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The central nervous system (CNS) is considered as an immune privilege organ,
based on experiments in the mid 20th century showing that the brain fails to
mount an efficient immune response against an allogeneic graft. This suggests
that in addition to the presence of the blood-brain barrier (BBB), the apparent
absence of classical lymphatic vasculature in the CNS parenchyma limits the
capacity for an immune response. Although this view is partially overturned by the
recent discovery of the lymphatic-like hybrid vessels in the Schlemm’s canal in the
eye and the lymphatic vasculature in the outmost layer of the meninges, the
existence of lymphatic vessels in the CNS parenchyma has not been reported. Two
potential mechanisms by which lymphatic vasculature may arise in the organs are:
1) sprouting and invasion of lymphatic vessels from the surrounding tissues into
the parenchyma and 2) differentiation of blood endothelial cells into lymphatic
endothelial cells in the parenchyma. Considering these mechanisms, we here
discuss what causes the dearth of lymphatic vessels specifically in the CNS
parenchyma.
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1 Introduction

In mammals the circulatory system is composed of two independent and complementary
vascular networks that cooperate to maintain the proper functions in peripheral tissues and
the organism fluid balance: while the blood vascular system is responsible for the transport of
essential nutrients, hormones, and oxygen, as well as removal of waste across the body via the
blood circulation, the lymphatic vascular system is a unidirectional route required to drain
the interstitial fluid (ISF) extravasated from the blood capillaries and return it to the blood
circulation, contributing thereby to the maintenance of tissue homeostasis. Additional well-
known functions of the lymphatic system are the dietary lipid uptake in the gut and the
mediation of immune cell trafficking and antigen presentation in the lymph nodes in charge
of immune surveillance (Oliver and Alitalo, 2005; Tammela and Alitalo, 2010; Oliver et al.,
2020; Petrova and Koh, 2020). The study of the lymphatic system is a rapidly evolving field,
and the knowledge about its tissue-specific features and functions has greatly advanced in
recent years.

Due to its relevant role to maintain tissue homeostasis and immune surveillance,
lymphatic vasculature is typically found in most of the vascularized tissues, with the
notable exception of the bone marrow, cartilage, and the central nervous system (CNS):
we should note that, although it was believed that the bone and bone marrow lack lymphatic
vessels, very recent work has revealed the presence of lymphatic vessels in bone, supporting
bone and hematopoietic cell regeneration (Biswas et al., 2023). The lack of classical lymphatic
network in the brain and spinal cord parenchyma limiting the ability to induce an immune
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response to CNS-derived antigens was themain reason why the CNS
has been considered an immune-privileged organ (Shirai, 1921;
Murphy and Sturm, 1923; Medawar, 1948). This concept was
revised in the last decade with the discovery of the lymphatic-like
hybrid vessels in the Schlemm’s canal in the eye (Aspelund et al.,
2014; Kizhatil et al., 2014; Park et al., 2014; Truong et al., 2014; Kim
et al., 2017) and the meningeal lymphatics in the dura mater, the
outermost layer of the three meninges located under the skull
(Aspelund et al., 2015; Louveau et al., 2015).

An additional feature that makes CNS tissue a unique immune
privileged site is the presence of a physical blood-brain barrier
(BBB), a heavily restringing barrier that regulates the CNS
homeostasis, protecting the brain parenchyma from the entry of
pathogens, toxins, circulating immune cells, and other factors to
maintain proper neuronal activity (reviewed in Zhao et al., 2015;
Obermeier, Daneman, and Ransohoff, 2013; Daneman and Prat,
2015). It is well-characterized that the BBB is a multicellular
structure where the brain microvasculature is embedded in a
unique environment known as “neurovascular unit,” where
endothelial cells (ECs) are in close association with numerous
pericytes, astrocytes, microglia, neurons, vascular smooth muscle
cells and extracellular matrix (ECM). Altogether they form an
impermeable barrier that maintains brain homeostasis by
regulating the trafficking of fluid and solutes in both directions
and therefore minimizing the potentially toxic compounds. CNS
ECs are highly specialized compared with ECs in other tissues’
vasculature. Their special attributes include the control of
paracellular and transcellular passage pathways through the
expression of continuous tight junction (TJ) proteins, and
restricted transcytosis and fenestration to avoid non-specific
transcellular transport (Hawkins and Davis, 2005; Abbott et al.,
2010; Obermeier, Daneman, and Ransohoff, 2013; Daneman and
Prat, 2015; Iadecola, 2017). These properties allow the strict
regulation of the movement of molecules, ions and cells between
the blood and the CNS. In addition, brain ECs express low levels of
leukocyte adhesion molecules (LAMs), consequently limiting the
number of immune cells that enter in the CNS. Consistently, it has
been widely described that decreased expression of TJ proteins or
enhanced transcytosis rate is linked to the BBB breakdown, which is
associated with pathological inflammation in the brain tissue and
many neurodegenerative diseases, including stroke, multiple
sclerosis, Alzheimer’s disease, and Parkinson’s disease. While
these disorders have their own triggers, all of them converge in
similar modifications of the CNS vasculature, suggesting that the
BBB disruption is a common hallmark in these disorders,
culminating in neuronal dysfunction, neuroinflammation and
neurodegeneration (Hawkins and Davis, 2005; Obermeier,
Daneman, and Ransohoff, 2013; Daneman and Prat, 2015; Zhao
et al., 2015).

In this review, we discuss the unique anatomical aspects of the
CNS vasculature, which include the presence of highly specialized
ECs that comprise the BBB and the absence of a proper lymphatic
system inside the brain and spinal cord parenchyma. We will debate
whether the lack of lymphatic vessels in the CNS is developed by
preventing 1) the invasion of lymphatic vessels from surrounding
tissues (i.e., meningeal layers) and/or 2) the differentiation of CNS
blood ECs into LECs. Considering that CNS blood ECs are
specialized cells to form the BBB, we discuss the hypothesis that

the lack of lymphatic differentiation potential of CNS blood ECs is
tightly linked to their BBB formation. With a special interest in the
absence of Prospero Homeobox protein 1 (Prox1) in CNS ECs
(Antila et al., 2017; Izen et al., 2018), the key transcriptional
regulator of lymphatic differentiation (Sabin, 1902; Wigle and
Oliver, 1999; Srinivasan et al., 2007), here we provide new
insights into the possible relationship between these two
immune-privileged features.

2 An overview of the lymphatic vascular
development

The lymphatic vasculature is a thin-walled and blind-ended
system that transports the fluids and other components extravasated
from the blood circulation (called lymph) through the lymph nodes
back to the bloodstream (Wigle and Oliver, 1999; Tammela and
Alitalo, 2010). Hierarchically, highly permeable initial lymphatic
vessels characterized by the presence of interconnected and
discontinuous button-like junctions between the lymphatic
endothelial cells (LECs), and the absence of continuous basement
membrane and perivascular mural cells facilitate the uptake of the
ISF through passive drainage (Baluk et al., 2007). This ISF released
from the blood vasculature is then transported through the pre-
collecting and then collecting lymphatics, in which LECs are tightly
connected with continuous zipper-like junctions (Baluk et al., 2007)
where the presence of specialized perivascular smooth muscle cells
induce contractile activity that promotes the unidirectional lymph
flow (Muthuchamy and Zawieja, 2008; Norrmen et al., 2009; Alitalo,
2011; Bazigou and Makinen, 2013; Sabine et al., 2016).

