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1. Introduction

Fractional calculus has its foundations in classical calculus; however, its accelerated development
in recent years has created its own space within pure and applied mathematics. For an epistemological
study of fractional calculus and its theoretical-practical applications see [1–5]. Also, the interested
reader may consult [6–10] for an illustrative description of boundary layers problems within the scope
of fractional calculus, the formulation of the notion of fractional derivatives with general analytic
kernels (e.g., the AB fractional model), a study about categorization for systems of fractional
differential algebraic equations, the solvability of such systems, and others related approaches.

Fractional differential operators and, in particular, fractional differential equations is an area of
research of growing interest mainly because of its theoretical scope and its applications to real-world
problems.
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In the same direction, this work relies on the use of a Caputo-type differential operator, depending
on a general kernel function, which includes well-studied and well known derivatives. We will use a
kernel F in order to define general fractional derivatives of Caputo type

CDαF,a.

Moreover, we study oscillatory solutions of differential equations involving these general fractional
derivatives. One of the virtues of this approach is that it allows results to be obtained in a unified
way for many fractional derivatives, e.g., the classical Caputo derivative, and Caputo-Fabricio and
Atangana-Baleanu extensions. Theorem 10 extends the Kamenev-type oscillation criterion given by
Baleanu et al. in [11, Theorem 1] to a very general framework. In particular, Theorem 17 has the same
conclusion of [11, Theorem 1] with weaker hypothesis. Besides, we obtain Theorem 13, which is a
new result of Kamenev-type for the case of ordinary differential equations of order n. Also, we prove
results on existence and uniqueness of solutions for the equations considered. Finally, we complete
our study with some numerical examples.

2. Caputo type operator derivative

Michele Caputo proposes a new fractional derivative in [12]. This definition has an important
property associated with the resolution of differential equations, since it is not necessary to define the
initial conditions of fractional order. Multiple applications of the so-called Caputo differential operator
can be found in [13].

The Caputo derivative of a differentiable function f of order 0 < α < 1 is defined as

CDαa f (t) =
1

Γ(1 − α)

∫ t

a

f ′(s)
(t − s)α

ds. (2.1)

An extension of CDα is the so-called Caputo-Fabricio derivative (see [14, 15]), given by:

CFDαa f (t) =
M(α)
1 − α

∫ t

a
f ′(s)e−

α(t−s)
1−α ds, (2.2)

where M(α) is a normalization function such that M(0) = M(1) = 1. A more recent extension is the
Atangana-Baleanu derivative, defined in [2] by

ABCDαa f (t) =
M(α)
1 − α

∫ t

a
f ′(s)Eα

(
−
α(t − s)α

1 − α

)
ds, (2.3)

where,

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)

is the Mittag-Leffler function. Note that E1(z) = ez.

Other recent and relevant research to be taken into account are [16–20].

AIMS Mathematics Volume 8, Issue 5, 12486–12505.



12488

Definition 1. We say that F is an admissible kernel for the interval [a, b] if F : [0, b−a]×(0, 1)→ [0,∞)
is a non-negative continuous function such that∫ b−a

0

ds
F(s, α)

< ∞

for each α ∈ (0, 1). Also, F is an admissible kernel for [a,∞) if it is admissible for [a, b] for every
b > a.

Next, we present our definition of the generalized Caputo derivative.

Definition 2. Let α ∈ (0, 1), F be an admissible kernel for [a, b], f : [a, b] → R be a differentiable
function and t in [a, b]. The generalized Caputo derivative of order α of the function f at the point t is

CDαF,a f (t) =
∫ t

a

f ′(s)
F(t − s, α)

ds. (2.4)

Remark 3. If F(x, α) = Γ(1 − α) xα, then we obtain the classical Caputo derivative. Similarly, we
can obtain the kernels for Caputo-Fabricio and Atangana-Baleanu extensions. Hence, each result for
CDαF,a has as a consequence the same result for the classical Caputo derivative, and Caputo-Fabricio
and Atangana-Baleanu extensions. This shows that the generalized Caputo derivative is quite general
and unifying.

The following integral operator is associated to the generalized Caputo derivative in a natural way.

Definition 4. Let α ∈ (0, 1), F be an admissible kernel for [a, b], f : [a, b] → R be a differentiable
function and t in [a, b]. The generalized Caputo integral operator of order α of the function f at the
point t is

CJαF,a f (t) =
∫ t

a

f (s)
F(t − s, α)

ds.

Hence,
CDαF,a f (t) = CJαF,a f ′(t).

Next, we will state some properties of the generalized Caputo derivative and its associated integral
operator.

First of all, it is clear that they are non-local linear operators. Also, the following bounds hold.

Proposition 5. Let α ∈ (0, 1), x ∈ [a, b], and F be an admissible kernel for [a, b]. If f is a differentiable
function on [a, x] and Fα = miny∈[0,x−a] F(y, α) > 0, then∥∥∥C JαF,a f

∥∥∥
L∞[a,x]

≤
1
Fα
∥ f ∥L1[a,x] ,∥∥∥CDαF,a f

∥∥∥
L∞[a,x]

≤
1
Fα
∥ f ′∥L1[a,x] .

Proof. Fix t ∈ [a, x]. Since F ≥ 0, we have∣∣∣C JαF,a f (t)
∣∣∣ = ∣∣∣∣∣∣

∫ t

a

f (s)
F(t − s, α)

ds

∣∣∣∣∣∣ ≤
∫ t

a

| f (s)|
miny∈[0,t−a] F(y, α)

ds

≤

∫ x

a

| f (s)|
miny∈[0,x−a] F(y, α)

ds =
∫ x

a

| f (s)|
Fα

ds =
1
Fα
∥ f ∥L1[a,x] .
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Since the inequality holds for every t ∈ [a, x], we conclude∥∥∥C JαF,a f
∥∥∥

L∞[a,x]
≤

1
Fα
∥ f ∥L1[a,x] .

The second inequality follows from the first one and the equality

CDαF,a f (t) = CJαF,a f ′(t).

