of fixed points
e j=10,TL

e C[},E] ={o : 0 :j— E} the space of all continuous functions on Z, where = is a Banach space;
o Co[),E] = {o : 0 : (i, Tis1] — E} such that there occurs o(r;) and o (7)) satisfying o (7;) =
o(1;), i = 1,...,n with the sup-norm

llolle, = supfllo(ll : 7 € j}.

2.1.1. Lemmas

Lemma 2.1. [18] Suppose that U C E is a bounded closed and convex set, and Z is a Banach space.
In addition, suppose that the mapping F : U — U is in the strict set contraction. Then F in U must
have at least one fixed point.

Lemma 2.2. [19] Suppose that E is a Banach space and Q C C|J, E] is equicontinuous and bounded,
then the closed convex hull of Q CoQ C C|j, E] is equicontinuous and bounded.

Lemma 2.3. [20] Suppose that E is a Banach space, and U C Z is bounded, then there occurs a
countable set Uy C U such that y(U) < 2y(Uy), where y(U) is known as the Kuratowski measure of
non-compactness of the bounded set U C Z. Clearly, 0 < y(U) < oo and

n

y(U) = infle > 0 : U wi, diam(u;) < €.

i=0
Lemma 2.4. [2]] Suppose that E is a Banach space, and let U C C|},E] is equicontinuous and
bounded, then y(U(1)) is continuous on j, and

7( f F (T)dc) < f y(F(r))dr, y(F(7)) = max y(F(7)).
J J

2.1.2. Definition

If o € Cp(y,E) fulfills the resulting equations, it is supposed to be a mild solution to problematic

(1.1)

(1) = 07, 0)| 0T, T1)on(Sr T(5)
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T n S
+ f 0,(7,5) (qb(g, &)+ ) fo @i(r = Di(s, a(g))dg)]
Sn 0

+ fo T 04(7,6) (d)(g, o($) + Z fo ) @i(T = O)Di(s, 0(;))d§), 7€[0,7]

o (1) = 0,(7, T)Pi(T, 07 (7)), I;Oe (tirsil,i=1,..,n

o (1) = 0(7, T)pi(Gi» () + fg T ov(7,6) (cb(g, a(¢) + Z fo g @i(T = §)Di(5, 0($))ds
e, Tl i=1,..,n | B

2.2. Fractional calculus

The Riemann-Liouville fractional order integral is given by the following formula [22]

1 T
Fo(t) = — f o(§)T-¢)ds, v>0,
L'(v) Jo
where I indicates the gamma function. Note that
I'""o(t) = I'Mo(r) = "o (7).
For a function o € C"[0, o0), the fractional derivative operator in the form of the Caputo formula of

order v € (n,n + 1] can be expressed as

1
I'n—v)
The Caputo fractional differential operator has many applications in science, computer science and
engineer.

‘ANo(r) =

f o ()T -6 dg, 7>0,neN.
0

3. Results

We have the following cases:
Define an operator O : C,[7,E] — C,[J, E], as follows:

(00)(7) = 0,(7, 0)| 0T, T2)ou(S, () G.1)
+ f o7, §)[¢(§,0(§))+Z fo %(T—g)(l)i(g,ff(g))dg]]
Sn i=0

+ fo 0/(7,6) [¢(§, o (s)) + Z fo Pi(T = O)Di(s, G(g))dg], 7€[0,7]
i=0
o (1) = o7, T)pi(T,0(7)), TE(TLGl i=1,..n
T n S
o (1) = 07, T)pi(Si, 0°()) + f 0u(7,6) (¢(§, o) + Z fo Pi(T = )Di(s, 0(¢))ds
Si i=0

TeE(§, Tl i=1,..,n.

We have the following result:
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Theorem 3.1. Consider the following hypotheses:

(H1) The functions ¢, ®;,p; (i = 1,...,n) : X E — = are bounded and continuous in j X T, and

14 1
limilg)%) < a (3.2)
where
T ¢
Q = max {X2 (1 +(T-g)+ f f Z vi(s — t)dtdg)
s YO 0o
T ¢ N
tx|T +f f Zwi(g— ndids |,
0 YO 5%
T ¢ N
X1+ (i1 — ) +f f Z%(S'—f)dfdgl' =1,..,n|, )(},
si YO “izo
where
x(©) = sup{llg(z, )|, |Pi(7, Ol llpi(r, DI, i = 1,..,n: (1,0) € X Ty}
and

T,={oc el |0l <.