The formation of the lymphatic network in mice begins during
embryonic development, after a primitive but functional circulatory
system is established. The first LEC progenitors are detected during
embryonic days (E) 9.5–10.0, when a subset of venous ECs located in
the jugular region of the cardinal vein starts to express Prox1 (Sabin,
1902; Wigle and Oliver, 1999; Srinivasan et al., 2007).
Prox1 expression is initiated by Sox18 and Nr2f2 (also known as
COUP-TF II) in embryonic venous ECs (Francois et al., 2008;
Srinivasan et al., 2010). Prox1 transcription factor is widely
considered as the master regulator of lymphatic vascular
development, because its expression in blood ECs (BECs) induces
the commitment toward a LECs fate by inducing LEC-specific
transcriptional program as well as the repression of BEC-specific
genes (reviewed in Oliver and Alitalo, 2005; Oliver and Srinivasan,
2010). Prox1+ LEC progenitors bud off from the cardinal vein,
sprout and migrate to form the initial lymphatic plexus in response
to vascular endothelial growth factor C (VEGF-C) (Karkkainen
et al., 2004), which binds to its receptor VEGF receptor 3
(VEGFR3) expressed by the LECs (Dumont et al., 1998; Makinen
et al., 2001; Karkkainen et al., 2004). The identity of LECs is
maintained by a feedback loop between Prox1 and VEGFR3:
Prox1 activates the expression of VEGFR3, and VEGF-C/
VEGFR3 signaling regulates Prox1 (Srinivasan et al., 2014). The
process of expansion of the initial lymphatic vessels by sprouting
from pre-existing VEGFR3+ lymphatic capillaries in response to the
morphogen VEGF-C is known as lymphangiogenesis (Vaahtomeri
et al., 2017). When the primary lymphatic plexus has been
established during embryonic development, it continues maturing
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postnatally to give rise to a hierarchical network of blind-ended
capillaries, pre-collecting and collecting lymphatic vessels,
characterized by the transformation from zipper-like to button-
like junctions and the recruitment of smooth muscle cells that cover
the collecting vessels. The development of lymphatic valves secures
the unidirectional lymph flow whereas the lymphovenous valves
restrict the entrance of the blood into the lymphatic vasculature.
LECs can be distinguished from BECs based on their unique
molecular signature. In addition to Prox1 and VEGFR3, LECs
are distinguished by the expression of lymphatic vessels
endothelial hyaluronan receptor 1 (LYVE-1) and glycoprotein
podoplanin (PDPN) (Oliver and Srinivasan, 2010).

For decades, the origin of the lymphatic vasculature has been
extensively debated. Consistent with the centrifugal theory described
by Sabin in 1902 (Sabin, 1902), the major contribution from the
venous vasculature that gives rise to the lymphatic network through
lymphangiogenesis (sprouting of pre-existing vessels) (Vaahtomeri
et al., 2017) was corroborated both in mice and zebrafish with a
series of lineage tracing experiments and high-resolution imaging,
indicating that the process is highly conserved across vertebrates
(Sabin, 1902; Huntington and McClure, 1910; Yaniv et al., 2006;
Srinivasan et al., 2007). Moreover, the most recent lineage tracing
studies using the paraxial mesoderm specific Pax3-Cre and Myf5-
Cre drivers demonstrated that the majority of LECs originate from
the paraxial mesoderm-derived endothelium of the cardinal vein
(Stone and Stainier, 2019). However, additional findings in recent
years demonstrated that, while there is no doubt that the main
source of lymphatics derives from the cardinal and intersomitic
veins, further contribution from non-venous-derived progenitors, as
described by McClure in the centripetal theory (Huntington and
McClure, 1910) was found in specific tissues, in a process called
lymphvasculogenesis (formation de novo of LECs). Examples of
these non-venous origins are described as the contribution of local
dermal blood capillary plexus to dermal lymphatics vasculature
(Martinez-Corral et al., 2015; Pichol-Thievend et al., 2018), the
contribution of second heart field cells and yolk sac hematopoietic
derivatives to cardiac lymphatic vasculature (Klotz et al., 2015;
Maruyama et al., 2019; Lioux et al., 2020) and the contribution
of c-kit+ hemogenic endothelium to mesenteric lymphatics
(Stanczuk et al., 2015). In a similar fashion, studies in zebrafish
using lineage-tracing and live imaging techniques reinforced the
idea that LECs emerge from mixed venous and non-venous origins
(Yaniv et al., 2006; Nicenboim et al., 2015; Eng et al., 2019).
However, the roles of lymphatics from different sources in organ
development and diseases are currently unclear.

3 The CNS is an immune privileged
organ. . . devoid of lymphatic
vasculature?

Whilst the lymphatic system is present in most of the vascularized
tissues in the body, the CNS comprises one of the few exceptions lacking
lymphatic vessels within the brain and spinal cord parenchyma. Indeed,
whole-mount imaging of Prox1-BAC-GFP mouse tissues (Choi et al.,
2011) allows the direct identification of Prox1-expressing lymphatic
vasculature in vivo.Wehere show a representative sagittal section image
of Prox1-BAC-GFP mouse brain (Choi et al., 2011) at postnatal day 3

(P3) to illustrate the presence of lymphatic vessels (PECAM1+ Prox1-
GFP+ LYVE-1+) in the skin but not inside the brain parenchyma
(Figure 1). This feature in combination with the presence of a restrictive
BBB provides an extremely unique environment for the immune cells,
where immune surveillance is not achieved under physiological
conditions.

During the early 20th century many experiments were performed
transplanting grafts from a variety of tissues into anatomically
unnatural sites in the body from the same or different species.
Whereas in most of the cases the rejection from the host to the
alien graft was observed, in some cases they could grow and survive,
giving rise to the identification of “immunologically privileged” organs,
including the anterior chamber of the eye, the cornea or the brain. The
first evidence provided by Ebeling and Roffo is that allografts of a
particular carcinoma were more successful when transplanted in the
brain rather in the subcutaneous space using mice and rats, respectively
(reviewed in Barker and Billingham, 1977). Xenografted rat sarcoma in
the mouse brain could grow, whereas it was destroyed when placed
subcutaneously or intramuscularly (Shirai, 1921). According to the
observation that animals deprived of lymphoid tissue failed to destroy
foreign tissue grafts, the brain could be an uncongenial environment for
these immune cells, which in peripheral tissues were able to invade and
destroy the tumors (Murphy and Sturm, 1923). Lastly, critical
experiments carried out by Medawar described that, once primed
peripherally, immune cells could induce an accelerated rejection
against the foreign tissue, despite the brain’s status an immune-
privileged site unable to induce an efficient adaptive immune
response due to the lack of lymphatic drainage in this tissue
(Medawar, 1948). Whereas in non-immunized animals the brain
was unable to induce an immune response against the skin graft, in
those animals where the skin was first grafted peripherally and then
transplanted into the brain, a severe rejection was observed. These
results showed that once peripherally activated, immune cells could
migrate and enter the brain parenchyma, but the brain itself could not
elicit such an immune response (Medawar, 1948).

