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Objective: Emerging evidence revealed that super-enhancer plays a crucial role in
the transcriptional reprogramming for many cancers. The purpose aimed to
explored how the super-enhancer related genes affects the prognosis and
tumor immune microenvironment (TIME) of patients with low-grade
glioma (LGG).

Methods: In this study, the differentially expressed genes (DEGs) between LGG
cohorts and normal brain tissue cohort were identified by the comprehensive
analysis of the super-enhancer (SE) related genes. Then non-negative matrix
factorization was performed to seek the optimal classification based on the DEGs,
while investigating prognostic and clinical differences between different subtypes.
Subsequently, a prognostic related signature (SERS) was constructed for the
comprehensive evaluation in term of individualized prognosis, clinical
characteristics, cancer markers, genomic alterations, and immune
microenvironment of patients with LGG.

Results: Based on the expression profiles of 170 DEGs, we identified three SE
subtypes, and the three subtypes showed significant differences in prognostic,
clinicopathological features. Then, nine optimal SE-related genes were selected
to construct the SERS through the least absolute shrinkage and selection operator
Cox regression analysis. Survival analysis showed that SERS had strong and stable
predictive ability for the prognosis of LGG patients in the The Cancer Genome
Atlas, China Glioma Genome Atlas, and Remdrandt cohorts, respectively. We also
found that SERS was highly correlated with clinicopathological features, tumor
immune microenvironment, cancer hallmarks, and genomic alterations in LGG
patients. In addition, the predictive power of SERS for immune checkpoint
inhibitor treatment is also superior. The qRT-PCR results and
immunohistochemical results also confirmed the difference in the expression
of four key genes in normal cells and tumors, as well as in normal tissues and tumor
tissues.

Conclusion: The SERS could be suitable to utilize individualized prognosis
prediction and immunotherapy options for LGG patients in clinical application.
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1 Introduction

Gliomas are the most common intracranial malignant tumor,
accounting for more than 80% of primary malignant tumor in
central nervous system (Ostrom et al., 2022). Low-grade gliomas
(LGG), also known as WHO grade II and III tumors defined by the
World Health Organization, are composed of diffuse low-grade and
intermediate-grade gliomas (Brat et al., 2015). Compared with
patients with glioblastoma (GBM), LGG patients have a relatively
low degree of malignancy (Chen et al., 2022). However, even with
comprehensive treatment including surgical resection, radiotherapy
and chemotherapy, some LGG patients still have the characteristics
of high recurrence and progression rates (Liu et al., 2018; Jiang et al.,
2021). Significant heterogeneity in patient outcomes and treatment
response remains a major clinical challenge for neurosurgeons.
Traditionally, WHO grade II gliomas were considered to have a
better prognosis than WHO grade III gliomas, but since the WHO
reclassification of gliomas in 2016, molecular alterations have been
considered more objective and precise than grading (Gittleman
et al., 2020). Although there have been some progress in the
onlooker research on LGG in recent years (Xu et al., 2021a), few
drugs are currently approved for the treatment of LGG patients, and
the prognosis has not been significantly improved (Ye et al., 2021).
Therefore, there is an urgent need to explore new biomarkers to
predict the prognosis of LGG patients and find potential therapeutic
targets.

Gene regulation plays a major role in tumor pathogenesis, and
the regulation of long non-coding RNAs (lncRNAs) on tumors is the
hotspot of current research (Lou et al., 2020). Aberrant gene
expression promotes tumorigenesis, progression and metastasis
(Mansour et al., 2014). Enhancers in gene regulatory elements
can bidirectionally transcribe enhancer RNA, a non-coding RNA
transcribed by enhancers, that not only drives tumorigenesis, but
also regulates genes and immune checkpoints (Lee et al., 2020).
Super-enhancers (SE) are clusters of enhancers formed by
contiguously arranged enhancers in tandem. SE usually appear
near most of the key genes that determine cell identity and
function, and play a more effective role than typical enhancers
(Hnisz et al., 2013; Whyte et al., 2013). They have the ability to
flexibly regulate, by combining unneeded regions to form highly
concentrated regional transcriptional machinery, thereby affecting
epigenetics and regulating tumorigenesis and progression (Chen
et al., 2018). The researchers also found that SE operate covertly in a
particularly latent manner, but control across multiple cancer
lineages, with cancer cells assembling their own super-enhancers,
thereby overproducing malignant oncogenes, exhibiting cancer
hallmarks of hyperplasia, invasion and metastasis (Whyte et al.,
2013). Yang believed that identifying, mapping out, and disrupting
SE has the potential to transform how clinical cancer is managed
(Whyte et al., 2013). Hence, as we concentrated on personalized
therapy for patients with cancers, SE can serve as the potential
biomarkers to track and understand the evolution of individual
cancers, and ultimately may become important targets in
therapeutic interventions.

The lncRNA HCCL5 in human tissue cells was identified as a
SE-driven oncogenic factor that promotes the malignant
development of hepatocellular carcinoma by promoting HCC cell
viability, migration, and classical epithelial-mesenchymal transition
(Peng et al., 2019). TCOF1 depletion in triple-negative breast cancer
patients significantly inhibited the growth and invasiveness of triple-
negative breast cancer cells (Hu et al., 2022a). Heparanase (HPSE) is
a cancer metastasis protein that is regulated by the hnRNPU/p300/
EGR1/HPSE axis, promotes high expression of HPSE enhancer
RNA, is an independent prognostic factor for poor prognosis in
cancer patients (Jiao et al., 2018). Regarding whether SE affect
progression and overall survival in patients with LGG, the jury is
still out.