The resolvent operator 0,(7, ) is non-compact for t,¢ > 0, where
x = max_|[lo,(t,¢)ll < oco.
0<¢<7<T

(H2) There occur non-negative Lebesgue integrable functions Ly, Lo, L, € LY( LRHG = 1,2,...,n)
satisfying the following inequalities

Y (9(7,6)) < Ly(1)y(6)
Y (q)i(T’ 5)) < L(Di (7)7(5)
Y (0i(7,6)) < Ly, (7)y(6),

where 6 C E is equicontinuous and countable set. Define two sets as follows:
Te={ceE:|ol<t, >0}

and

T T
w = max {Xszn(T) +x° f Ly(s)ds +Xf Ly(§)ds
; 0

+ () fo fo > ¢ils - DLa,(t)d1ds,
i=0

T T ¢ I
XLy (D). Ly (0) + f Ly(6)ds + f f ) eils — Lo (drds, i = 1,...on]
Si si YO 53

< 1.
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Then the BVP (1.1) admits fully one mild outcome o € C,[}, E].

1
Proof. From (3.2) indicates there is a positive number b € (0, 5) and an initial number ¢, > 0 with

{ > {, fulfilling the inequality y(€) < bf. Also, for the initial value ¢y, there is a number £* satisfying
the inequality £* > {,. Define a ball of radius ¢*, as follows:

By ={o € Cy[1,E] : lloll < '}

We aim to show that (Oc) € B;-. We follow the next steps.

Step 1 Boundednees
For 7 € [0, 7], a computation implies that

@ < llov(T, Olllloy (T, Tu)pn(Sn, (Sl

+llou(x, O} f o) [¢<g, oen+ )] fo e - 0,5, a(g))dg] [
Sn i=0

+ llou(z, O} fo 07 ) [¢<g,a(g>>+2 fo <,o,~<r—g)<1>i(g,a(g))dg]|1
i=0
T ¢ N
<x’be|1 —ff i—dd)
<X ( +(T =) + ), ;so(g ndrds
be* (¢ — tdtd
+x (T1+f0f0;90(§ t)tg]

<.
In addition, we have for 7 € (1}, ;] the following inequality

IO < o (T, Tupi(Sn, (€l < xbE" < L.

Now for the interval T € (g}, T;+1], we obtain

@ < Ml (T, T)pn(Sn, (Sl

+| f o) [czs(g, () + Z fo - s ff@d?]”
Sn i=0

T e N S
< xbt” [1 + (Tig —§‘i)+f f Z f %‘(T—S‘)]
si JO 529 JO

<.

Step 2 Continuity
We aim to show that (Oo) B — By- 1s continuous. By the continuity of ¢, @; and p;, we get

lim sup [l¢(, 07(7)) = ¢(r, o (7))l = 0

TE]
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lim sup ||®(r, 0,(7)) — ®i(t, o (7))|| = 0

n—oo 1€y

}1_{{)10 sup ||pi(t, 0, (7)) — pi(T, o (7))l = 0.

TE)

Now, when 7 € [0, 7], this implies

I@a)(®) = (O @I < x¥* sup lloa(7, (1)) = pulT, (@)

TE]

v f 1607, (1) — d(r, F(D)llds
Sn

X f fo D (10i(r, 0(7)) = Bilr, o (D)lpi(s — 1) dd
Sn i=0

+x71 sup (|lg(7, 074(7)) = (7, (D))

TE)

T ¢ N
+x fo fo Z(”(Di(T’O-n(T))_(Di(TaO-(T))”(Pi(g_Z))dtdg-
i=0

We proceed to determine the upper bound when 7 € (1;,6;],i = 1,...,n

1@a)(7) = Q)@ < x sup [lpi(T, T7u(7)) = pi(T, T (D).