Based on these transplant experiments, the eye and brain have
been long considered immunologically unique and devoid of
lymphatic vasculature; however this notion has been revised in
the last decade due to the discovery of blood-lymphatic hybrid
vessels in the Schlemm’s canal in the eye (Kizhatil et al., 2014; Park
et al., 2014; Truong et al., 2014; Aspelund et al., 2015; Kim et al.,
2017), the presence of classical lymphatic vessels in the meningeal
dura mater of the brain (Aspelund et al., 2015; Louveau et al., 2015),
and non-lumenized LECs in the surface of the brain in zebrafish and
leptomeninges in mammals (Bower et al., 2017; van Lessen et al.,
2017; Venero Galanternik et al., 2017; Shibata-Germanos et al.,
2020). Although it is still maintained by the lack of classical
lymphatic network inside the brain and spinal cord parenchyma,
the concept of “immune privileged site” in the CNS has been
recently redefined with these new insights (Figure 2).

3.1 Lymphatic-like vessels in the Schlemm’s
canal in the eye

The Schlemm’s canal (SC) is a specialized ring-shaped
vasculature at the periphery of the cornea which drains the
aqueous humor outflow (AHO) from the intraocular chamber
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and delivers it back to the venous circulation to maintain fluid
homeostasis in the eye. Malfunction in this drainage where the AHO
is obstructed is frequently correlated with the development of
glaucoma in humans. ECs lining the inner wall of the SC share
morphologic and functional similarities with both BECs and LECs
(Table 1). In addition to its vascular-derived origin, SC is a
secondary structure that develops postnatally. Its ECs form a
continuous monolayer lying on a discontinuous basement
membrane, lack pericyte coverage, and establish a blind-ended
tube that transports AHO and antigen-presenting cells in basal-
to-apical flow to the systemic circulation. Altogether this special
vasculature was considered more analogous to LECs rather than

BECs, although initial studies did not examine the expression of LEC
markers (reviewed in Ramos et al., 2007). The discovery of
Prox1 expression in the SC ECs by different groups almost
simultaneously was the milestone to consider this structure as
hybrid vessels sharing blood and lymphatic properties but with
lymphatic-like functions (Aspelund et al., 2014; Kizhatil et al., 2014;
Park et al., 2014; Truong et al., 2014).

Despite the SC ECs expressing the lymphatic master regulator
Prox1, they can be distinguished from classical lymphatic
vasculature by the lack of other LEC markers such as LYVE-1 or
PDPN (Aspelund et al., 2014; Truong et al., 2014) (Table 1),
suggesting a partial lymphatic reprogramming. In a similar line

FIGURE 1
Lymphatic avascularity in the brain parenchyma. (A) Schematic representation of the brain, meningeal layers, skull bone, and skin on the left panel
(Partially created with BioRender.com). (B–E)Whole-mount immunostaining of Prox1-BAC-GFP brain at postnatal day 3 (P3) is shown. Prox1-GFP labels
lymphatic vessels in the skin [(B,C) green, arrows] as well as a subset of neural progenitors (not shown) in the brain parenchyma. All the vasculature is
labeled with PECAM-1 [(B,D) cyan]. LYVE-1 labels lymphatic vessels [(B,E) red, arrows] andmacrophages (open arrowheads) in the skin as well as the
pia surface of the brain. Note that no lymphatic vessels are found in the brain parenchyma. Scale bar 500 μm.
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of evidence, Sox18, the abovementioned upstream regulator of
Prox1, was not detected in the SC ECs (Park et al., 2014).
Moreover, SC ECs bud from the choroidal veins at postnatal day
P1, and after the primordial SC is formed they upregulate the
lymphatic master regulator Prox1 to acquire the hybrid
lymphatic-blood phenotype (Park et al., 2014): SC expresses a
mixture of BEC and LEC markers including the pan-endothelial

platelet and endothelial cell adhesion molecule 1 (PECAM-1), the
venous marker endomucin (EMCN), the chemokine (C-C motif)
ligand 21 (CCL21), and VEGFR3, in addition to Prox1. They also
express the lymphatic valve markers integrin alpha 9 (Itgα9) and
Forkhead Box C2 protein (Foxc2), even though they do not have
luminal valves (Aspelund et al., 2014; Park et al., 2014). Interestingly,
abundant plasmalemma vesicle–associated protein (PLVAP), a

FIGURE 2
Lymphatic endothelial cells in the CNS. Schematic representation of a human brain showing the lymphatic endothelial cells in the meningeal layers
and Schlemm’s canal.While there is no lymphatic vasculature in the brain parenchyma,meningeal lymphatic vessels are found in the duramater under the
skull and non-lumenizedmural LECs are found in the leptomeninges (the arachnoid space and the pia mater). Meningeal lymphatics express the classical
hallmark of lymphatic vessels (Prox1+ LYVE-1+ PDPN+ VEGFR3+), while non-lumenized mural LECs have macrophage-like shape and express the
mannose receptor Mrc1 and Stab1. Note that Schlemm’s canal in the eye has hybrid blood-lymphatic vessels, expressing the lymphatic marker Prox1 but
not LYVE-1 and PDPN. The hybrid vessels also express high level of VEGFR3, PLVAP and Itgα9. AHO, aqueous humor outflow (Partially created with
BioRender.com).

TABLE 1 Comparison between CNS endothelial cell types.

EC type Key markers Permeability Supporting mural cells References

BECs in non-
CNS tissues

PECAM-1, EMCN, CD34,
VEGFR1/2, PLVAP, ltga5

Capillaries, semipermeable Pericytes in capillaries.
Pericytes/SMCs in arteries/

veins

Petrova et al. (2002), Johnson et al. (2008), Kim
et al. (2010), Kim et al. (2013)

BBB ECs PECAM-1, EMCN, Cldn5,
Ocln, ZO-1, Mfsd2a, Sox 17,
β-catenin

No permeable NVU composed by BECs,
pericytes and astrocytes

Liebner et al. (2008), Daneman et al. (2009),
Corada et al. (2019), Zhou et al. (2014), Tran
et al. (2016), Hussain et al. (2022), Ben-Zvi et al.
(2014), Cui et al. (2021)

Meningeal
LECs

PECAM-1, Prox1, LYVE-1,
Pdpn, VEGFR3, ltga9,
CCL21, Nrp2

Permeable. Basal mLVs mostly button-
type junctions. Dorsal mLVs mostly

zipper-type junctions

Pericytes/SMCs in collecting
LVs. No pericytes/SMCs in

capillaries LVs

Louveau et al. (2015), Aspelund et al., (2015),
Antila et al. (2017), Ahn et al. (2019), lzen et al.
(2018)

Hybrid ECs PECAM-1, EMCN, PLVAP,
ltga9, VEGFR3, Prox1,
CCL21, CD34, FoxC2

Fenestrated/permeable. Disconinuous
base membrane

No mural cells Truong et al. (2014), Aspelund et al. (2014), Park
et al. (2014), Kizhatil et al. (2014)

Mural LECs Prox1, LYVE-1, VEGFR3,
Mrc1, Stab1

Do not form tubes, macrophage-like
morphology. Large cytoplasmatic

vesicles

No mural cells Bower et al. (2017), van Lessen et al. (2017),
Venere Galanternik et al. (2017), Castranova
et al. (2021), Shibata-Germanos et al. (2020)

SMCs, smooth muscle cells; NVU, neurovascular unit; BECs, blood endothelial cells; LEC, lymphatic endothelial cells; BBB, blood-brain barrier ; LVs, lymphatic vessels ; mLV, meningeal

lymphatic vessels.
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marker for endothelial transcytosis and permeability, was also
detected in the ECs of the inner SC wall (Figure 2; Table 1).