Therefore, to solve the above problems, this study investigated
the effect of different types of SE-related genes on the survival of
patients with LGG by collecting data from The Cancer Genome
Atlas (TCGA), China Glioma Genome Atlas (CGGA) and
Rembrandt Database for LGG. At the same time, we constructed
and evaluated prognostic score (SERS) based on 8 SE-related genes
for patients with LGG. On top of that, the relationship was also
explored between SERS and prognosis, clinicopathological features,
tumor immune microenvironment, cancer hallmarks, genomic
alterations and immunotherapy efficacy in patients with LGG.
We provided a new strategy for predicting the prognosis of and
assessing treatment effects for patients with LGG, and thus the
findings of this study will help individualized prognosis prediction
and immunotherapy decisions in patients with LGG.

2 Materials and methods

2.1 Data collection and study population

The RNA sequencing data and clinical information of LGG
patients were extracted from TCGA (https://portal.gdc.cancer.gov/),
CGGA (http://www.cgga.org.cn/) and Rembrandt (http://gliovis.
bioinfo.cnio.es/) databases. A total of 5 LGG cohorts were gather
in this study, namely, the TCGA, CGG693, CGGA325,
CGGA301 and Rembrandt cohorts, respectively. Patients with no
survival data or overall survival (OS) < 30 days were excluded from
further analysis. Zakharova et al. (Zakharova et al., 2022) had re-
classified the TCGA sampling according to the updated WHO CNS
Tumor Classification in 2021, we therefore used the updated glioma
diagnoses for analysis in this study. The transcriptome data with
normal brain tissue were also obtained from Genotype-Tissue
Expression (GTEx; https://gtexportal.org/home/). Furthermore,
SE-related gene can be downloaded from the SEA v. 3.0 database
(http://sea.edbc.org). The clinicopathological characteristics of LGG
patients in five cohorts are generalized in Table 1.

The differential expression analysis firstly performed based on
GTEx dataset and TCGA dataset, and finally 1,672 differentially
expressed genes (DEGs) were extracted with the cutoff values of
log2 fold-change |logFC|>2 and p-value < 0.05. Then, in the same
way, 285 DEGs were extracted between GTEx dataset and TCGA
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dataset. Eventually, the differentially expressed SE-related genes
were shared by two cohorts were considered eligible.

2.2 Identification of SE subtypes of LGG
patients

Based on the above DEGs, non-negative matrix factorization
(NMF) consensus clustering analysis was performed to obtain the
optimal SE subtypes of LGG patients (Hillman et al., 2018). The
commonality, dispersion and contour indicators are used to judge
the optimal number of subtypes. The t-distributed stochastic neighbor

embedding (tSNE) algorithm we applied to confirm the reliability of
clustering results by naked eyes. The Kaplan-Meier survival curves were
then used to identify differences in survival difference among different
SE subtypes. In addition, we compared differences in
clinicopathological features among different SE subtypes.

2.3 Construction and validation of a
prognostic SERS

The univariate Cox regression was conducted to select the
prognostic SE-related DEGs. Then the least absolute shrinkage

TABLE 1 Characteristics of glioma patients in training and validation cohorts.

Clinicopathological characteristics Training cohort Validation cohorts

TCGA CGGA693 CGGA325 CGGA325 Rembrandt

Number of patients 331 420 170 158 119

Age (mean ± SD; years) 41.3 ± 13.2 40.3 ± 10.4 40.4 ± 10.9 39.6 ± 10.6 NA

Gender

Female 146 185 65 68 37

Male 185 235 105 90 59

NA 0 0 0 0 0

Survival status

Alive 272 223 82 85 34

Dead 59 197 88 73 85

Preoperative KPS

<80 50 NA NA NA NA

≥80 93 NA NA NA NA

NA 188 NA NA NA NA

Histology

Astrocytoma 193 254 110 102 80

Oligoastrocytoma 0 29 0 18 0

Oligodendroglioma 138 137 60 38 34

NA 0 0 0 0 0

WHO grade

II 179 172 97 105 63

III 152 248 73 53 56

NA 0 0 0 0 0

IDH status

Mutant 331 288 125 104 NA

Wild type 0 94 44 1 NA

NA 0 38 1 53 NA

1p19q codeletion

Codeletion 138 125 55 16 8

Non-codeletion 193 257 113 33 13

NA 0 38 2 109 98

MGMT promoter status NA

Methylated 271 200 84 43 NA

Unmethylated 60 129 70 106 NA

NA 0 38 16 9 NA

TERT status NA

Mutant 116 NA NA NA NA

Wild type 137 NA NA NA NA

NA 78 NA NA NA NA
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and selection operator (LASSO) Cox regression analysis was
performed to identify the SE-related prognostic signature (SERS)
in the TCGA cohort (Friedman et al., 2010). The prognostic risk
score of each LGG patient was calculated with the regression
coefficient and the expression of the corresponding gene. The
calculation formula of SERS was shown below:

Risk score � ∑
n

i�1
Coefi*Xi( )

where n represents the number of all the selected gene; i represents
the serial number of each gene;Xi and Coefi refer to the expression
level of each selected gene and corresponding coefficient,
respectively. The cut-off value, defined as the median risk score
was divide the patients into high- or low-risk group. The Kaplan-
Meier survival curve analysis were conducted to evaluate the
accuracy of prognosis of LGG patients between the high- and
low-risk groups. The receiver operating characteristic (ROC)
curves and the area under the ROC curves (AUC) were plotted
and calculated to describe the accuracy of predicting OS. The above
analyses were performed simultaneously in the TCGA cohort and
four independent validation cohorts. What is more, we finally
conducted meta-analysis to calculate the pooled hazard ratio
of SERS.