TE)

And fort € (¢;, Ti21],1 = 1, ..., n, we obtain

1@0)(7) = (@)D < x sup llpi(T, oa(7)) = pilT, T (D)l

TE)]

+X f llp(t, 070(7)) — ¢(7, 0(7))llds
Si

+X f fo Z (|Di(T, on(1)) = Di(T, o (7)lli(s — 1)) dtds.
Si i=0

As a conclusion, we receive the main result of this step, the continuity of (Oo), where
,}i_)rgo I(Q0)(7) = (O )(Dllc, = 0.

Step 3 Equi-continuity
We have three cases. The first case, 1,1, € [0, 71], where n; < 1;.

1(@)(72) = Q) @)l < llov(m2, 0) = 0y(m1, O)lllloy (T, T)pi(Si (Sl
+11(Q0,)(2) = Q)|

X H f ' 0u(T,¢) [¢(§, o(s) + j: i‘ﬁi(g_t)q)i(t’ o (f))‘”)dgH
Sn i=1

+ sup |lo,(12,0) — o,(m1, Ol

¢€[0,71]
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X H j; i (qb(s: a(s)) + fo gitpi(g— DO, O'(l))dt] a’gH
i=1

+ H fn :Iz 0v(112,6) [¢(§, () + fo ¢ Z: @i(s — DD, O'(t))dt) dg”'

The second case is in the interval (7;, ;], we have

1O ,)(1m2) — (Oa)mDIl < oy (2, T)pi(2, 7(12)) — 0, (1, TP, o(171)]
< lloy(m2, n)ov (1, Tpi(12, 07(112)) — 0,(n1, TP, (M)
< xllov(n2, n)pi(2, (m2)) — pi(my, o ().

The third case is obtained in the interval (g;, 7;;1], which yields

(©0,)(172) — (Q)(m)Il < lloy(m2, 7i) — 0, (11, THlllei(Si, (6]
+ sup |lo,(m2,¢) —ov(m1, )l

c€[0,71]

X H f i (qﬁ(s: () + fo i an ei(¢ — DDi(t, O'(I))dt] ds*“
Si i=1

+ H fm’h 0,(12,§) (cb(s“, o(s) + fo ¢ Z’:‘ @i(s — HD(t, O'(t))dt) dgH.

Clearly, when , — n; we have ||[(QOc,)(1,) — (Oc)(m)|l = 0. Hence, (Oo) is equicontinuous
in B,.. Consequently, in view of Lemma 2.2, we obtain that CoO(B;-) C By is bounded and
equicontinuous.

Step 4 Condensity
We aim to show that O : B~ — By is a condensing operator. In view of Lemma 2.3, there occurs
a countable set ®) = {0,} C ® C CoQ(B,) satisfying the inequality

¥ (0(0)) < 2y (O(Oy)) .

We have three cases, as follows: for the interval [0, 7,] there is a set @, ¢ ® ¢ CoO(B;-) such that

¥ (©Q(@)(1) < x* ¥ (0a(Sns (O0)(50))

+x° ’y[ f [¢(§, ©o($)) + fo Zsoi(g— no;(t, ®o(t))dt] dg)
Sn i=1
+tx [ j; (qb(s: ©0(5)) + fo Z pi(s — DOt ®o(f))df) ds*]
i=1

< Xszn')’(@)

T ¢ N
+x ( f (L¢(§‘)7(®o(§))+ fo Zgoi(g—t)L(pi(r)y(@o(z))dr]dg]
Sn i=1

T ¢ N
x [ | [L¢(§‘)7(@0(S‘))+ | Zm—r)Lq)i(z)y(@o(r))dr]dg)
i=1
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T T c N
7C) e [Lpn+ f Ly($)ds + fo fo Zsai(g—t)L@,(t)dtdc]
Sn i=1
T T ¢ N
+)([ fo Ly(s)ds + fo fo Zsoi(g—t)chi(t)dtdc)]-
i=1

The second case is obtained in the interval (7, 6;],i = 1, ..., n yields

¥ (Q(B0)(7)) < xL,, (T)y(O).