What controls the expression of Prox1 that is important for the
SC integrity and functionality? Park et al. revealed that the shear
stress-responsive transcription factor Klf4 might be an upstream
regulator of Prox1 in SC ECs by directly binding to the first intron of
the Prox1 gene. Likewise, a mouse ocular puncture model was used
to confirm in vivo the requirement of flow to maintain the proper
expression of Prox1. Indeed, reduction in AHO simultaneously
downregulated Prox1 and Klf4 expression compared with control
eyes (Park et al., 2014), proposing Prox1 as an accurate biosensor for
SC functionality, which might be used for the early detection and
prevention of glaucoma in humans.

Angiopoietin/Tie2 (Angpt/Tie2) signaling is required for the
correct postnatal development and adult maintenance of the SC
hybrid vessels to sustain the normal AHO (Thomson et al., 2014;
Kim et al., 2017). Postnatal deletion ofAngpt1/Angpt2 or Tie2 results
in primary congenital glaucoma in mice due to increased intraocular
pressure (Thomson et al., 2014). Meanwhile, Tie2-activating
antibody (ABTAA) rescues the phenotype of glaucoma in double
Angpt1/Angpt2-deficient mice (Kim et al., 2017), raising the
possibility that this signaling pathway could be an interesting
therapeutic target for the treatment of glaucoma.

3.2 The discovery of meningeal lymphatic
vessels surrounding the brain

The surface of the brain is covered by three layers of meninges
that comprise a superficial barrier between the cerebrospinal fluid
(CSF) and the CNS: the dura mater is the outermost layer in contact
with the skull bone, containing arteries, veins and fenestrated
capillaries that do not form BBB; the arachnoid mater establishes
a barrier between the dura and the subarachnoid space (SAS), which
contains the CSF and resident immune cells; the pia mater is a
monolayer of cells that covers the CNS separating it from the
perivascular compartment (Engelhardt, Vajkoczy, and Weller,
2017). Given that no lymphatic vasculature exists in the CNS
parenchyma (Figures 1, 2), the perivascular spaces of cerebral
blood vessels have been proposed to serve as a pathway for the
exchange of CSF and interstitial fluid to clear waste products (Iliff
et al., 2012; Nedergaard, 2013). The recent identification of
meningeal lymphatic vessels established another pathway for CSF
outflow into deep cervical lymph nodes.

An extensive network of Prox1+ lymphatic vasculature was
found in the dura mater (Figure 2), expressing hallmarks of
classical LECs (PECAM-1, LYVE-1, PDPN, VEGFR3, CCL21)
(Aspelund et al., 2015; Louveau et al., 2015; Antila et al., 2017;
Izen et al., 2018; Ahn et al., 2019) (Figure 2; Table 1). Although the
first evidence of the existence of lymphatics in the human dura
mater was already described by PaoloMascagni in 1787 (reviewed in
Sandrone et al., 2019), due to their difficult location it is not until
recently that the use of state-of-the-art confocal imaging and genetic
models allowed a precise characterization and functional description
of this lymphatic network surrounding the brain parenchyma.

In mice, multiple groups including ours, carried out an
exhaustive examination of the meningeal lymphatic formation
during postnatal and adult stages using Prox1-BAC-GFP mice

(Antila et al., 2017; Izen et al., 2018). Whereas most lymphatic
vessels in the peripheral tissues develop during embryonic stages,
meningeal lymphatics are formed during the first postnatal month,
appearing first at the base of the skull (Antila et al., 2017; Izen et al.,
2018), as it was also reported in the Schlemm’s canal (Aspelund
et al., 2014) and lacteal vessels in the gut (Kim, Sung, and Koh, 2007).
Like classical lymphatic vessel development, meningeal lymphatics
require Prox1 and VEGF-C/VEGFR3 signaling for their proper
formation and maintenance during adult stages (Absinta et al.,
2017). Indeed, blockade of this signaling impairs meningeal
lymphatic development, while boosting VEGF-C induces
meningeal lymphangiogenesis, suggesting promising regenerative
potential (Aspelund et al., 2015; Antila et al., 2017; Hsu et al., 2019;
Patel et al., 2019; Bolte et al., 2020; Song et al., 2020; Yanev et al.,
2020). Nevertheless, a recent work showed that mice lacking Plcγ2
have impaired structural remodeling and maturation of meningeal
lymphatics, accompanied with reduced lymph flow, suggesting that
meningeal lymphatic formation might not be only dependent on the
VEGF-C/VEGFR3 signaling axis (Balint et al., 2019a). Intriguingly,
after the re-discovery of the lymphatic vasculature in the dura mater
in mice (Aspelund et al., 2015; Louveau et al., 2015), meningeal
vessels were carefully examined in humans (Absinta et al., 2017; Eide
et al., 2018; Jani and Sekula, 2018; Shibata-Germanos et al., 2020;
Jacob et al., 2022), non-human primates (Absinta et al., 2017), and
zebrafish (Castranova et al., 2021). Meningeal lymphatic vasculature
that wraps the spinal cord also develops postnatally, through VEGF-
C/VEGFR3 signaling (Antila et al., 2017; Louveau et al., 2018; Jacob
et al., 2019).

The presence of immune cells in the meningeal vessels under the
steady state suggests their involvement in immune cell trafficking
and immunosurveillance of the CNS (Louveau et al., 2015). Recent
studies elegantly demonstrated the skull and vertebrae bones as new
bone marrow niches for hematopoiesis supplying blood-borne
myeloid cells (including monocytes, neutrophils, and
macrophages) and B cells to the dura mater (Brioschi et al.,
2021; Cugurra et al., 2021; Schafflick et al., 2021). These cells
transit from the bone to the meninges through specialized
vascular connections, challenging the previous accepted idea that
meningeal adaptative immunity originates from the systemic
circulation.

High-resolution imaging with the injection of fluorescent tracers
into the brain parenchyma or the CSF in the cisterna magna clearly
demonstrated that lymphatic vessels in the dura mater play an
essential role in the clearance of macromolecules and immune cells
from the CSF within the SAS into the deep cervical lymph nodes
(dcLNs) (Aspelund et al., 2015; Louveau et al., 2015; Absinta et al.,
2017; Da Mesquita et al., 2018; Louveau et al., 2018; Ahn et al., 2019;
Balint et al., 2019b; Bolte et al., 2020; Chen et al., 2020). Interestingly,
there are anatomical differences in meningeal vasculature between
the dorsal and basal part of the skull. While dorsal meningeal
lymphatics mainly present zipper-like junctional pattern of LECs,
in basal vessels the LECs are loosely joined by intermittent button-
like junctions, which allow them a better uptake of the CSF
macromolecules and subsequent drainage outside the brain (Ahn
et al., 2019). Altogether, these recent findings about key roles of
meningeal lymphatics in the CNS clearance and
immunosurveillance under physiological conditions generated
substantial excitement in medical research due to their potential
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contributions in a variety of pathological models, including
autoimmune diseases, cerebrovascular injury, brain tumors or
age-related neurological diseases, which implied promising
avenues for the therapeutic treatment of cerebrovascular injuries
and age-related neurodegenerative diseases.