2.4 Development of a nomogram

Initially, the univariate Cox regression analysis were
performed based on SERS and clinicopathological features,
and then multivariate Cox regression analysis was used to
identify independent predictors in the TCGA cohort. The
nomogram was developed in the TCGA cohort to
individually predict 1, 3, and 5-year survival probabilities in
LGG patients. And the predicted outcomes for LGG patients
were presented in the form of ROC curves. To evaluate the
stability of this nomogram, a 10-fold cross-validation algorithm
was performed in the TCGA cohort for the internal validation,
and the external validation was conducted in the other four
independent cohorts. In addition, calibration curves and
C-index were performed in the TCGA and validation cohorts
to evaluate the usability of this nomogram.

2.5 Evaluation of genomic alterations

Tumor mutational burden (TMB) was calculated as the total
number of somatic, coding, base substitution, and indel mutations
examined per megabase of genome (Mayakonda et al., 2018). The
somatic mutation profile ordered in Mutation Annotation Format
(MAF) was obtained from the TCGA database. The mutation
spectrum and frequency differences were analyzed between high
and low risk genes (Bi et al., 2020). In addition, copy number
alteration (CNA) data in LGG patients were obtained from the
TCGA database. We used GISTIC2.0 to identify significant
amplifications or deletions genome-wide. CNA burden was
defined as the total number of genes with copy number changes
at the focal and arm levels (Shen et al., 2019).

2.6 Assessment of TIME and
immunotherapeutic responses

For the purpose of better understanding the underlying
biological functions of DEGs between high-risk and low-risk
groups, the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were performed to
identify annotated functions and gene enrichment pathways (Hu
et al., 2022b). DEGs between high- and low-risk groups were set the
cutoff values of |log2FC|>2 and the BH method adjusted p < 0.05.

There has been an increasing recognition that the interaction of
cancer cells and tumor microenvironment may best be
conceptualized as an ecological process (Kenny et al., 2006).
Hence, the ESTIMATE algorithm was used to calculate the
immune score, stromal score, ESTIMATE score and tumor purity
in LGG patients (Yoshihara et al., 2013) for assessing the difference
of stromal and immune cells in LGG. Simultaneously, CIBERSORT
was performed to calculate the proportions of 22 immune cells from
LGG based on gene expression (Newman et al., 2015). In addition,
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was
also applied to assess potential response to immune checkpoint
inhibitions (ICI) therapy for LGG patients (Jiang et al., 2018).

2.7 Quantitative real-time polymerase chain
reaction (qRT -PCR) and
immunohistochemistry (IHC)

The normal human astrocyte line HA1800 and glioma cell lines
U87, U251, A172 and LN229, were purchased from the Cell Bank of
the Chinese Academy of Sciences. The clinical specimens of 10 LGG
patients were collected in the Department of Neurosurgery of
Wuhan Union Hospital from June 2021 to December 2021. Ten
non-tumor brain tissues were obtained from patients with brain
tissue resection due to craniocerebral injury from June 2021 to
December 2021. The study was approved by the Medical Ethics
Committee of our hospital, and the informed consent was obtained
from each patient. Total RNA was extracted from cell lines and
sample tissues using RNAiso Plus (Takara 9109). According to the
instruction, cDNA was synthesized by reverse transcription through
using HiScript® III RT SuperMix for qPCR (+gDNAwiper) (Vazyme
R323-01). The qRT-PCR analyses were performed using the AceQ®

qPCR SYBR Green Master Mix (Vazyme Q111-02) with PCR
LightCycler480 (Roche Diagnostics, Basel, Switzerland). All
expression data was normalized to GAPDH as an internal
control using the 2−ΔΔCT method. All primers used were
synthesized by GeneCreate Biological Engineering Co., Ltd.
(Wuhan, China). The protein levels of the selected genes were
then verified by IHC experiments. In addition, the relations
between the selected gene and tumor immune features also
analyzed in LGG patients.

2.8 Statistical analysis

The PERL language (version, 5.30.2, http://www.perl.org) was
used to preprocess RNA-seq transcriptome information. The R
software (version 4.0.1, http://www.R-project.org) were conducted
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for statistical analyses and graph visualization. Continuous variables
are described as mean ± standard deviation, and categorical
variables are described as frequency (n) and proportion (%). Chi-
square test or Fisher’s exact test was performed to compare
categorical variables between two groups. Student’s t-test or one-
way ANOVA was used to compare continuous variables with
normal distribution between two or among more groups. The
Mann-Whitney U test was used to compare non-normally
distributed continuous variables between two groups, while the
Kruskal Wallis test was used to compare non-normally
distributed continuous variables among three or more groups.
Survival differences between groups were assessed using Kaplan-
Meier curves. Univariate and multivariate cox proportional hazards
models were applied to estimate hazard ratios for variables and to
identify independent prognostic factors. The cutoff value with
statistical significance was set at two-tailed p < 0.05.

3 Results

3.1 Overall structure of this study

First of all, the GTEs between LGG and normal brain tissues were
screen out. Based on the expression profiles of theses selectedGTEs, NMF
consensus clustering was performed to construct SE subtypes of LGG
patients. Then, we explored the heterogeneities of prognosis and
clinicopathological features for SE subtypes. Subsequently, the
Univariate Cox regression analysis LASSO Cox algorithm were
combined to screen for robust SERS and presented as a nomogram.
The effectiveness of SERS was assessed in multiple dimensions. The
overall flow diagram of this study was presented in Figure 1.

3.2 Identification of SE subtypes in TCGA
cohort based on the DEGs

The differential expression analysis based on GTEx dataset and
TCGA dataset was shown as the volcano in Figure 2A, and
differential expression analysis based on GTEx dataset and
CGGA693 dataset was also shown as the volcano in Figure 2B.
Then, a total of 170 DEGs (Figure 2C) shared by two cohorts were
used for subsequent analysis, they can be found in Supplementary
Table S1.