While, for the third case in the interval (¢;, 7;41],i = 1, ..., n, we get

¥ (Q(O)(1) < xL,, (1)y(©)

T ¢ N
+tX [ f [L¢(§)7(®o(§)) + fo Z @i(s — t)an,-(t)V(@o(t))dt] ds“)
Si i=1

T T ¢ N
<x7(©) [Lp,.<r>+ [ o+ [ Z%(g—t)Lq),.(r)dtdg).
$i Si i=1

According to Lemma 2.4, we obtain
¥(©p) < maxy (©o(1),
which leads to

vyO®) <wy(®), O0<w<l.

As a conclusion, we confirm that O is a strict contraction mapping in CoO(B.). As a result,
according to Lemma 2.1, O has a fully fixed point in CoQ(B;:) ¢ C »[J,2]. Hence, Eq (1.1) has a
fully mild solution in C[, Z].

O

The next result indicates the maximum value of ¢; and ®,. The proof is quite similar to Theorem
3.1.

Theorem 3.2. Consider the following hypotheses:

(H3) The functions ¢, ®;,p; (i = 1,...,n) : X E — E are bounded and continuous in j X T, and

¢
lim sup X0 <

1
= 3.3)
{—o0 { Qn

where

Q, = max {y’ (1 +(T—¢)+ nf f ol — t)dtdg)
sn YO

T S
+x (T1 + nf f w(c — t)dtdg) ,
0 Jo
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T S
X1+ (i =) + nf f p(s - t)dtdg),i =1,...n, x},
si VYO
where ¢ := max(¢;(¢ — 1)) and ® := max(D,(t, 0)),
x(6) = sup{llp(r, DI, |7, )I, lloi(r, D, i = 1, ..,n: (7,0) € X Ty}

and
T,={oc €& : |0 <.

The resolvent operator 0,(t, §) is non-compact for t,s > 0, where

x = max_|lo,(7,9)| < oo.
0<¢<7<T

(H4) There occur non-negative Lebesgue integrable functions Ly, Lo, L, € L'( LRYGE = 1,2,...,n)
satisfying the following inequalities

¥ (¢(1,6)) < Ly(7)y(0)
Y (D(7,0)) < Lo(7)y(0)
Y (i(7,6)) < L, (1)y(9),

where 6 C E is equicontinuous and countable set. Define two sets as follows:
T,={oceE:|ol|l<t, €>0}

and
T T
W, = max {)(ZLp,, () +x° f Ly(s)ds + x f Ly(s)ds
Sn 0
T S
+n(y +x°) f f @(s — D) Lo(T)dtds,
0 0

T T ¢
XL, (1), L,(7) + f Ly(s)ds + nf ﬁ (¢ — HLe(t)dtds, i =1, ,n}
i Si

Si
< 1.

Then the BVP (1.1) admits a fully mild outcome o € C,[}, E].
The next consequence can be found in [14]
Corollary 3.3. Consider the following hypotheses:
(H5) The functions ¢, ®,p; (i = 1,...,n) : J X E — =2 are bounded and continuous in j X T, and

H 1
tim sup 22 < L. (3.4)
t Q

{—o0

where
— T S
Q = max {y’ (1 +(T—g)+ f f o(s — t)dtdg)
sn YO0

AIMS Mathematics Volume 8, Issue 5, 11953-11972.
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T S
+X(T1+ f f so(g—t)dtdc),
0 0
T S
X(1+(§i+l_§i)+f f w(s*—t)dtdg),i=l,...,n, X},
si YO

x(0) = sup{llo(r, O, |7, D) [loi(r, Ol i = 1, ...,n 2 (1,0) € J X T}

and
T,={oc€e&: |0 <.

The resolvent operator 0,(7, §) is non-compact for t,s > 0, where
x = max_|lo,(r, )|l < co.
0<g<7<T

(H6) There occur non-negative Lebesgue integrable functions Ly, Lo, L, € L'(J,R*)(i = 1,2,...,n)
satisfying the following inequalities

¥ ((7,6)) < Ly(7)y(6)
Y (Q(7,0)) < Lo(1)y(6)
Y (pi(7,6)) < L, (7)y(6),

where 6 C E is equicontinuous and countable set. Define two sets as follows:
T,={ceE:|oll<t, >0}

and

T T
w = max {Xszn(T) +)(2f Ly(s)ds +)(f Ly(s)ds

Sn 0

T S
+u+x%£t£¢@—0%wmm9

XL, (1), L,(7) +f Ly(s)ds +f j(; o(¢c —HLe(t)dtds, i =1, ,n}

Si
< 1.