Extraordinary work by Jacob et al. showed a similar anatomy in
the meningeal lymphatic vasculature between mice and humans
(Jacob et al., 2022). 3D characterization with unprecedented
resolution was performed combining the imaging of intact whole
head in mice and improved non-invasive magnetic resonance
imaging (MRI) in humans, filling gaps in the knowledge about
the vascular connections between the meninges and the collecting
lymph nodes. More importantly, the innovative use of MRI
combining elliptic venography, T1 SPACE and DANTE
sequences provided enough resolution to compare the meningeal
lymphatic network in human patients and identify morphological
anomalies. As an example, the authors examined 11 patients with
neurovascular diseases and identified that only those with Gorham-
Stout disease had significantly altered meningeal lymphatics. Thus,
this work provides new insights in the detection of meningeal
alterations between individuals with neuropathological conditions
(Jacob et al., 2022).

3.3 Non-lumenized LECs in the surface of
zebrafish brain and mammalian
leptomeninges: Potential roles in
neurological diseases and regeneration

Recently, multiple groups described the presence of a distinctive
LEC population in the surface of the brain (Figure 2). These LECs
appear to be unusual isolated perivascular cells with a macrophage-
like morphology, and they do not form lumenized tubes under
physiological conditions, although they express Prox1 and exhibit
features of LECs due to their molecular markers (LYVE-1, VEGFR3)
and their venous derived origin, which is dependent on VEGF-C/
VEGFR3 signaling (Bower et al., 2017; van Lessen et al., 2017;
Venero Galanternik et al., 2017; Castranova et al., 2021).

Initially identified in the zebrafish model, brain perivascular
LECs are known asmural LECs (muLECs) (Bower et al., 2017), brain
LECs (bLECs) (van Lessen et al., 2017) or fluorescent granular
perithelial cells (FGPs) (Venero Galanternik et al., 2017).
Interestingly, an analogous population was also found in the
mouse and human leptomeninges, the brain-associated meningeal
layers that includes the arachnoid mater and pia mater, which is why
they were termed leptomeningeal LECs (LLECs) (Shibata-Germanos
et al., 2020). In mammals, FGPs or “Mato Cells” were previously
characterized as perivascular macrophages with a bone marrow-
derived origin (Mato and Ookawara, 1981; Audoy-Remus et al.,
2008; Faraco et al., 2016) due to the expression of the Mannose
Receptor 1 (Mrc1) and their scavenger potential, which was thought
to protect the brain from toxic waste products by phagocytosis and
pinocytosis (reviewed in Suarez and Schulte-Merker, 2021).
Nevertheless, studies with extensive live imaging and
sophisticated lineage tracing discard the pericytes-, neural crest-
or hematopoietic-derived origins, demonstrating instead that this
unique population derives from pre-existing venous vessels in the
CNS (Bower et al., 2017; van Lessen et al., 2017; Shibata-Germanos

et al., 2020), which sprout to cover the surface of the brain before
acquiring their mesenchymal/perivascular morphology (Bower
et al., 2017). In a similar fashion, genetic deletion of the
myelopoietic lineage in PU.1 mutants did not affect the
formation of these muLECs/bLECs/FGPs/LLECs (van Lessen
et al., 2017; Shibata-Germanos et al., 2020), but the loss of Ccbe1,
a VEGF-C-activating protease, gave rise to abnormal sprouting and
asymmetrical distribution of these cells on the surface of the brain
(van Lessen et al., 2017), clearly demonstrating their lymphatic
origin and dependence on VEGF-C/VEGFR3 signaling.

A key hallmark of perivascular LECs is the presence of large
cytoplasmic vesicles and the expression of scavenger receptors
Mrc1 and Stab1 (Table 1), suggesting their endocytic role to
uptake and clear waste products that enter into the interstitial
space for degradation. Previous studies with tracer injections in
the parenchyma or CSF in mouse and zebrafish showed the ability of
perivascular LECs to actively take up polysaccharides and
glycoproteins with at least 150 KDa size and internalize them
through endocytosis with higher efficiency than macrophages or
microglia, whereas lower efficiency was proved in the uptake of
molecules higher than 500 KDa (Venero Galanternik et al., 2017;
Shibata-Germanos et al., 2020; Huisman et al., 2022). Such endocytic
capacity quickly raised the interest in examining whether they could
play a relevant role in the surveillance and clearance of Aβ peptides
in the brain, the toxic driver of Alzheimer Disease’s progression.
Real-time in vivo analysis in zebrafish allows the investigation of the
clearance capacity of Amyloid-β isoform 42 (Aβ1–42). Remarkably,
Jeong et al. (2021) demonstrated that the dynamic uptake of Aβ42
depends on its aggregation status, where Aβ1-42 monomers are
selectively internalized and cleared by perivascular LECs but not
Aβ1–42 oligomers. The discovery of these isolated LECs in the surface
of the brain involved in the homeostasis and uptake of Aβ peptides
provides new therapeutic avenues in AD, where the enhancement of
their function in combination with the reduction of Aβ aggregates
might contribute to new approaches to prevent their accumulation.
Similarly, Amyloid β1–40 clearance by LLECs was shown in mice,
illustrating their conserved functions in vertebrates (Shibata-
Germanos et al., 2020).

Under physiological conditions, muLECs/bLECs/FGPs/LLECs
stay as loose single cells without forming lumenized lymphatic
vessels; however, elegant studies by Chen et al. (2019) described
sticking roles for perivascular LECs in resolving tissue damage
caused by vascular dysfunction in the zebrafish brain. Using a
model of brain cerebrovascular injury in zebrafish, the authors
demonstrated that some perivascular LECs could form lymphatic
tubes that penetrated the brain parenchyma to drain the ISF and
resolve the edema. Although such transient invasion of lymphatic
vessels has not been reported in mammals, it demonstrates a
potential role of perivascular LECs in brain regeneration in the
zebrafish model.

4 Potential mechanisms of CNS
lymphatic avascularity

The continuous emerging of clearing tissue protocols in
combination with the use of 3D imaging from intact tissues with
cell-specific markers is revolutionizing the identification of
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lymphatic vasculature in tissues that were long considered devoid of
them, including the brain and spinal cord in the CNS, the eye, and
the bone. The most recent example was the sighting of lymphatic
vessels inside the bone in mice and humans (Biswas et al., 2023).
However, in the CNS, despite the finding of lymphatic vessels and
non-lumenized LECs in the meningeal layers surrounding the
surface of the brain (dura mater and leptomeninges, respectively),
there is no evidence of the presence of classical lymphatic
vasculature inside the brain parenchyma in mammals under
physiological conditions.

Potential mechanisms that could promote the appearance of
lymphatic vessels in the different organs are 1) LEC sprouting and
invasion of pre-existing lymphatic vessels (lymphangiogenesis) in
response to lymphangiogenic signaling such as VEGF-C/VEGFR3,
or 2) differentiation of BECs or non-ECs into LECs
(lymphvasculogenesis), which requires the expression of the
lymphatic transcriptional regulator Prox1. We discuss how the
CNS develops lymphatic avascularity by preventing LEC invasion
and differentiation.