Based on the expression profiles of 170 SE associated DEGs, the
NMFwas performed in the TCGA cohort to identify SE subtypes. As
shown in Figure 2D, we chose 3 as the optimal number of clusters
based on common, scatter, and contour metrics. Then, a total of
469 LGG patients were divided into three subtypes (Figure 2E),
named SE1 (n = 125), SE2 (n = 75), and SE3 (n = 125). The heatmap
of the consensus matrix exhibits clear boundaries, indicating the
accuracy and robustness of the clustering results. t-SNE plot showed
clear differences in the distribution between the three SE subtypes
(Figure 2F). Significant differences in the expression of
170 prognostic SE-related DEGs can also be observed in the
heatmap in Figure 2G. Kaplan-Meier survival curves showed
obvious survival differences among the three SE subtypes
(Figure 2H). The LGG patients in SE1 subtype had the best
survival outcome, while SE2 had the worst survival outcome. At

the same time, the heterogeneity of clinicopathological
characteristics of these three subtypes were analyzed and found
interestingly no significant differences among these
clinicopathological characteristics (Supplementary Figure S1).

3.3 Development and validation of the SERS

The Univariate Cox regression analyses were conducted based on
DEGs to identify prognostic SERG. The results of the analysis indicated
33 genes were obviously related to the OS of LGG, and detailed
information for these prognostic SERG was shown in Supplementary
Table S2. Then, the LASSO analysis was performed on above
33 prognostic SERG in the TCGA cohort to explore simplest and
most accurate model. Finally, a total of 9 optimal prognostic SERG
(AQP7, MYOD1, CDCA2, FAM92B, HOXA11-AS, E2F7, KIF18A,
MC5R, and SKOR2) were stood out and incorporated in the SERS
(Figures 3A, B). Figure 3C exhibited the LASSO coefficients of each
selected gene in this signature. Among them, the coefficients of seven
genes (CDCA2, FAM92B, HOXA11-AS, E2F7, KIF18A, MC5R, and
SKOR2) are positive number, which means that they are related to bad
prognosis for LGG patients, whereas the coefficients AQP7 and
MYOD1 are negative number, indicating a good prognosis. The
Kaplan-Meier survival curves of these nine optimal genes were shown
in Supplementary Figure S2. The risk score of each patient was calculated
as follows: SERS score = (−0.408 × AQP7) + (−0.107 × MYOD1) +
0.186 × CDCA2 + 0.625 × FAM92B + 0.163 × HOXA11 −AS + 0.454 ×
E2F7+0.344×KIF18A+0.130×MC5R+0.201× SKOR2. Subsequently,
the median SERS score in was set as the cut-off value to stratified the
325 LGGpatients into the high- and low-risk groups.Heatmap analysis of
nine genes showed markedly different distributions between high- and
low-risk groups, the risky genes were upregulated in the high-risk group
and the protective genes were upregulated in the low-risk group
(Figure 3D).

The SERS was calculated with LASSO coefficients obtained from the
TCGA cohort to stratified into with the median score high- and low-risk
groups in other 4 cohorts. The Kaplan-Meier survival curves
demonstrated that patients with high-SERS showed worse OS than
low-SERS in the TCGA cohort (log-rank test p < 0.001; Figure 3E).
Consistent results were also observed in four other independent validation
cohorts (log-rank test p< 0.001; Figures 3F–I). The distribution plot of the
risk score and survival status showed that the SERS had the positively
correlation with the deaths of LGG patients (Supplementary Figures
S3A–E). Furthermore, the ROC curves confirmed the satisfactory
predictive performance of the of SERS in predicting 1-, 3-, and 5-year
OS (Supplementary Figures S3F–I). Thus, SERS were sufficiently
discriminative on both the validation cohorts. In addition, a meta-
analysis was performed to assess the overall predicting accuracy, and
the results indicated that the overall pooled HR for SERS was 3.2 (95%
CI = 1.69–6.08; Figure 3J).

3.4 Relationship between SERS and
clinicopathological characteristics, genomic
alterations

The clinical relationships of SERS were attempted to explore
in the TCGA cohort. As shown in Figure 4A, SERS were arranged
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from low to high to show the correlation between SERS and
clinicopathological characteristics. There were significant
differences in, survival status, Histology, 1p19q status, and SE

subtype between high and low SERS groups, but no significant
differences in -age, gender, WHO grade, MGMT status, TERT
status and Transcriptome subtype. Furthermore, SERS levels

FIGURE 1
The overall flow chart of the study.
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between LGG patients stratified by various clinicopathological
features were compared. The results of the analyses showed that
LGG patients with, death status, Oligodendroglioma and

SE2 subtype showed significant higher SERS, while no
significant differences of SERS were observed in other
subgroups (Figures 4B–K). Likewise, the relationship between

FIGURE 2
Identification of SE subtypes of LGG by using NMF algorithm. (A) Volcano plot showed DEGs (p < 0.05 and |log2FC|>2) between LGG tissues in TCGA
cohort and normal brain tissues in GTEx database. (B) Volcano plot showed DEGs (p < 0.05 and |log2FC|>2) between LGG tissues in CGGA cohort and
normal brain tissues in GTEx database. (C) Venn diagram identified prognostic super-enhancer related DEGs. (D) The NMF rank survey of TCGA cohort
using theSE-related DEGs. (E) Consensus map of NMF clustering. (F) tSNE plot of 170 SE-related DEGs to distinguish SE subtypes. (G) Heatmap
showed the expression levels of 170 SE-related DEGs among SE subtypes. (H) Kaplan–Meier survival analysis exhibited significantly different OS among
three SE subtypes.