□

By applying Proposition 5 to the function f − g, we obtain the following result.

Proposition 6. Let α ∈ (0, 1), x ∈ [a, b], and F be an admissible kernel for [a, b]. If f , g are
differentiable functions on [a, x] and Fα = miny∈[0,x−a] F(y, α) > 0, then∥∥∥C JαF,a f − C JαF,ag

∥∥∥
L∞[a,x]

≤
1
Fα
∥ f − g∥L1[a,x] ,∥∥∥CDαF,a f − CDαF,ag

∥∥∥
L∞[a,x]

≤
1
Fα
∥ f ′ − g′∥L1[a,x] .

Definition 7. Let n ∈ Z+, α ∈ (n − 1, n), t ∈ [a, b], and F be an admissible kernel for [a, b]. For a n
times differentiable function f : [a, b]→ R, the generalized Caputo derivative of f of order α at t is

CDαF,a f (t) =
∫ t

a

f (n)(s)
F(t − s, α + 1 − n)

ds. (2.5)

The following interesting composition property follows from Definition 7.

Proposition 8. Let α ∈ (0, 1), n ∈ Z+, and F be an admissible kernel for [a, b]. If f is (n + 1)-
differentiable function on [a, b], then

CDα+n
F,a f (t) = CDαF,a f (n)(t),

for every t ∈ [a, b].

Proof. Since α ∈ (0, 1) and n ∈ Z+, we have α + n ∈ (n, n + 1) and

CDα+n
F,a f (t) =

∫ t

a

f (n+1)(s)
F(t − s, α + n − n)

ds =
∫ t

a

( f (n))′(s)
F(t − s, α)

ds = CDαF,a f (n)(t).

□

Note that the equality in Proposition 8 is interesting, since we write CDα+n
F,a as a composition of a

local operator and a non-local operator.
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3. On the Kamenev type oscillation for a nonlinear generalized differential equation

Probably the beginning of the oscillation theory as an independent mathematical area, can be
located almost 90 years ago. In 1931 Andronov settled down in Gorky, far away from Moscow, where
a small institute of radiophysics was leading this field. The varied tools, highly theoretical, used and
developed by Andronov and his collaborators (specific applications, recurrences, bifurcations, critical
cases, stability, and the famous notion of “systémes grossiers”) were all intended for applications.
Most of these results, together with their context of use, were collected in the book [21]. It is worth
mentioning another school which was founded in Kiev, in the 1930s, and whose most reputed
representatives were Nikolai M. Krylov and Nikolai M. Bogoliubov. From these years, with the
increase in military and space applications, oscillation theory became a field of maximum interest and
development. The study of the existence of oscillatory solutions and the oscillation of all solutions of
a differential equation, or system became central research problems.

We say that a solution of a differential equation on the interval [t0,∞) is oscillatory if its zeros in
[t0,∞) are an unbounded set. If every non-trivial solution of the differential equation is oscillatory, we
say that this equation is oscillatory.

One of the best known results in oscillation theory is the Kamenev criterion for the second order
linear differential equation

y′′ + q(t)y = 0, t > 0. (3.1)

Kamenev states (see [22]), generalizing some previous results, that if

lim sup
t→∞

1
tn−1

∫ t

t0
(t − s)n−1q(s) ds = ∞, (3.2)

for n > 2 and t0 > 0, then (3.1) is oscillatory.
There are some results on oscillation of fractional differential equations with Caputo derivative

with 0 < α < 1 (see [23–25] and the references cited therein).
Therefore, it is of theoretical importance, to extend known results for the ordinary case to fractional

differential equations of Caputo type of any order.
Our goal is to present a Kamenev type oscillation criterion in the framework of generalized

fractional differential equations.
We will consider the generalized non-linear differential equation(

CDαF,ay(t)
)′
+ q(t) r(y(t)) = P

(
t, y(t),CDαF,ay(t)

)
, (3.3)

where P, q and r are appropriate functions (see the statement of Theorem 10 below).
In [11] there is a Kamenev type result for the hybrid differential equation of order (1 + α)

(y(α))′ + q(t)y = 0, t > 0, (3.4)

with α ∈ (0, 1), in the framework of the classic Caputo derivative.

Theorem 9. [11, Theorem 1] Fix α ∈ (0, 1). If

lim sup
t→∞

1
tε

∫ t

t0
(t − s)ε q(s) ds = ∞,
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for some ε > 2 and t0 > 0, then any solution of (3.4) either oscillates or satisfies the inequality

lim inf
t→∞

y(α)(t)
(
y′(t) − y(α)(t)

)
≤ 0. (3.5)

More precisely, if (3.5) holds, then there exists an increasing sequence {tn} in [t0,∞) such that
limn→∞ tn = ∞ and

y(α)(tn)
(
y′(tn) − y(α)(tn)

)
< 0

for every n.

Note that the [25] studies oscillatory solutions of non-hybrid Caputo differential equations.
In [23,24] appear hybrid Caputo differential equations, but these equations are very different from (3.4)
and (3.7) below. The papers [26,27] study oscillatory solutions of non-hybrid conformable and Caputo
delay differential equations, respectively. In [28] appear hybrid Liouville differential equations. See
also the survey [29].