4.1 LEC invasion into the CNS parenchyma in
the zebrafish vasculature model

Multiple reports have suggested the boosting of VEGF-C
signaling as a promising therapeutic approach to enhance
meningeal lymphangiogenesis to halt pathologies like edemas, or
toxic peptides accumulation (Aspelund et al., 2015; Antila et al.,
2017; Hsu et al., 2019; Patel et al., 2019; Bolte et al., 2020; Song et al.,
2020; Yanev et al., 2020). Nevertheless, lymphatic vessels or non-
lumenized LECs have not been observed inside the brain and spinal
cord parenchyma in mammals under steady-state or disordered
conditions. Still the molecular cues that might prevent the CNS
environment from the invasion of meningeal lymphatics remain
unelucidated. Similarly, an extensive population of LYVE-1+
macrophages are found in the borders of the brain, but never
inside the parenchyma (Figure 1E). LYVE-1 is a well-established
receptor for hyaluronan (HA), a key component of the extracellular
matrix in many tissues (Banerji et al., 1999). Considering the recent
studies that LYVE-1+ cells are associated with HA-enriched regions
in the mammary gland (Wang et al., 2020a), HA accumulation in the
boundaries of the brain and spinal cord may function as a physical
barrier to prevent the invasion of LYVE-1-expressing cells. Further
studies would be required to elucidate such a mechanism underlying
lack of LYVE-1-expressing cells in the CNS parenchyma.

In addition to the apparent incapability of meningeal lymphatics
to penetrate the brain parenchyma in mammals, a transient
lymphatic invasion of the abovementioned non-lumenized LECs
in response to cerebrovascular injury was described in zebrafish
model. By using NTR-Mtz system and photochemical thrombosis to
induce brain vascular injury, Chen et al. (2019) proved the capability
of LECs located in the borders of zebrafish brain to activate the
ingrowth of LECs upon cerebrovascular injury, dependent on
VEGF-C/VEGFR3 signaling, and penetrate the injured brain
parenchyma to drain the ISF and resolve brain edema. In this
work, the authors classified the ingrowth lymphatic vessels (iLVs)
in two different subpopulations depending on their functions:
“stand-alone iLVs” and “track iLVs.” The stand-alone iLVs

become lumenized lymphatics to drain the ISF and resolve the
edema in the injured brain parenchyma whereas the other iLVs
transdifferentiate into blood vessels (iLVs-to-BVs
transdifferentiation), giving rise to early-formed blood vessels in
the ischemic area. The track iLVs serve as a migratory scaffold (or
“growing tracks”) to guide and support the growth of late-generated
blood vessels necessary to promote the functional recovery in the
damaged tissue without inducing uncontrolled vessel growth (Chen
et al., 2019; Chen et al. 2021; Chen et al., 2022). Mechanistically, iLV-
to-BV transdifferentiation exclusively occurs in stand-alone iLVs
through activation of Notch signaling (Chen et al., 2019). These new
early formed blood vessels are covered by pericytes and become
functional with blood flow within 2 days after injury. By contrast,
track iLVs are unable to transdifferentiate since Notch signaling is
suppressed. Surrounding blood vessels express ephrinB2a, activating
the expression of EphB4 in the track iLVs, which in turn promotes
Notch inhibition (Chen et al., 2021). Moreover, the authors
described that the formation of new vessels guided by the
“growing tracks” is regulated by CXCL12/CXCR4 signaling axis
(Chen et al., 2022). Whilst the chemokine receptor Cxcr4a is
transcriptionally activated in track iLVs after cerebrovascular
damage, its ligand Cxcl12b is expressed by the surrounding blood
vessels, guiding the directionality of iLV ingrowth. By using Cxcr4a
and Cxcl12b mutants, the authors highlighted the critical role of
CXCL12/CXCR4 signaling in controlling the appropriate
directionality and vessel patterning during cerebrovascular
regeneration, avoiding increased branching and uncontrolled
formation of blood vessels (Chen et al., 2022). This is a transient
invasion of lymphatic vessels inside the brain parenchyma, in that
stand-alone iLVs gradually disappear after the completion of
cerebrovascular regeneration by apoptosis, maintaining the
lymphatic avascular status inside the brain parenchyma once the
brain tissue is fully recovered (Chen et al., 2021).

4.2 No lymphatic differentiation in the CNS
vasculature

The transcription factor Prox1 is involved in many developmental
processes including neurogenesis and tissue development such as heart,
eye lens, liver, and pancreas. In the vascular system, it serves as the
“master regulator” that controls the switch from BEC into LEC fate.
During the last two decades, a series of pioneering studies showed that
Prox1 is required for the acquisition and maintenance of the lymphatic
phenotype (Wigle and Oliver, 1999; Hong et al., 2002; Petrova et al.,
2002; Johnson et al., 2008; Kim et al., 2010; Kim et al., 2013). The
expression of Prox1 in the LEC progenitors that bud off from the
cardinal vein is necessary not only to activate the expression of LEC-
specific genes, but also to repress BEC-specific transcriptional programs
(Johnson et al., 2008). Numerous Prox1 loss-of-function and gain-of-
function studies clearly demonstrated the malleability of ECs to acquire
BEC or LEC fate. In vivo and in vitro assays clearly showed that Prox1 is
necessary and sufficient to induce the lymphatic phenotype and repress
the BEC program (Wigle and Oliver, 1999; Hong et al., 2002; Petrova
et al., 2002; Francois et al., 2008; Johnson et al., 2008). Likewise, in the
absence of this transcription factor the suppression of the BEC program
is not achieved and ECs lose their lymphatic identity (Johnson et al.,
2008; Kim et al., 2010; Kim et al., 2013).

Frontiers in Cell and Developmental Biology frontiersin.org08

González-Hernández and Mukouyama 10.3389/fcell.2023.1150775

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1150775


Considering the lack of Prox1 expression in the CNS
vasculature, in this section we discuss the hypothesis that
Prox1 expression might be strictly controlled in the CNS ECs to
prevent LEC differentiation and preserve the BBB properties. Here
we provide a general overview about regulatory mechanisms of
Prox1 expression in the lymphatic system, and we debate potential
mechanisms that might regulate Prox1 expression in the CNS
vasculature, with a particular focus on Wnt/β-catenin signaling
required for the BBB development and maintenance.