Frontiers in Genetics frontiersin.org07

Hu et al. 10.3389/fgene.2023.1085584

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1085584


FIGURE 3
Construction of the SERS for LGG patients. (A,B) The LASSO regression was performed to minimize the risk of overfitting with the minimum criteria.
(C) LASSO coefficients of selected the SERS. (D) Heatmap was represented expression levels of 8 SE-related genes in the high- and low-risk groups,
respectively. (E–I) The Kaplan–Meier survival curves of SERS in TCGA, CGGA693, CGGA325, CGGA301, and Rembrandt cohorts, respectively. (J) Meta-
analysis with random_effects showed a pooled hazard ratio (HR) of SERS.
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SERS and clinicopathological characteristics of LGG patients in
the CGGA693, CGGA325, CGGA301 and Rembrandt cohorts
was also identified the similar results to the TCGA cohort
(Supplementary Figures S4–S7).

To better address the prognostic features associated with SERS,
the correlation between common cancer markers and SERS were
also explored. The correlation heatmap showed that SERS was
significantly positively correlated with many well-known cancer
hallmarks including DNA repair, cell cycle, hypoxia, and
metabolism (Figure 5A). The correlation between SERS and
29 immune signatures was illustrated by a correlation heatmap in
TCGA cohort (Figure 5B). Subsequently, further analysis showed
that SERS was significantly positively associated with TMB,
mutation count, copy number gain and loss burden at the focal
level, and copy number gain burden at the arm level (Figures 5C–H).
The distribution of TMB, mutation counts, copy number burdens at
focal and arm levels between high and low-risk groups were also
compared in TCGA cohort (Supplementary Figures S10A–F). Based
on the above data, it is indicated that high SERS may represent a
higher frequency of genomic alterations to some extent.

3.5 Establishment and evaluation of a
nomogram

The univariate Cox regression and multivariate Cox regression
analyses were performed to identify independent prognostic factors in
the TCGA (Figures 6A, B), CGGA693, CGGA325, CGGA301, and
Rembrandt cohorts (Supplementary Figures S8A–H). As we expected,
SERS including nine selected genes was confirmed as an independent
prognostic factor in all cohorts. The nomogramwas established to predict
1-, 3-, and 5-year survival time in LGGpatients based on the independent
prognostic factors (age, WHO grade, and SERS) identified in the TCGA
cohort (Figure 6C). The nomogramwas firstly internally assessed, and the
C-index was 0.862 (95% CI: 0.811–0.896), 0.833 (95% CI: 0.786–0.896),
0.812 (95% CI: 0.761–0.856) at 1, 3, and 5 years, respectively. The 1-year,
3-year and 5-year ROC curves showed that compared with SERS or age,
the nomogram had the highest AUC values with the 1-year, 3-year and 5-
year AUC values were 0.911, 0.913, and 0.812, respectively, which
indicating that the nomogram had the optimal prediction effect
(Figures 6D–F). The calibration curves showed a good fit between the
actual and nomogram-predicted results for 1-, 3-, and 5-year OS
(Figure 6G). In the same way, external validation of this nomogram
was performed in the CGGA693, CGGA325, CGGA301 and Rembrandt
cohorts. The accuracy in predicting 1-, 3-, and 5-year survival was good,
and calibration curve analysis showed that the predicted and actual
outcomes were basically conformity in all 4 cohorts (Supplementary
Figures S9A–P). Therefore, this nomogram has potential as a quantitative
predictor of prognosis in LGG patients.

3.6 Correlation of SERS with the LGG
immune microenvironment and
immunotherapy

Based on the differential expression analysis of high and low risk
groups in the TCGA cohort, there were 462 DEGs (|log2FC|>2 and
the BH method adjusted p < 0.05.) We then further performed

functional enrichment analysis to characterize the biological
functions of DEGs between the two risk subgroups. The results
of GO analysis revealed that DEGs are enriched in several immune-
related biological processes, such as regulation of T cell activation,
positive regulation of T cell activation, negative regulation of
immune system process, and positive regulation of lymphocyte
activation (Figure 7A). Following, KEGG pathway analysis also
showed significant enrichment of immune-related pathways,
including cytokine-cytokine receptor interactions and chemokine
signaling pathways (Figure 7B).

Given the findings that DEGs are enriched in immune-
related functions, we further investigated the correlation of
SERS with the immune microenvironment of LGG in the TCGA
cohort. It turned out that SERS was significantly positively
correlated with immune, stromal, and ESTIMATE scores, but
negatively correlated with tumor purity, suggesting that the
infiltration levels of immune cells and stromal cells increased
with SERS (Figures 7C–F). The distribution of ESTIMATE
scores, immune scores, stromal scores and tumor purity were
no significant between high and low-risk groups in TCGA
cohort (Supplementary Figures S10G–J). Further correlation
analysis was performed between SERS and the infiltration levels
of 22 immune cells quantified by the CIBERSORT algorithm.
The results showed that the expressions of cells CD4 memory
resting, T cells CD4 memory activated, NK cells activated,
Monocytes, Macrophages M1, Mast cells activated and
Neutrophils were significantly different in high and low risk
groups. Among of them, the abundance of T cells CD4 memory
resting, Macrophages M1, and Neutrophils was lower in the
high-risk group, but the abundance of T cells CD4 memory
activated, NK cells activated, Mast cells activated and
Monocytes was higher in the high-risk group (Figure 7G).