Here, we generalize Theorem 9 to the framework of the Caputo generalized derivative CDαF,a. In
particular, Theorem 10 below improves Theorem 9 in the following ways:

(1) We consider more general operators, which include the Caputo generalized derivative.
(2) We replace the hypothesis α ∈ (0, 1) by α ∈ (0,∞).
(3) We replace the function tε with ε > 2 by a function B(t) in a large class of functions.
(4) This class of functions for B(t) includes the functions tε with ε > 1 and t

(
log(1+ t)

)σ with σ > 0.
(5) We replace q(t)y by q(t)r(y(t)), where r belongs to a large class of functions.
(6) We allow an appropriate non-homogeneous term.
We say that a function B : [0,∞) → R is proper if it is strictly increasing, absolutely continuous,

B(0) = 0, and for each T large enough there exists M such that

1
B(t)

∫ t

T

B′(t − s)2

B(t − s)
ds ≤ M

for every t ≥ T + 1.
Let us state the main result of this paper, in a very general framework.

Theorem 10. Let S , S 1, . . . , S k be (linear or non-linear) operators such that S f , S 1 f , . . . , S k f are
functions defined on [t0,∞) for each smooth enough function f on [t0,∞). Let B be a proper function
and let q : [t0,∞)→ R be a continuous function satisfying

lim sup
t→∞

1
B(t)

∫ t

t0
B(t − s) q(s) ds = ∞. (3.6)

Let r : R → R be a differentiable function with r(x) , 0 if x , 0, and let P : [t0,∞) × Rk+1 → R be a
continuous function satisfying either: (a) P ≡ 0 or (b) r ≥ 0 and P ≤ 0.

Then each non-trivial differentiable solution of

(S y(t))′ + q(t) r(y(t)) = P
(
t, y(t), S 1y(t), . . . , S ky(t)

)
, (3.7)

on [t0,∞) either oscillates or satisfies

lim inf
t→∞

S y(t)
((

r(y(t))
)′
− S y(t)

)
≤ 0. (3.8)
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More precisely, if (3.8) holds, then there exists an increasing sequence {tn} in [t0,∞) such that
limn→∞ tn = ∞ and

S y(tn)
((

r(y(tn))
)′
− S y(tn)

)
< 0

for every n.

Remark 11. Obviously, if S or S j is the derivative of order n or some fractional derivative of order
α ∈ (n − 1, n), then f must be n times differentiable in order to consider S f or S j f .

Proof. Let us consider a non-trivial solution y(t) of (3.7) on [t0,∞), and assume that y(t) is
nonoscillatory, say y(t) > 0 for t ≥ t0.

For the sake of a contradiction, assume that there exists T ≥ t0 with

y(t) , 0 and S y(t)
((

r(y(t))
)′
− S y(t)

)
≥ 0

for every t ≥ T .
Since r(x) , 0 if x , 0, we can define for any t ≥ T the function

w(t) =
S y(t)
r(y(t))

.

If P ≡ 0, then (3.7) gives
(S y(t))′

r(y(t))
= −q(t).

If r ≥ 0 and P ≤ 0, then

(S y(t))′ = −q(t) r(y(t)) + P
(
t, y(t), S 1y(t), . . . , S ky(t)

)
≤ −q(t) r(y(t)),

(S y(t))′

r(y(t))
≤ −q(t), (3.9)

for every t ≥ T . Hence, (3.9) holds for every t ≥ T in both cases. Since r, y and S y are differentiable
functions, we have

w′(t) =
r(y(t))

(
S y(t)

)′
−

(
r(y(t))

)′ S y(t)
r(y(t))2 ≤ −q(t) −

(
r(y(t))

)′ S y(t)
r(y(t))2

and

w′(t) + w(t)2 + q(t) ≤
−
(
r(y(t))

)′ S y(t)
r(y(t))2 +

(
S y(t)

)2

r(y(t))2

=
−S y(t)

[(
r(y(t))

)′
− S y(t)

]
r(y(t))2 ≤ 0

for every t ≥ T . Since B(0) = 0, B(x) > 0 for any x > 0, and B′(x) ≥ 0 for almost every x ≥ 0, the
previous inequality and an integration by parts gives∫ t

T
B(t − s) q(s) ds ≤ −

∫ t

T
B(t − s) w′(s) ds −

∫ t

T
B(t − s) w(s)2 ds

= w(T )B(t − T ) −
∫ t

T
B′(t − s) w(s) ds −

∫ t

T
B(t − s) w(s)2 ds

≤ |w(T )|B(t − T ) +
∫ t

T
B′(t − s) |w(s)| ds −

∫ t

T
B(t − s) w(s)2 ds,

AIMS Mathematics Volume 8, Issue 5, 12486–12505.
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for t ≥ T . This inequality and

B′(t − s) |w(s)| − B(t − s) w(s)2 = −B(t − s)
(
|w(s)| −

B′(t − s)
2B(t − s)

)2
+

B′(t − s)2

4B(t − s)

≤
B′(t − s)2

4B(t − s)
,

give ∫ t

T
B(t − s) q(s) ds ≤ |w(T )|B(t − T )

+

∫ t

T
B′(t − s) |w(s)| ds −

∫ t

T
B(t − s) w(s)2 ds

≤ |w(T )|B(t − T ) +
∫ t

T

B′(t − s)2

4B(t − s)
ds.

Since B is admissible, without loss of generality we can assume that T is large enough and there exists
a constant M such that

1
B(t)

∫ t

T

B′(t − s)2

B(t − s)
ds ≤ M

for every t ≥ T + 1. Since B is an increasing function, we conclude

1
B(t)

∫ t

T
B(t − s) q(s) ds ≤ |w(T )|

B(t − T )
B(t)

+
1

B(t)

∫ t

T

B′(t − s)2

4B(t − s)
ds

≤ |w(T )| +
1
4

M

for every t ≥ T + 1. Note that∣∣∣∣ 1
B(t)

∫ t

t0
B(t − s) q(s) ds −

1
B(t)

∫ t

T
B(t − s) q(s) ds

∣∣∣∣ = ∣∣∣∣ 1
B(t)

∫ T

t0
B(t − s) q(s) ds

∣∣∣∣
≤

∫ T

t0

B(t − s)
B(t)

|q(s)| ds ≤
∫ T

t0
|q(s)| ds < ∞

for every t ≥ T . Hence,

1
B(t)

∫ t

t0
B(t − s) q(s) ds ≤ |w(T )| +

1
4

M +
∫ T

t0
|q(s)| ds,

for every t ≥ T + 1, and this contradicts (3.6). □

We can obtain now the result for the Caputo generalized derivative.