4.2.1 Prox1 regulation in LEC development
Diverse transcriptional and epigenetic regulators have been

proposed to control Prox1 expression in the vascular system
(summarized in Figure 3). The initiation of Prox1 expression in
the LEC progenitors requires the expression of Sox18 and Nr2f2
transcription factors (Francois et al., 2008; Srinivasan et al., 2010).
While Sox18 is only needed for the initial specification of LECs
(Francois et al., 2008), Nr2f2 is critical for the venous specification,
which is required for the subsequent lymphatic specification and
migration of these progenitors away from the cardinal vein
(Srinivasan et al., 2007; Srinivasan et al., 2010), but not for the
maintenance of the lymphatic fate once the lymphatic system has
been established. A bindingmotif for Nr2f2 was found in the −9.5 kb
upstream open reading frame of the Prox1 gene, whereas two

different binding sites have been described for Sox18
(−1.1 and −0.8 kb, respectively, Figure 4). Epigenetically, the
histone H3K79 methyltransferase DOT1L controls
Sox18 transcriptional regulation, which subsequently regulates
Prox1 expression, as well as other lymphatic essential genes such
as Foxc2 and VEGFR3, by inducing chromatin opening that
promotes their transcriptional activation (Yoo et al., 2020). Mafb
is another upstream regulator of the lymphatic differentiation
factors Prox1, Sox18 and Nr2f2 during embryonic and postnatal
development (Dieterich et al., 2015). By directly binding to the first
intron in the Prox1 gene, the combinationMafb and Prox1 generates
a positive feedback loop in which the increased expression of
Prox1 also maintains the expression of Mafb. In a similar line of
work, another well-known positive feedback loop in the lymphatic
vasculature is the Prox1/VEGF-C/VEGFR3 axis. The Prox1-
VEGFR3 autoregulatory loop is critical for controlling the
number of specified LEC progenitors budding from the cardinal
vein in response to VEGF-C and the subsequent maintenance of the
lymphatic identity (Srinivasan et al., 2014). Furthermore, the
hematopoietically expressed homeobox (HHEX) transcription
factor was recently found as an upstream regulator of Prox1 as
well as VEGF-C and FLT4 during lymphatic development. Indeed,
HHEX binds to the −0.8 kb upstream of the Prox1 transcriptional
start site (Gauvrit et al., 2018) (Figures 3, 4).

FIGURE 3
Transcriptional and epigenetic regulation of Prox1 in the vascular system. Schematic representation of different activators/repressors of
Prox1 expression in the vascular system is shown. FAO, fatty acid oxidation; ACoA, acetyl coenzyme A.
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An interesting regulatory region including the binding sites of
Gata2, Foxc2, Nfatc1, and Prox1 itself was identified in the −11 kb
upstream of the Prox1 transcriptional start site. Oscillatory shear
stress from the lymph flow upregulates the levels of these factors,
which therefore binds to the −11 kb enhancer region to increase its
expression in the valvular LECs (Kazenwadel et al., 2015). Genome
editing of the GATA-binding site in this enhancer element abolished
its activity and impaired lymphatic vascular development,
demonstrating the crucial role of GATA2 in activating the
Prox1 −11 kb regulatory element (Kazenwadel et al., 2023).
Moreover, the authors revealed that mutants with a reduced
expression of Prox1 showed an enhanced hemogenic capacity,
submitting the first evidence of lymphatic endothelium as a
source of hematopoietic cells, and suggesting the role of Prox1 in
repressing this property (Kazenwadel et al., 2023). Wnt/β-catenin
signaling also interacts with Prox1 in a feedback loop to induce the
expression of Gata2 and Foxc2 in the valvular ECs (Cha et al., 2016).
Folliculin (FLCN) suppresses the lymphatic specification in venous
ECs through the degradation of TFE3 transcription factor, which
binds to the −0.15 kb upstream of the Prox1 transcription start site,
and therefore prevents the expression of the lymphatic master
regulator: lack of folliculin allows TFE3 to translocate into the
nucleus and upregulate Prox1 expression by binding to its
promoter in venous ECs (Tai-Nagara et al., 2020) (Figures 3, 4).

Suppression of Prox1 expression has been proposed to control
the balance between LEC and BEC specification. In vitro studies
suggest that miR-31 inhibits lymphatic fate by downregulating
Prox1 expression (Pedrioli et al., 2010). Similarly, miR-181
downregulates Prox1 expression by binding to its 3-UTR region,
which leads to its translational inhibition and transcript degradation
(Kazenwadel, Michael, and Harvey, 2010). Notch signaling
functions as a negative regulator of the Nr2f2/
Prox1 transcriptional axis to block lymphatic specification (Kang
et al., 2010; Zheng et al., 2011; Murtomaki et al., 2013; Choi et al.,
2017). By contrast, opposite results were found in zebrafish and
postnatal mice, where Dll4/Notch signaling is required for the
correct lymphatic development (Geudens et al., 2010; Niessen

et al., 2011). These contrary roles of Notch signaling in
regulating LEC fate could be context-dependent to maintain the
precise balance between BEC and LEC specification. In a similar line
of research, YAP/TAZ signaling functions as a positive regulator or
inhibitor of Prox1 expression in the different studies (Cho et al.,
2019; Cha et al., 2020). Whereas Cho et al. (2019) found that YAP
and TAZ act as important negative regulators of Prox1 during
lymphatic remodeling and postnatal lymphatic valve
morphogenesis, Cha et al. (2020) described thar YAP/TAZ
signaling was required to maintain the valvular ECs and
experiments in vitro demonstrated that YAP/TAZ positively
regulates Prox1 in primary human LECs (HLECs). The
discrepancies found between both studies might be due to the
differences in the genetic models used, nevertheless both groups
obtained the same results that the hyperactivation of YAP/TAZ
signaling results in the downregulation of Prox1 in vitro. These
results suggested that a proper level of YAP and TAZ is required to
maintain the expression of Prox1 in LECs (Figure 3).

Post-translational regulations of Prox1 influence the
transcriptional response (reviewed in Bui and Hong, 2020).
Several lysine sites on Prox1 can be modified by small ubiquitin-
related modifier (SUMO) (Shan et al., 2008). Sumoylation
modulates Prox1 DNA binding to their target genes, enhancing
the transcriptional activation of downstream lymphatic-related
genes (Pan et al., 2009). In cancer cells, the
Ser79 phosphorylation of Prox1 by AMP-activated protein kinase
promotes Prox1 degradation through the recruitment of the CUL4-
DDB1 E3 ubiquitin ligase complex (Wang et al., 2022). Despite the
importance in post-translational regulations to modulate
Prox1 transcriptional activity, how different modifications of
Prox1 in response to distinct upstream signals regulate LEC
development and maintenance remain elusive.

Lastly, novel findings spotlighted the involvement of metabolism
in the regulation of Prox1 and lymphangiogenesis. A beautiful work
by Wong et al. described a role of fatty acid β-oxidation (FAO) in
LEC differentiation. Prox1-mediated transcriptional upregulation of
carnitine palmitoyltransferase 1a (CPT1a) promotes mitochondrial-

FIGURE 4
Prox1 regulation in LEC development. Schematic representation of bidingmotifs for multiple transcriptions factors and regulators in the upstream of
the Prox1 gene is shown. In the −43/−49 kb region, TCF:LEF and TCF:SOX overlapping binding sites are found, suggesting a possible competition
between LEF and SOX factors to bind to the same motif.
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dependent FAO which increases the level of acetyl coenzyme A
(ACoA). The ACoA is utilized by Prox1/p300 complex to promote
the histone acetylation of key lymphangiogenic genes, including
Prox1 itself. Therefore, the upregulation of CPT1a by Prox1 is also a
positive feedback loop to maintain Prox1 expression active in LECs
(Wong et al., 2017). Moreover, recent exciting study by Ma et al.
demonstrated that mitochondrial complex III is required to
maintain the epigenetic regulation that promoted the Prox1-
VEGFR3 autoregulatory loop (Ma et al., 2021).

Altogether, the expression levels of Prox1 in the vascular system
encompass multiple transcriptional and epigenetic players that
maintain the proper balance between blood endothelial and
lymphatic endothelial specification.