In addition, we evaluated the correlation of SERS with
immune checkpoints (PD-1, PD-L1, LAG-3, and B7-H3) and
macrophage-associated molecules (CCL2, CCR2, CXCR4, and
CSF1). The results showed that all immune checkpoints and
macrophage-associated molecules were upregulated in the high-
risk group except for LAG-3 (Figure 8A). We next determined
whether there is a correlation between immune checkpoints and
prognostic SERGs. The heat map showed that immune
checkpoint proteins were significantly positively correlated
with CDCA2, FAM92B, HOXA11-AS, E2F7, KIF18A, MC5R,
and SKOR2, and significantly negatively correlated with
AQP7 and MYOD1 (Figure 8B). In the TCGA cohort, SERS
was positively correlated with TIDE and T-cell exclusion score,
and negatively correlated with MSI score and T-cell dysfunction
score (Figure 8C). The distribution difference can also be clearly
observed in the high and low risk groups (Supplementary Figures
S10K–N). In view of the TIDE algorithm, the distribution of SERS
for the non-responder and responder groups to ICI indicated that
the non-responder group had a significantly higher SERS, which
just happened to explain the poorer prognosis of LGG patients
who did not respond to ICI (Figure 8D). The high SERS subgroup
had a lower proportion of responders to ICI treatment compared
with the low SERS subgroup (p < 0.05, Figure 8E). Figure 8F
showed that SERS had a satisfactory prediction in
immunotherapy effect, which can provide a reference for
whether patients should undergo immunotherapy.
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FIGURE 4
Correlation analysis between the prognostic SERS and clinicopathological characteristics in the TCGA cohort. (A) A heatmap was represented
expression levels of eight selected SERS and the distribution of clinicopathological characteristics in the high- and low-risk groups, respectively. (B–K)
Different levels of risk scores in glioma patients stratified by age, gender, Survival status, WHO grade, Histology, 1p19q codeletion, MGMT status, SERS
subtype, TERT status and Transcriptome subtype. *p < 0.05, **p < 0.01, ***p < 0.001, and ns No significance.
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FIGURE 5
Correlation of SERS with clinicopathological features, genomic alterations and TIME patterns in TCGA cohort. (A)Correlation between SERS and the
known cancer hallmarks of LGG patients. (B) Correlation between SERS and the 29 immune signatures. (C–H) Correlation of SERS with TMB, mutation
counts, and copy number burdens at focal and arm levels. *p < 0.05, **p < 0.01, and ***p < 0.001.
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3.7 The expression levels of selected SE-
related genes

Two SE-related genes (AQP7, and E2F7) were selected to detect
their transcriptional levels in cell lines, LGG tissues and normal
brain tissues. The qRT-PCR results showed that compared with
HA1800, the mRNA expression levels of AQP7 in human glioma cell

lines were generally decreased, while the mRNA expression levels of
E2F7 were generally increased (Figure 9A). Subsequently, we also
detected their expression levels in 10 normal brain tissues and
10 glioma tissues. The qRT-PCR results of the tissue samples
were consistent with those of the cell lines (Figure 9B). The
representative IHC staining images of AQP7 and E2F7were
shown in Figure 9C.

FIGURE 6
Establishment and evaluation of a nomogram in the TCGA cohort. (A, B) The univariate Cox regression and multivariate Cox regression were
performed on SERS and other clinicopathological features TCGA cohort. (C) Nomogram based on SERS, WHO grade and age. (D–F) The receiver
operating characteristic (ROC) curves of the nomogram predicted 1-, 3-, and 5-year OS in the TCGA cohort, respectively. (G) Calibration curves showed
the good consistency between predicted and observed 1-, 3-, and 5-year overall survival (OS) in the TCGA cohort.
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In addition, the relations between the selected gene
(AQP7 and E2F7) and tumor immune features also analyzed.
It turned out that AQP7 was significantly positively correlated
with immune, stromal, and ESTIMATE scores, but negatively
correlated with tumor purity (Figure 10A). While E2F7 was not
significantly related with immune, stromal, and ESTIMATE

scores, and tumor purity (Figure 10C). Further correlation
analysis was also performed between the selected gene and the
infiltration levels of 22 immune cells. The results showed that the
expressions of 22 immune cells were significantly different
whatever in high and low expression of AQP7 or E2F7 groups
(Figures 10B, D).

FIGURE 7
Functional enrichment analysis and immune landscape of glioma microenvironmental in the TCGA cohort. (A, B) Go analysis and KEGG analysis in
the TCGA cohort. (C–F) Correlation of SERS with immune scores, stromal scores, ESTIMATE scores, tumor purity and SERS. (G) The abundance of
22 immune cells in the high- and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, and ns No significance.
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FIGURE 8
Evaluation of immune checkpoints and immunotherapy responsiveness in the TCGA cohort. (A) The expression levels of immune checkpoints and
macrophage associated molecules in the high- and low-risk groups. (B) Correlation analysis between the prognostic SERS and immune checkpoints. (C)
Correlation of SERS with T-cell dysfunction score, TIDE, MSI score and T-cell exclusion score. (D) The distributions of risk scores between non-respond
and respond groups. (E) Comparative analysis of the response rates to ICI treatment in the high- and low-risk groups. (F) The ROC curve of
predicting immunotherapeutic benefit.
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4 Discussion

LGG patients, with the better prognosis than GBM patients, account
for about half of all glioma patients. But their survival time varies widely,
ranging from 1 year to more than 10 years (Chen et al., 2022),
notwithstanding LGG patients with the same WHO grade had same
standardized sequential therapy including surgery, radiotherapy, and
chemotherapy. The high heterogeneity of LGG, which results in
inconsistent treatment effects and prognosis, is a clinical conundrum
faced by most neurosurgeons. And so, there is an urgent need to develop
accurate and robust prognostic predictionmodels for data-assisted clinical
decision-making. With the rapid development of bioinformatics and
sequencing technologies, some studies have reported gene markers as
prognostic indicators to predict the prognosis of LGG, such as hypoxia-
related genes (Dao et al., 2018), ferroptosis-related genes (Wan et al.,
2021), immune-related genes (Zhou et al., 2018) and the corresponding
lncRNAs. Compared with other biomarkers, SE, as important distal
regulatory DNA elements, are direct drivers of carcinogenesis and are
highly tissue-specific. Therefore, SE are good candidates for predicting
prognosis in various cancers. Ropri et al. (2021) and Huang et al. (2022)
performed mechanistic exploration and prognostic prediction in breast
cancer and hepatocellular carcinoma, respectively. However, whether
super-enhancer related genes can serve as prognostic markers for LGG
needs further discussion.