Theorem 12. Let a, t0 ∈ R with a ≤ t0, α > 0, F be an admissible kernel for [a,∞), B be a proper
function, and q : [t0,∞)→ R be a continuous function satisfying

lim sup
t→∞

1
B(t)

∫ t

t0
B(t − s) q(s) ds = ∞. (3.10)
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Let S 1, . . . , S k be linear operators that are compositions of classical derivatives (of any order) and/or
generalized Caputo derivatives (of any order). Let r : R→ R be a differentiable function with r(x) , 0
if x , 0, and let P : [t0,∞) × Rk+1 → R be a continuous function satisfying either P ≡ 0 or r ≥ 0 and
P ≤ 0.

Then each solution of(
CDαF,ay(t)

)′
+ q(t) r(y(t)) = P

(
t, y(t), S 1y(t), . . . , S ky(t)

)
, (3.11)

on [t0,∞) either oscillates or satisfies the inequality

lim inf
t→∞

CDαF,ay(t)
((

r(y(t))
)′
−CDαF,ay(t)

)
≤ 0. (3.12)

More precisely, if (3.12) holds, then there exists an increasing sequence {tn} in [t0,∞) such that
limn→∞ tn = ∞ and

CDαF,ay(tn)
((

r(y(tn))
)′
−CDαF,ay(tn)

)
< 0

for every n.

Proof. Let us consider a solution y(t) of (3.11) on [t0,∞). Since y ≡ 0 satisfies (3.12), we can assume
that y is not the function y ≡ 0. Then it suffices to apply Theorem 10 with S = CDαF,a. □

Theorem 10 also gives the following result which is new even in the context of ordinary differential
equations.

Theorem 13. Let t0 ∈ R, B be a proper function, and q : [t0,∞) → R be a continuous function
satisfying

lim sup
t→∞

1
B(t)

∫ t

t0
B(t − s) q(s) ds = ∞. (3.13)

Let r : R → R be a differentiable function with r(x) , 0 if x , 0, and let P : [t0,∞) × Rk+1 → R be a
continuous function satisfying either P ≡ 0 or r ≥ 0 and P ≤ 0.

Then each solution of

y(n)(t) + q(t) r(y(t)) = P
(
t, y(t), y′(t), . . . , y(k)(t)

)
,

on [t0,∞) either oscillates or satisfies the inequality

lim inf
t→∞

y(n−1)(t)
((

r(y(t))
)′
− y(n−1)(t)

)
≤ 0. (3.14)

More precisely, if (3.14) holds, then there exists an increasing sequence {tm} in [t0,∞) such that
limm→∞ tm = ∞ and

y(n−1)(tm)
((

r(y(tm))
)′
− y(n−1)(tm)

)
< 0

for every m.

Note that in Theorem 13 there is no relation between n and k.
Next, we show some examples of proper functions.

Proposition 14. The function B(t) = tε
(

log(1+ t)
)σ is proper for each ε ≥ 1 and σ ≥ 0 with ε+σ > 1.
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Proof. It is clear that B is a strictly increasing absolutely continuous function. We have

B′(t) = ε tε−1( log(1 + t)
)σ
+ tεσ

(
log(1 + t)

)σ−1 1
t + 1

= tε−1( log(1 + t)
)σ(
ε + σ

t
(t + 1) log(1 + t)

)
.

Since the function on (0,∞)
R(t) =

t
(t + 1) log(1 + t)

is continuous and satisfies
lim
t→0+

R(t) = 1, lim
t→∞

R(t) = 0,

R is positive and bounded. Hence, there exists a positive constant c such that

ε tε−1( log(1 + t)
)σ
≤ B′(t) ≤ c tε−1( log(1 + t)

)σ
for every t ≥ 0.

Let us consider t ≥ T + 1. If ε > 1 and σ ≥ 0, then

1
B(t)

∫ t

T

B′(t − s)2

B(t − s)
ds ≤

c2

tε
(

log(1 + t)
)σ ∫ t

T

(t − s)2ε−2( log(1 + t − s)
)2σ

(t − s)ε
(

log(1 + t − s)
)σ ds

=
c2

tε

∫ t

T
(t − s)ε−2

(
log(1 + t − s)

)σ(
log(1 + t)

)σ ds

≤
c2

tε

∫ t

T
(t − s)ε−2 ds =

c2

ε − 1
(t − T )ε−1

tε

≤
c2

ε − 1
1
t
≤

c2

(ε − 1)(T + 1)
.

If ε = 1 and σ > 0, then

1
B(t)

∫ t

T

B′(t − s)2

B(t − s)
ds ≤

c2

t
(

log(1 + t)
)σ ∫ t

T
(t − s)−1( log(1 + t − s)

)σ ds

=
c2

σ + 1

(
log(1 + t − T )

)σ+1

t
(

log(1 + t)
)σ

≤
c2

σ + 1
log(1 + t − T )

t
≤

c2

σ + 1
.

□

Proposition 15. For each ε > 1, let us consider the function

B(t) =


0 if t = 0 ,
t (− log t)−ε if 0 < t ≤ e−1,

t if t > e−1.