Then the BVP (1.1) admits a fully mild outcome o € C,[}, E].

Corollary 3.4. Let the assumptions of Theorem 3.2 be hold. Then the maximum mild solution o €
C,(J,E) of Eq (1.1) can be formulated by

(1) = 0,7, 0)| 0T T )pu(S> 7 (5))

+ f 0/(7. ) (¢(§,0(§))+n fo 90(T—§)<D(§,<T(§))d§)]
+ fo QV(T,g)(¢(§,U(§))+n fo so(T—g)CD(s*,cf(g))dg), 7€ [0,71]

AIMS Mathematics Volume 8, Issue 5, 11953-11972.
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O-(T) = QV(T’ Ti)pi(T’ O-(T))? TE (Ti7 gi]’ i = 1’ e

o (1) = 0,(7, T)pi(si, 0(s3) + f 0,(7,¢) (¢(§, o(s) +n fo o(t — ©)PD(s, ff(g))dg)

Si
TE (gh Ti+1]7 i = 1’ w1,
where ¢ and © have the same sign.
Theorem 3.1 can be extended into 2D(n, m)-parametric designing as follows, with similar proof:

Theorem 3.5. Consider the following hypotheses:

(H7) The functions ¢, ®;,p; (i =1,...,n, j=0,..,m) : jXE — E are bounded and continuous in jX T,

and
£ 1
lim;gopo)% < Q—m, 3.5
where
T ¢ m
Q,, = max {X2 1+(T =g, + f f Z (s — t)dtdg]
Sn 0 ]:O
T ¢ m
+X| 71 +f f Z%’(S‘—f)dl‘d? ,
o Jo ‘3
T ¢ m
X1+ (S —9-)+f f Zcpj(g—t)dtdg,i: L,...n ,)(},
si YO i
where
X(f) = Sup{”¢(T’ O-)”’ ||q)j(T’ O-)”’ ||pi(T’ O-)”’l = 19 w1, .] = 0’ U (T’ O-) €J X Tf}
and

T={oc €& |l <.

The resolvent operator 0,(t, §) is non-compact for t,¢ > 0, where
x = max_|lo,(t,¢)ll < oo.
0<¢<7T<T

(H8) There occur non-negative Lebesgue integrable functions Ly, Lo, Ly, € L'GRHG=1,2,..,n, j=
0, ..., m) satisfying the following inequalities

¥ (#(,8)) < Ly(T)y(6)
¥ (®)(1.0)) < Lo, (1)y(6)
¥ (07, 6)) < L, (1)y(6).

where & C E is equicontinuous and countable set. Define two sets as follows:

Te={oceE o<t >0}

AIMS Mathematics Volume 8, Issue 5, 11953-11972.
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and
T T
wp = max {}*Ly, (1) + x* f Ly(§)ds + x f Ly(s)ds
Sn 0
T ¢ m
+ (¢ +x°) f f Zsoj(g—t)L@,-(T)dtdg,
0o Jo 3
T T ¢ M
XLy, (D). L, (1) + f Ly()ds + f f > 6i(s = Lo (drdg} < 1.
Si si YO i
Then the following BVP

CAo(7) = A(T)o(7) + §(7,6)

+ 30 [ it = P50 (Nds  TE (STl i=0,1,.m
O-(T) :pi(T’ O-(T))QV(T’ Ti) TE (Ti9 gi]’i = 1"“’"
(0) = o(T),

(3.6)

admits at least one mild solution o € C,[}, E] formulating by

(1) = 07, 0)| (T T1)on(Sr T(5)

+ f 0/(7.¢) [¢(§, 0(§))+Z fo @,(T—g)d)j(g,cr(g))dg]]
Sn j=0

+ fo 0/(7.6) (qb(s‘, o (s)) + Z j; @;(T = )P, 0(§))d§], 7€ [0,7]
j=0
o (1) = o7, TPi(T,0(7)), TE(TLGl i=1,..,n
T m S
o (1) = 0/(7, Ti)pi(i, 7(51)) + f 0/(7,5) (ab(g, o(s) + Z fo ¢, (T = )5, o(s))ds
Si Jj=0

TeE(STml, i=1,..,n

The following outcome indicates the maximum value of ¢; and @;, j = 0, ..., m. The proof is quite
similar to Theorem 3.5.