In this study, the NMF algorithm was used to identify three LGG
subtypes in 325 LGG patients based on the expression profiles of
DEGs between LGG and NBT. Then, significant differences in
prognostic, clinicopathological features of the three LGG subtypes
were observed with the naked eyes. A prognostic signature, called
SERS, was constructed by univariate Cox regression and LASSO Cox
regression for an individualized comprehensive assessment. The
results showed that SERS was significantly associated with the
prognosis, clinicopathological features, genomic alterations and
TIME pattern of LGG patients, and the predictive ability of SERS
for ICI treatment was also outstanding. In addition, a clinically
accessible nomogram was constructed based on SERS, age, and
WHO classification, which maintained excellent predictive accuracy
in both the internal cohort and 4 external cohorts (CGGA693,
CGGA325, CGGA301, and Rembrandt). So, it can provide a good
net clinical benefit for screening LGG patients at high risk of death.

The SERS was constructed on 9 SE-related genes in our study,
incorporating AQP7, MYOD1, CDCA2, FAM92B, HOXA11-AS,
E2F7, KIF18A, MC5R, and SKOR2. Among these genes, CDCA2,
FAM92B, HOXA11-AS, E2F7, KIF18A, MC5R, and SKOR2 were
risky genes, which are associated with poor prognosis for LGG
patients. Whereas the remaining two genes with good prognosis.
Conversely, AQP7 and MYOD1 are related to good prognosis.
AQP7, named Aquaporin 7, is a water and glycerol channel.
Chen et al. demonstrated that low expression of AQP7 correlates
with tumor grade and aggressive features of hepatocellular
carcinoma (Chen et al., 2016). In a mouse model of breast
cancer, lower AQP7 expression resulted in a reduction in
primary tumor burden and lung metastases, thus suggesting that
AQP7 is a prognostic indicator of overall survival in breast cancer
patients (Dai et al., 2020). Myogenic differentiation 1 (MYOD1), as a
transcription factor, promoted expression of muscle-specific genes.
Wu et al. (2020) found that the expression of MYOD1D is positively
correlated with the migration and invasion of gastric cancer cells.

The cell division cycle associated 2 (CDCA2) has been proved to
play an important role in the tumorigenesis of some cancers. The
study showed that the high expression of CDCA2 was significantly
correlated with the expression of related components of cell cycle
phase transition and G2/M phase transition pathway, and suggested
that CDCA2 could be a potential target for regulating tumor growth
and radiation resistance in patients with oesophageal square cell
carcinoma (Xu et al., 2021b). FAM92B, HOXA11-AS, E2F7, MC5R,
and SKOR2 are important epigenetic regulators that can be targeted
for cancer therapy. Specifically, E2F7 is an atypical E2F transcription
factor family member with two independent DNA-binding
domains. Some studies have found that E2F7 is upregulated in
endometrial cancer, skin squamous cell carcinoma and other
malignant tumors, promote tumor progression and metastasis in
these cancers (Endo-Munoz et al., 2009; Li et al., 2015). KIF18A, a
member of the kinesin-8 subfamily, has low expression in most
human normal tissues and abnormally high expression in a variety
of malignant tumor tissues (Marquis et al., 2021), which is associated
with malignant pathological features and poor prognosis of cancer
patients, and it promotes the proliferation, invasion and metastasis
of tumor cells (Sepaniac et al., 2021). KIF18A may be a novel
molecular targeted therapy for cancers. PTCRA (pre-T cell
antigen receptor) is a protein-coding gene, together with the
TCRB and CD3 complexes, encodes a protein that forms the
T-cell pre-receptor complex, which regulates early T cell
development (Liu et al., 2010).

The SERS is very effective in predicting prognosis of LGG
patients in this study. To further explore the specific mechanism,
we identified DEGs in high- and low-risk groups without hesitation.
Then, the GO and KEGG analysis were performed to explore the
detailed biological processes and pathways of these genes affecting
the prognosis of LGG patients. Functional enrichment analysis
revealed that DEGs between different risk subgroups were
enriched in many immune-related biological processes and
pathways. Therefore, we subsequently analyzed immune scores
and immune cell infiltration between the two risk subgroups.
Further analysis found that high risk was positively correlated
with immune score, the abundance of T cells CD4 memory
resting, and T cells CD4 memory activated. On the contrary,
activated NK cells (tumor killer cells) showed higher abundance
in the low-risk group. These results suggest that super-enhancer-
related genes are related to the LGG immunemicroenvironment to a
certain extent. From the above results, it can be concluded that the
anti-tumor immunity of LGG patients in the high-risk group is
significantly weakened, so we speculated that this may be one of the
important reasons for their poor prognosis. The research of cancer
immunotherapy has been very hot in recent years, especially
immune checkpoint inhibitors have been quite mature as the first
generation of immunotherapy, they play a therapeutic role in
various cancers through mainly blocking PD-1/PD-L1 pathway
and molecular receptors and/or ligands such as CTLA-4
(Topalian et al., 2015). Several previous studies have described
therapeutic effect for immune checkpoints in some cancers, with
findings consistent with favorable clinical outcomes in patients with
many cancers, such as glioma (Puigdelloses et al., 2021),
hepatocellular carcinoma (Sangro et al., 2020), lung cancer
(Kartolo et al., 2021), and more. Therefore, we also evaluated the
relationship between SERS and the expression levels of immune
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checkpoints, macrophage-related molecules, and immunotherapy
response. It found that SERS was positively correlated with the
expression levels of immune checkpoints and macrophage-related

molecules. The response rate to ICI was significantly lower than that
of the low-risk group. Therefore, we surmised that this may be
another reason for the poor prognosis of LGG patients in the high-