Then B(t) is a proper function.
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Proof. It is clear that B is a strictly increasing absolutely continuous function.
For t ≥ T + 1, we have∫ t

T

B′(t − s)2

B(t − s)
ds =

∫ t−T

0

B′(x)2

B(x)
dx =

∫ e−1

0

B′(x)2

B(x)
dx +

∫ t−T

e−1

B′(x)2

B(x)
dx

=

∫ e−1

0

(
(− log x)−ε + ε(− log x)−ε−1)2

x(− log x)−ε
dx +

∫ t−T

e−1

1
x

dx

=

∫ ∞

1

(
u−ε + εu−ε−1)2

u−ε
du + log(t − T ) + 1

=

∫ ∞

1

(
u−ε + 2εu−ε−1 + ε2u−ε−2) du + log(t − T ) + 1

= cε + log(t − T ),

since ε > 1. Hence,
1

B(t)

∫ t

T

B′(t − s)2

B(t − s)
ds =

cε + log(t − T )
t

is a bounded function on [T + 1,∞ ). □

Finally, we show some examples of functions q satisfying (3.6).

Proposition 16. Let us consider ε, σ, β, c, t0,T ∈ R with ε ≥ 1, σ ≥ 0, c > 0, β > −1 and T ≥ t0, and
let B(t) = tε(log(1 + t))σ and q : [t0,∞) → R be a continuous function satisfying q(t) ≥ c tβ for every
t ≥ T. Then

lim
t→∞

1
B(t)

∫ t

t0
B(t − s) q(s) ds = ∞.

Proof. We have for t ≥ T

1
B(t)

∫ t

t0
B(t − s) q(s) ds =

1
tε
(

log(1 + t)
)σ ∫ t

t0
(t − s)ε

(
log(1 + t − s)

)σ q(s) ds

≥
1

tε
(

log(1 + t)
)σ ∫ T

t0
(t − s)ε

(
log(1 + t − s)

)σ q(s) ds

+
c

tε(log(1 + t))σ

∫ t

T
(t − s)ε(log(1 + t − s))σsβ ds

≥
c

(log(1 + t))σ

∫ t

T

(
1 −

s
t

)ε
(log(1 + t − s))σsβ ds

−

∫ T

t0

(
1 −

s
t

)ε (log(1 + t − s))σ

(log(1 + t))σ
|q(s)| ds

≥
ctβ+1

(log(1 + t))σ

∫ 1

T/t
(1 − x)ε(log(1 + t − tx))σxβdx −

∫ T

t0
|q(s)| ds .

If t ≥ T + e − 1, then
T
t
≤ 1 −

e − 1
t
≤ 1.
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If
T
t
≤ x ≤ 1 −

e − 1
t

⇒ log(1 + t − tx) ≥ 1

and so,
1

B(t)

∫ t

t0
B(t − s) q(s) ds

≥
ctβ+1

(log(1 + t))σ

∫ 1

T/t
(1 − x)ℓ(log(1 + t − tx))σxβdx −

∫ T

t0
|q(s)| ds

≥
ctβ+1

(log(1 + t))σ

∫ 1−(e−1)/t

T/t
(1 − x)ε(log(1 + t − tx))σxβ dx −

∫ T

t0
|q(s)| ds

≥
ctβ+1

(log(1 + t))σ

∫ 1−(e−1)/t

T/t
(1 − x)εxβ dx −

∫ T

t0
|q(s)| ds .

Since

lim
t→∞

∫ 1−(e−1)/t

T/t
(1 − x)εxβ dx =

∫ 1

0
(1 − x)εxβ dx > 0,

∫ T

t0
|q(s)| ds < ∞,

and β > −1, we conclude

lim
t→∞

1
B(t)

∫ t

t0
B(t − s) q(s) ds = ∞.

□

Theorem 12 and Proposition 14 also improve the result for the Caputo derivative in [11] in that we
allow α > 0 and ε > 1 instead of α ∈ (0, 1) and ε > 2.

Theorem 17. Fix α > 0. If

lim sup
t→∞

1
tε

∫ t

t0
(t − s)ε q(s) ds = ∞

for some ε > 1 and t0 > 0, then any solution of (3.4) either oscillates or satisfies the inequality

lim inf
t→∞

y(α)(t)
(
y′(t) − y(α)(t)

)
≤ 0. (3.15)

More precisely, if (3.15) holds, then there exists an increasing sequence {tn} in [t0,∞) such that
limn→∞ tn = ∞ and

y(α)(tn)
(
y′(tn) − y(α)(tn)

)
< 0

for every n.

4. Existence and uniqueness

For the sake of completeness, although it is not possible to obtain an existence theorem for an
equation as general as (3.7) in Theorem 10, we will prove now an existence and uniqueness result for
the Eq (3.3) for the usual Caputo derivative. In fact, we start with a more general result.

In the Euclidean space Rk, we are going to consider the infinity norm | · |∞.
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Theorem 18. Consider α ∈ (0, 1), r, L1, L2 > 0, x0 ∈ R
n, y0 ∈ R

m, Ar = [a, a + r] × B((x0, y0), r) and
continuous functions f1 : Ar → R

n, f2 : Ar → R
m satisfying

| f j(t, x, y) − f j(t, x̃, ỹ)|∞ ≤ L j|(x, y) − (x̃, ỹ)|∞

for j = 1, 2 and every (t, x, y), (t, x̃, ỹ) ∈ Ar. Then there exists a unique solution of

x′(t) = f1(t, x(t), y(t)),
CDαay(t) = f2(t, x(t), y(t)),

x(a) = x0, y(a) = y0.

(4.1)

Proof. Since f j is a continuous function, | f j(t, x, y)|∞ ≤ M j for every (t, x, y) ∈ Ar and some constants
M j for j = 1, 2. Let us consider the Banach space X of continuous functions (x, y) : [a, a + T ]→ Rn+m

with the usual infinity norm ∥ · ∥∞, where the constant 0 < T ≤ r will be appropriately chosen later.
It is well-known that

x′(t) = f1(t, x(t), y(t)), x(a) = x0,

is equivalent to the integral equation

x(t) = x0 +

∫ t

a
f1(s, x(s), y(s)) ds =: R1(x, y)(t).