Theorem 3.6. Consider the following hypotheses:

(H9) The functions ¢, ®;,p; (i=1,...,n, j=0,..,m) : jXE — E are bounded and continuous in jX T,
and

lim sup /@ <

1
—, 3.7
{— o0 f Qm

where
— T S
Q,, = max {Xz (1 +(T —¢p) + mf f o(s — t)dtdg)
Sn 0
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T S
+)((Tl+mff(p(g—t)dtdg),
0o Jo
T S
X(1+(§'i+1_§i)+mf f so(g—t)dtdg,i:1,...,n),x},
si J0

where ¢ := max(¢;(¢ — 1)) and ® := max(P;(t,0))

x(6) = sup{llg(z, O, |1z, Ol (T, O, i = 1, ...,n 2 (1,0) € J X T}

and
T,={oc €& : |0l <.

The resolvent operator 0,(t, ) is non-compact for t,¢ > 0, where

x = max_|lo,(7,9)| < oo.
0<¢<7<T

(H10) There occur non-negative Lebesgue integrable functions Ly, Lo, L,, € L'(RHG = 1,2,...,n)
satisfying the following inequalities

¥ ((7,6)) < Ly(7)y(6)
Y (Q(7,6)) < Lo(1)y(6)
Y (pi(7,0)) < L, (7)y(6),

where 6 C E is equicontinuous and countable set. Define two sets as follows:
Te={ceE:|ol<t, >0

and

T

.
w,, = max {)(ZLpn(‘r) +/\/2f Ly(¢)ds +Xf Ly(s)ds

Sn 0

+m(/\/+)(2)f f @(s — NLo(T)d1dg,
0 Jo

xL,,(7), L,(7) +f Ly(s)ds + mf fo o(¢ —t)Lo(t)dtdg, i =1, ...,n}
i Si

Si
<1.

Then the BVP (3.6) admits a fully mild outcome o € C,[, E].

Corollary 3.7. Let the assumptions of Theorem 3.6 be hold. Then the maximum mild solution o €
C,(J,E) of Eq (3.6) can be formulated by

(1) = 0,7, 0)| (T T1)Pu(S> T(5)

+ f 0,7, 5) (¢(§,0(§))+m fo o(7 = 9)D(S, ff(g))dg)]
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+ fo 0,(7,¢) (¢(§, o(¢)+m j; o(t — ©)PD(s, 0(§))d§), T€[0,7(]
o(t) = o/ (r,T)pi(r,0(7), TE(TLgli=1,...,n

o (1) = o,(7, T)pi(si, 0(s7)) + f 0,(7,¢) (fﬁ(g, o(¢)+m fo o(t = 9)D(s,0(5))ds

Si
TE (giaTi+1]’ i = 1, s N,

where ¢ and © have the same sign.

Remark 3.8. The kernel function ¢(7—¢) can be replaced by the fractional kernel ¢,(7—¢) of any types
of fractional integral operators including the classic fractional integral operator (Riemann-Liouville
integral operator, ABC-fractional integral operator [23], etc.) providing that ¢, (t — ¢) < ¢o(T —¢),
where « is the fractional power of the fractional integral operator.

Applications in optical studies

In this section, we introduce an application of the theory results in optics studies. The best-focused
point of light that a perfect lens with a circular aperture may produce is described by the Airy floppy
and 2D-Airy function in the field of optics and is constrained by light diffraction. In the fields of
physics, optics, and astronomy, the Airy floppy is significant.