FIGURE 9
Validation of the expression levels of selected super-enhancer related genes. (A) Scatter plots of differential transcript levels between AQP7 and
E2F7 in glioma cell lines and normal human astrocytes cell lines (HA1800). (B) Scatter plots of differential transcript levels between AQP7 and E2F7 in LGG
and NBT. (C) The representative IHC staining images of AQP7 and E2F7. LGG low-grade glioma, NBT non-tumor tissues. *p < 0.05, **p < 0.01, ***p <
0.001, and ns No significance.
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FIGURE 10
The relations between the selected gene and tumor immune features. (A) The abundance of 22 immune cells in the high-expression and low-
expression of AQP7. (B) Correlation of the expression of AQP7 with immune scores, stromal scores, ESTIMATE scores, and tumor purity. (C) The
abundance of 22 immune cells in the high-expression and low-expression of E2F7. (D)Correlation of the expression of E2F7 with immune scores, stromal
scores, ESTIMATE scores, and tumor purity. *p < 0.05, **p < 0.01, ***p < 0.001, and ns No significance.
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risk group. Taken together, the SERS proposed in our study can be
used to screen clinically high-risk LGG patients, and then to
prescribe professionally-informed treatment.

Without doubt, there are some inevitable shortcomings in this
study. Firstly, this is a retrospective study based on public databases,
thus yielding more reliable results in a prospective study. Secondly,
the five cohorts of LGG patients have varying degrees of lack of
clinical information, which may lead to varying degrees of selection
bias. Thirdly, GO and KEGG enrichment analysis and subsequent
immune microenvironment and immune checkpoint analysis were
not validated in the other 4 cohorts. Fourthly, we only analyzed
transcriptome information and did not perform multi-omics
analysis including methylation and gene copy number. Finally,
further experiments are needed to explore the specific
molecular mechanism of super-enhancer related genes for further
elucidation.

5 Conclusion

In conclusion, three novel LGG subtypes were established
based on SE-related genes. Subsequently, an accurate and
independently validated model were proposed for predicting
overall survival in LGG. In addition, we also found that SERS
was associated with prognosis, clinicopathological features,
tumor immune microenvironment, cancer hallmarks, and
genomic alterations and the effect of immunotherapy in
patients with LGG. The findings can be as the novel
biomarkers for predicting prognosis and potential
therapeutic targets for LGG, which will help physicians and
patients to evaluate prognosis, determine follow-up period, and
make immunotherapy decisions.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and
approved by Wuhan University of Science and Technology
Affiliated Xiaogan Central Hospital. The ethics committee
waived the requirement of written informed consent for
participation.

Author contributions

Conception and design: SF. Data collection and analysis and
interpretation: YH, QY, and WW. Language editing and grammar
correction: SC. Manuscript writing: YH and QY. Final approval of the
manuscript: All authors.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article,
or claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1085584/
full#supplementary-material

SUPPLEMENTARY FIGURE S1
Comparisons of age, gender, KPS, survival status, histology, WHO grade,
MGMT status, Transcriptome subtype and TERT status among SE subtypes in
TCGA cohord.

SUPPLEMENTARY FIGURE S2
The Kaplan–Meier curves of TCGA cohort showed that there is different
overall survival for patients with different expression levels of nine selected
super-enhancer related prognostic genes.

SUPPLEMENTARY FIGURE S3
Risk scores, survival status in high and low-risk group and Kaplan–Meier
survival curves of SERS in TCGA, CGGA693, CGGA325, CGGA301 and
Rembrandt cohorts, respectively.

SUPPLEMENTARY FIGURE S4
Correlation analysis between the prognostic SERS and clinicopathological
characteristics in the CGGA693 cohort. *p < 0.05, **p < 0.01, ***p < 0.001,
and ns No significance.

SUPPLEMENTARY FIGURE S5
Correlation analysis between the prognostic SERS and clinicopathological
characteristics in the CGGA325 cohort. *p < 0.05, **p < 0.01, ***p < 0.001,
and ns No significance.

SUPPLEMENTARY FIGURE S6
Correlation analysis between the prognostic SERS and clinicopathological
characteristics in the CGGA301 cohort. *p < 0.05, **p < 0.01, ***p < 0.001,
and ns No significance.

SUPPLEMENTARY FIGURE S7
Correlation analysis between the prognostic SERS and clinicopathological
characteristics in the Rembrandt cohort. *p < 0.05, **p < 0.01, ***p < 0.001,
and ns No significance.

SUPPLEMENTARY FIGURE S8
The univariate Cox regression and multivariate Cox regression were
performed on SERS and other clinicopathological features CGGA693,
CGGA325, CGGA301, Rembrandt cohorts, respectively.

SUPPLEMENTARY FIGURE S9
The ROC curves of the nomogram predicted 1-, 3-, and 5-year OS and
corresponding calibration curves in CGGA693, CGGA325, CGGA301,
Rembrandt cohorts, respectively.
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SUPPLEMENTARY FIGURE S10
The distribution of TMB, mutation counts, copy number burdens at
focal and arm levels, immune scores, stromal scores, ESTIMATE

scores and tumor purity, TIDE, T-cell exclusion score, MSI score and
T-cell dysfunction score between high and low-risk groups in TCGA
cohort. *P < 0.05, **P < 0.01, and ***P < 0.001.
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