Also, [30, Theorem 3.24] gives that

CDαF,ay(t) = f2(t, x(t), y(t)), y(a) = y0,

is equivalent to the integral equation

y(t) = y0 +
1
Γ(α)

∫ t

a
(t − s)α−1 f2(s, x(s), y(s)) ds =: R2(x, y)(t).

Consider the sequences of functions defined recursively as

xn+1(t) = R1(xn, yn)(t),
yn+1(t) = R2(xn, yn)(t),

for n ≥ 0, and let R = (R1,R2). If

T ≤ min

r,
r

M1
,

(
rΓ(α + 1)

M2

)1/α
 ,

then

|x1(t) − x0|∞ =

∣∣∣∣∣∣
∫ t

a
f1(s, x0, y0) ds

∣∣∣∣∣∣
∞

≤

∫ t

a
M1 ds ≤ M1T ≤ r,

|y1(t) − y0|∞ =

∣∣∣∣∣∣ 1
Γ(α)

∫ t

a
(t − s)α−1 f2(s, x0, y0) ds

∣∣∣∣∣∣
∞

≤
1
Γ(α)

∫ t

a
(t − s)α−1M2 ds ≤

M2Tα

Γ(α + 1)
≤ r,
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and so, |(x1(t), y1(t)) − (x0, y0)|∞ ≤ r for every t ∈ [a, a + T ] and f j(t, x1(t), y1(t)) is defined for every
j = 1, 2 and t ∈ [a, a + T ]. Thus, (x2, y2) is well defined on [a, a + T ]. If we assume that |(xn(t), yn(t)) −
(x0, y0)|∞ ≤ r for every t ∈ [a, a + T ], then the previous argument gives that (xn+1, yn+1) is well defined
on [a, a + T ]. Hence, (xn, yn) ∈ X for every n ≥ 0.

Fix 0 < k < 1 and define

T := min

r,
r

M1
,

(
rΓ(α + 1)

M2

)1/α

,
k
L1
,

(
kΓ(α + 1)

L2

)1/α
 .

Thus,

|xn+1(t) − xn(t)|∞ =

∣∣∣∣∣∣
∫ t

a

(
f1(s, xn(s), yn(s)) − f1(s, xn−1(s), yn−1(s))

)
ds

∣∣∣∣∣∣
∞

≤

∫ t

a
L1

∣∣∣(xn(s), yn(s)) − (xn−1(s), yn−1(s))
∣∣∣
∞

ds

≤ L1T
∥∥∥(xn, yn) − (xn−1, yn−1)

∥∥∥
∞

≤ k
∥∥∥(xn, yn) − (xn−1, yn−1)

∥∥∥
∞
,

|yn+1(t) − yn(t)|∞ =

∣∣∣∣∣∣ 1
Γ(α)

∫ t

a
(t − s)α−1( f2(s, xn(s), yn(s)) − f2(s, xn−1(s), yn−1(s))

)
ds

∣∣∣∣∣∣
∞

≤
1
Γ(α)

∫ t

a
(t − s)α−1L2

∣∣∣(xn(s), yn(s)) − (xn−1(s), yn−1(s))
∣∣∣
∞

ds

≤
L2Tα

Γ(α + 1)

∥∥∥(xn, yn) − (xn−1, yn−1)
∥∥∥
∞

≤ k
∥∥∥(xn, yn) − (xn−1, yn−1)

∥∥∥
∞
,

and so, ∥∥∥R(xn, yn) − R(xn−1, yn−1)
∥∥∥
∞
=

∥∥∥(xn+1, yn+1) − (xn, yn)
∥∥∥
∞

≤ k
∥∥∥(xn, yn) − (xn−1, yn−1)

∥∥∥
∞

for every n ≥ 1. Since 0 < k < 1, the contractive mapping theorem gives that R has a unique fixed
point, i.e., there exists a unique solution of (4.1). □

If n = m = 1 and x(t) = CDαay(t), Theorem 18 has the following consequences.

Theorem 19. Consider α ∈ (0, 1), r, L > 0, y0, y∗0 ∈ R, Ar = [a, a + r] × B((y0, y∗0), r) and a continuous
function f : Ar → R satisfying

| f (t, x, y) − f (t, x̃, ỹ)| ≤ L|(x, y) − (x̃, ỹ)|∞

for every (t, x, y), (t, x̃, ỹ) ∈ Ar. Then there exists a unique solution of(
CDαay(t)

)′
= f

(
t, y(t), CDαay(t)

)
, y(a) = y0,

CDαay(a) = y∗0. (4.2)

Theorem 20. Consider α ∈ (0, 1), r0, L > 0, y0, y∗0 ∈ R, Ar0 = [a, a + r0] × B((y0, y∗0), r0) and functions
r ∈ C[a, a + r0], q ∈ C1[y0 − r0, y0 + r0], and P ∈ C(Ar0) satisfying

|P(t, x, y) − P(t, x̃, ỹ)| ≤ L|(x, y) − (x̃, ỹ)|∞
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12500

for every (t, x, y), (t, x̃, ỹ) ∈ Ar0 . Then there exists a unique solution of(
CDαay(t)

)′
+ q(t)r(y(t)) = P

(
t, y(t), CDαay(t)

)
, y(a) = y0,

CDαay(a) = y∗0. (4.3)

5. Numerical calculus

Numerical methods for the solution of the initial value problem for fractional differential equations
(FDEs) with Caputo’s derivative, formulated as{ CDαay(t) = f (t, y(t)),

y(a) = y0, y′(a) = y(1)
0 , . . . , y

(m−1)(a) = y(m−1)
0 ,

(5.1)

can be found in [31]. In particular, it establishes the explicit multi-step Euler method

Yn = Tm−1[y; a](tn) + hα
n−1∑
j=0

b(α)
n− j−1 f (t j,Y j), (5.2)

where

b(α)
n =

(n + 1)α − nα

Γ(α + 1)
,

Tm−1[y; a](t) =
m−1∑
k=0

(t − a)k

k!
y(k)(a).