We consider the following problem:

Example 3.9. Consider the BVP

CAo (1) = 10(1) + —— cos’ 7 (1)
T I 1 1 3
+ Jp (T =9 + 39ds €0, ) UG, 1]
(3.8)
o(1) = in(T, 1) TE (%, %],i =1,...n
c0)=0(1)=0,

where . - |
)=+ = =—(e" =12 )
fo exp(t §)(2 + 3§)d§ 6(6 )27 +3)

Since A(t)o(t) = To (1) then A is generated the resolve operator o,, = = [0, 1],v € (n, 1 + n]. Define
the set ® := {0 : 0(0) = o(1)} C Z. Assume that the functions

1 1
¢(1) = iT cos’ o°(7), @(7) = 50 R0 =37 @ia(T— ) = exp(T —¢)

1

satisfy the hypotheses (H1) and (H2). Then in view of Theorem 3.1 has at least one mild solution of
the form that given in Definition 2.1.2. The exact solution of the above BVP is formulated for different
values of v in terms of the Airy functions, which are represented as periodic functions. For instant,
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when v = 2, we obtain different solutions in the formula of Airy functions Ai(7) and Bi(t) (see Figure
1) and Figure 2 for the special solution

() = G + Bi(D)
T = pAi() - cBi(t)’

0.6

0.4

0.2
ALIALEA L , :
\-po| \/-p |\ fe -\U X 2

-n.2

-4

-0.6
-10 -8 -6 -4 2 ! —40 -20 20 40 !

Figure 1. The exact solutions of the BVP from the top :  (Ai(r)) =

Ai(t) = Bi(1)

Bi(7), — ,Ai(t) = (Bi(1))’, where ’ indicates the first derivative respectively.

Ai(t) — Bi(7)
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aAi(t) = Bi(t)

Figure 2. One of the exact solution BVP of the form — —— for different values of
bAi(T) — cBi(1)

the constants a, b and c¢. This formula captured the camera lens by an Airy disk. From the
lefta=1,b=2,c=1,a=2,b=1,c=-1/2;a=2,b=1/2,c =1;a=2,b=1/2,c =
1/3;a=1,b=1/2,c=1/3;a=2,b=1/2,c = 1/3 respectively.

In the above example, ¢ is suggested to be a convex function in the unit interval. In the next example,
we generalize it to starlike function.

Example 3.10. Consider the BVP

CAo(1) = 10(T) + 7 cos? o (1)
-7
. 1 3
+ |5 exp(r = )1 + )d s re[0.)UG 1]
3.9
o(r) = %QV(T, 1) TE (%, %],i =1,...,n
c0)=0(1)=0,

where

fo exp(t - )1 +¢)dg =(e" - D(r+ 1)

(37’2) (2‘1'3) (57'4) ' 6
+ 2 + 3 + oy +20+0(T).
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Since A(t)o(t) = to(7) then A is generated the resolve operator o,, = = [0, 1],v € (n, 1 + n]. Define
the set ©® := {0 : 0(0) = o(1)} C E. Assume that the functions

¢(7) = cos’o(7), @1(1) =1, D7) =7, P12(7 =) = exp(r = ¢)

(1-1)7
achieve the assumptions (H1) and (H2). There is then at least one mild solution of the form given in
Definition 2.1.2 in light of Theorem 3.1.

4. Conclusions

The benefit of using I-DEs is that they allow for the investigation of the complete diffusion process,
including the start, intermediate, and long time scales of the process. As a result, this approach can
tell the difference between an evolution detail for a system that exhibits the same behavior over a long
period of time but distinct behaviors at the beginning and middle of the evolution. In order to describe
the sub-diffusive and super-diffusive regimes, an I-DE for diffusion is also introduced. Additionally,
techniques for resolving I-DEs are established, and for the instances of force-free and linear force,
differential equations have analytically solutions.

We presented the necessary criteria for the existence of a mild periodic solution of fractional BVP in
the previous inquiry, where the fractional resolve operator is non-compact. We proposed using a multi-
evolution equation. There are some examples of both unique and generic instances. To demonstrate
how the abstract theory mechanism works, a simple example is given. Our technique was based on the
fixed point theory of measure of non-compactness. For the future work, one can use the compact case
and formulate the sufficient conditions to get a mild periodic outcome.
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