In this section, we extend the numerical methods for a mixed differential equation of the type (4.3),
by using the standard procedure of making a change of variable to transform the differential equation
of second order into a system of two differential equations of first order. In our case, we define z(t) =
CDαay(t) and we obtain the following system of mixed differential equations:

CDαay(t)=z(t),
z′(t)=P(t, y(t), z(t)) − q(t)r(y(t)),
y(a)=y0, z(a) = y∗0.

(5.3)

Note that this system has the same structure as system (4.1). To numerically solve the system (5.3),
we use a one-step method: the Runge Kutta method of order 4, for an auxiliary system of linear
differential equations; and after each iteration at the n-th step, update the value of the function y(tn) = Yn

by using the multi-step method given by (5.2) for the Caputo derivative. Because of the persisting
memory of fractional-order operators, multi-step methods are a natural choice, the number of steps
involved in the computation increases as the proceeds forward, and the whole history of the solution is
involved in the computation of each step. On the other hand, if the value of the parameter m is 1, then
Tm−1[y; a](t) = y(a) = y0.

The numerical algorithm is summarized as:

Z0 = y∗0,

Y0 = y0,
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for n = 1, 2, . . . ,

Zn = Zn−1 +
h
6

(A1 + 2A2 + 2A3 + A4) ,

with

A1 = P (tn−1,Yn−1,Zn−1) − q(tn−1)r(Yn−1),
B1 = Zn−1,

A2 = P
(
tn−1 +

h
2 ,Yn−1 +

h
2 B1,Zn−1 +

h
2 A1

)
− q(tn−1 +

h
2 )r(Yn−1 +

h
2 B1),

B2 = Zn−1 +
h
2 A1,

A3 = P
(
tn−1 +

h
2 ,Yn−1 +

h
2 B2,Zn−1 +

h
2 A2

)
− q(tn−1 +

h
2 )r(Yn−1 +

h
2 B2),

B3 = Zn−1 +
h
2 A2,

A4 = P (tn−1 + h,Yn−1 + hB3,Zn−1 + hA3) − q(tn−1 + h)r(Yn−1 + hB3),
B4 = Zn−1 + A3,

Yn = Y0 + hα
n−1∑
j=0

b(α)
n− j−1Z j.

end

Next we show the numerical results for the homogeneous equation(
CDαay(t)

)′
+ tβy(t) = 0, y(0) = 0, CDα0y(0) = 1,

and compare it with the numerical solution of the ordinary differential equation y′′(t)+ tβy(t) = 0, with
the same initial conditions. The graph in Figure 1 shows the result for the value of the parameter β = 2.

Figure 1. Numerical results for the homogeneous fractional order differential equation (β =
2).

In this graph, the function with dashed lines represents the solution of the standard ordinary
differential equation. The solid lines are the numerical solutions of the differential equations for
different values of the fractional order (the parameter α). In particular, it is observed that the blue line
α = 0.9 is very close to the standard solution, and for smaller values of the parameter α, the solution
moves away. From the physical point of view, the alpha parameter can be interpreted in this context,
as a shift and damping parameter.

To reinforce this damping idea, we perform another numerical experiment with β = 1 and the same
initial conditions. This experiment is shown in the following two figures in the phase plane. In both
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cases, the trajectories of the ordinary differential equation (cyan line) are shown next to the trajectory
given by the fractional order differential equation. A substantial difference is observed in terms of the
speed of convergence to the attractor.

(a) For α = 0.7 (b) For α = 0.9

Figure 2. Phase plane with β = 1.

The following Figure 3 shows the same differential equation but with the value of the parameter
β = −0.6 and the initial conditions y(1) = 0.5 and CDα0y(1) = 1.

Figure 3. Numerical results for the homogeneous fractional order differential equation (β =
−0.6).

As can be seen, the behavior of the numerical solutions of the fractional order differential
equations remains the same as the previous case: while the fractional order approaches one, the graph
of the solution of the fractional differential equation approaches the solution of the ordinary
differential equation. On the other hand, it is interesting to note how the β parameter amplifies the
oscillation frequency of the solutions.

Finally, for the case of the differential equation of fractional order(
CDαay(t)

)′
+ tβy2(t) = 0, y(0.5) = 0, CDα0y(0.5) = 1,

of order α = 0.8, Figure 4 shows how the numerical solutions vary for the different values of the β
parameter.
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Figure 4. Numerical results for the homogeneous fractional order differential equation (α =
0.8).

6. Conclusions

In this work, we present a generalized version of the Caputo fractional derivative and, on this basis,
we obtain a Kamenev-type criterion for a very general hybrid differential equation, improving
previous results.

In particular, Theorem 10 improves [11, Theorem 1] in the following ways: We consider more
general operators, which include the Caputo generalized derivative. We replace the hypothesis α ∈
(0, 1) by α ∈ (0,∞). We replace the function tε with ε > 2 by a function B(t) in a large class of
functions. This class of functions for B(t) includes the functions tε with ε > 1 and t

(
log(1 + t)

)σ with
σ > 0. We replace q(t)y by q(t)r(y(t)), where r belongs to a large class of functions. We allow an
appropriate non-homogeneous term.

As a consequence of Theorem 10, we obtain a new oscillation result for the case of ordinary
differential equations of order n in Theorem 13.

Also, we prove results on the existence and uniqueness of solutions in many of the
equations considered.

Finally, we complete our study with some numerical calculations that show the oscillation of
some solutions.

Acknowledgments

We would like to thank the referees for their careful reading of the manuscript and several useful
comments which have helped us to improve the paper.
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13. M. Caputo, Elasticità e dissipazione, Bologna: Zanichelli, 1969.
14. D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical

methods, Singapure: Worls Scientific Publishing, 2017.
15. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr.

Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201
16. J. W. He, Y. Zhou, Holder regularity for non-autonomous fractional evolution equations, Fract.

Calc. Appl. Anal., 25 (2022), 378–407. https://doi.org/10.1007/s13540-022-00019-1

AIMS Mathematics Volume 8, Issue 5, 12486–12505.

http://dx.doi.org/https://doi.org/10.2298/TSCI160111018A
http://dx.doi.org/https://doi.org/10.3390/math7090830
http://dx.doi.org/https://doi.org/10.1177/1687814017690069
http://dx.doi.org/http://dx.doi.org 10.1155/2014/107535
http://dx.doi.org/https://doi.org/10.1515/math-2015-0081
http://dx.doi.org/https://doi.org/10.1016/j.amc.2019.02.045
http://dx.doi.org/https://doi.org/10.1016/j.amc.2015.08.012
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2019.01.028
http://dx.doi.org/https://doi.org/10.1016/j.amc.2015.02.045
http://dx.doi.org/https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/http://dx.doi.org/10.12785/pfda/010201
http://dx.doi.org/https://doi.org/10.1007/s13540-022-00019-1


12505

17. Y. Zhou, J. W. He, A Cauchy problem for fractional evolution equations with Hilfer’s
fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 25 (2022), 924–961.
https://doi.org/10.1007/s13540-022-00057-9

18. M. Zhou, C. Li, Y. Zhou, Existence of mild solutions for Hilfer fractional evolution equations with
almost sectorial operators, Axioms, 11 (2022), 144. https://doi.org/10.3390/axioms11040144

19. P. Bosch, H. Carmenate, J. M. Rodrı́guez, J. M. Sigarreta, On the generalized Laplace transform,
Symmetry, 13 (2021), 669. https://doi.org/10.3390/sym13040669

20. P. Bosch, H. Carmenate, J. M. Rodrı́guez, J. M. Sigarreta, Generalized inequalities
involving fractional operators of Riemann-Liouville type, AIMS Math., 7 (2022), 1470–1485.
https://doi.org/10.3934/math.2022087

21. A. A. Andronov, A. A. Vitt, S. Khajkin, Theory of oscillations, Berlin: Springer Cham,1966.
https://doi.org/10.1007/978-3-030-31295-4

22. I. V. Kamenev, An integral criterion for oscillation of linear differential equations of second order,
Math. Notes . Acad. Sci. USSR, 23 (1978), 136–138. https://doi.org/10.1007/BF01153154

23. S. R. Grace, On the asymptotic behavior of positive solutions of certain fractional differential
equations, Math. Probl. Eng., 2015 (2015), 945347. http://dx.doi.org/10.1155/2015/945347

24. S. R. Grace, A. Zafer, On the asymptotic behavior of nonoscillatory solutions of
certain fractional differential equations, Eur. Phys. J. Spec. Top., 226 (2018), 3657–3665.
https://doi.org/10.1007/s00009-018-1120-1

25. W. Sudsutad, J. Alzabut, C. Tearnbucha, C. Thaiprayoon, On the oscillation of differential
equations in frame of generalized proportional fractional derivatives, AIMS Math., 5 (2020), 856–
871. https://doi.org/10.3934/math.2020058

26. J. Shao, Z. Zheng, Kamenev type oscillatory criteria for linear conformable
fractional differential equations, Discr. Dynam. Nature Soc., 2019 (2019), 2310185.
https://doi.org/10.1155/2019/2310185

27. P. Zhu, Q. Xiang, Oscillation criteria for a class of fractional delay differential equations, Adv.
Differ. Eq., 2018 (2018), 403. https://doi.org/10.1186/s13662-018-1813-6

28. R. Xu, Oscillation criteria for nonlinear fractional differential equations, J. Appl. Math., 2013
(2013), 971357. http://dx.doi.org/10.1155/2013/971357

29. J. Alzabut, R. P. Agarwal, S. R. Grace, J. M. Jonnalagadda, Oscillation results for
solutions of fractional-order differential equations, Fractal Fract., 2022 (2022), 466.
https://doi.org/10.3390/fractalfract6090466

30. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Holland: North-Holland Mathematics Studies, 2006.

31. R. Garrappa, Numerical solution of fractional differential equations: survey and a software tutorial,
Mathematics, 6 (2018), 16. https://doi.org/10.3390/math6020016

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 5, 12486–12505.

http://dx.doi.org/https://doi.org/10.1007/s13540-022-00057-9
http://dx.doi.org/https://doi.org/10.3390/axioms11040144
http://dx.doi.org/https://doi.org/10.3390/sym13040669
http://dx.doi.org/https://doi.org/10.3934/math.2022087
http://dx.doi.org/https://doi.org/10.1007/978-3-030-31295-4
http://dx.doi.org/https://doi.org/10.1007/BF01153154
http://dx.doi.org/http://dx.doi.org/10.1155/2015/945347
http://dx.doi.org/https://doi.org/10.1007/s00009-018-1120-1
http://dx.doi.org/https://doi.org/10.3934/math.2020058
http://dx.doi.org/https://doi.org/10.1155/2019/2310185
http://dx.doi.org/https://doi.org/10.1186/s13662-018-1813-6
http://dx.doi.org/http://dx.doi.org/10.1155/2013/971357
http://dx.doi.org/https://doi.org/10.3390/fractalfract6090466
http://dx.doi.org/https://doi.org/10.3390/math6020016
http://creativecommons.org/licenses/by/4.0

	Introduction
	Caputo type operator derivative
	On the Kamenev type oscillation for a nonlinear generalized differential equation
	Existence and uniqueness
	Numerical calculus
	Conclusions