4.2.2 Specific regulation of Prox1 in the CNS
vasculature

Although some Prox1+ LECs are derived from venous
capillaries in the developing Schlemm’s canal and meninges, no

Prox1 expression is observed in the vasculature of the brain and
spinal cord parenchyma (Antila et al., 2017; Izen et al., 2018)
(Figure 5). Considering the observation that in vivo
overexpression of Prox1 in the vascular bed using Tie1 promoter
decreased the expression of junctional proteins such as zonula
occludens 1 (ZO-1), Occludin (Ocln) and JAM-1, as well as
triggered increase permeability (Kim et al., 2010; Kim et al.,
2013), the lack of lymphatic vessels and suppression of Prox1 in
ECs might be compatible with the BBB function which regulates the
brain homeostasis and protects the CNS. CNS ECs might avoid the
expression of Prox1 to maintain the BBB properties and functions;
however, little is known about whether ectopic Prox1 expression
affects the BBB properties and functions and what regulates
Prox1 expression in the CNS ECs.

The canonical Wnt/β-catenin signaling is essential for the
acquisition and maintenance of the BBB properties (Liebner
et al., 2008; Daneman et al., 2009). Activation of T-cell factor/
lymphoid enhancer factor (TCF/LEF1) in brain ECs is required to

FIGURE 5
Prox1 is not expressed in the developing CNS vasculature. Section immunostaining of Prox1-BAC-GFP brain at E13.5 with anti-PECAM1 (cyan) and
anti-LYVE-1 (red) is shown. The boxed regions in (A) are magnified in (B,C), and the boxed region in (B) is magnified in (B’). In the brain parenchyma (B,B’),
Prox1-GFP expression is found in a subset of neural progenitors [(B) green, white arrowheads], but this GFP expression does not colocalize with the
PECAM1+ endothelial cells [(B’) green vs. cyan]. In the trunk (C), Prox1-GFP + LYVE-1+ PECAM1+ lymphatic vessels are found [(C) arrows]. Scale bars
500, 100, and 20 μm.
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control the expression of BBB-specific programs that induce the
expression of TJ proteins and the repression of PLVAP to inhibit
fenestration, permeability, and transcytosis. Given that Wnt/β-
catenin signaling declines at late embryonic and postnatal stages
(Corada et al., 2019), Wnt/β-catenin signaling appears to be
maintained at the minimum active levels to maintain the
integrity of the adult BBB: EC-specific deletion of β-catenin in
adult mice compromises the BBB integrity by downregulating the
expression of TJ proteins Claudin 5 (Cldn5), ZO-1 and Ocln (Zhou
et al., 2014; Tran et al., 2016; Hussain et al., 2022). Moreover, these
mutants increase transcytosis due to a reduction in the expression of
major facilitator superfamily domain containing 2A (Mfsd2a),
which represses the caveolae-dependent transcytosis (Ben-Zvi
et al., 2014; Andreone et al., 2017; Wang et al., 2020b; Cui et al.,
2021; Hussain et al., 2022).

Studies by Boye et al. (2022) described the transmembrane
receptor Unc5b and its ligand Netrin-1 as upstream regulators of
β-catenin in brain ECs, since their absence provokes cerebrovascular
leak in postnatal and adult mice. Endothelial-specific deletion of
Unc5b in mice generated BBB leakage for tracers up to 40 KDa and
the brain microvasculature and displayed decreased Cldn5 and
increased PLVAP expression, common features under the BBB
breakdown.

Interestingly, there is wide evidence that Prox1 is a downstream
target of Wnt/β-catenin/TCF signaling in many different cell types,
including colon cancer cells, neural stem cells (NSCs), LECs,
lymphatic valves, and hematopoietic stem cells (HSCs) (Petrova
et al., 2008; Karalay et al., 2011; Nicenboim et al., 2015; Cha et al.,
2016; Cha et al., 2018; Lin et al., 2022). TCF/LEF binding sites are
identified in the −43 and −49 kb regions of the Prox1 transcriptional
start site, which are conserved in human, mouse, rat, and chicken
(Petrova et al., 2008; Karalay et al., 2011) (Figure 4). ChIP assay
demonstrated that TCF4 binds specifically to the −49 kb region to
activate Prox1 expression in intestinal cancer cells (Petrova et al.,
2008), whereas in murine hippocampal NSCs, Prox1 activation
requires the binding of TCF/LEF to both the −43 and −49 kb
regions (Karalay et al., 2011). The canonical Wnt/β-catenin
signaling regulates LEC specification in zebrafish and human
embryonic stem cells (hESCs) (Nicenboim et al., 2015) by
promoting the angioblast-to-lymphatic transition, as well as
inducing Prox1 expression in HSCs (Lin et al., 2022).

The Sry-related HMG box 17 (Sox17) transcription factor exerts
a positive role on Wnt/β-catenin signaling in CNS ECs to maintain
the BBB (Corada et al., 2019) and blood-retina barrier (BRB)
properties (Yang et al., 2020). Sox17 is one of the major
transcriptional targets of Wnt/β-catenin signaling during CNS
vascular development, while Sox17 modulates Wnt/β-catenin
signaling. Indeed, EC-specific deletion of Sox17, which causes
BBB disruptions, can be rescued by the expression of a
constitutive active form of β-catenin (Corada et al., 2019).
Considering that Sox17 expression increases during development
and after birth, Sox17 and β-catenin act in synergy to maintain the
integrity of the brain microcirculation. Interestingly, TCF/LEF and
SOX binding sites overlap in the −43 and −49 kb regions upstream
Prox1 locus (Figure 4), indicating that the presence of SOX family
proteins may repress the effects of Wnt/β-catenin on Prox1
transcriptional activation (Kuwabara et al., 2009; Karalay et al.,
2011).

Altogether, although the regulation of the lymphatic master
regulator Prox1 in the CNS vasculature is poorly understood, there is
indirect evidence that supports that its expression should be
downregulated in the brain and spinal cord ECs to keep the BBB
properties, which include the high expression of TJ proteins, lack of
fenestration and low rate of transcytosis and permeability across the
barrier. Future studies to determine whether SOX family
transcription factors expressed in the brain microvasculature
could be inactivating the effect of Wnt/β-catenin signaling on
Prox1 locus to control its expression as it has been already
shown in adult neurogenesis (Kuwabara et al., 2009) would be
interesting.

5 Concluding remarks and outstanding
questions

Traditionally, the CNS has been considered an immune-
privileged site due to two main features that differentiate this
tissue from the others in the body: 1) the lack of efficient
immune response, which is linked with the absence of lymphatic
vasculature in the brain and spinal cord parenchyma, and 2) the
presence of a restricted blood-brain barrier composed by unique
microvasculature, characterized by the expression of high level of TJ
proteins and restricted transcytosis and fenestration, properties
required to maintain the barrier function. Considering the
functional and structural differences between the lymphatic and
the CNS vascular beds, the specialization of the CNS ECs to form the
BBB is incompatible with the acquisition of the lymphatic
phenotype in the brain and spinal cord parenchyma. But how
does the CNS microenvironment prevent lymphatic vessel
development?

We here discuss two potential mechanisms by which the CNS
prevents the emergence of lymphatic vasculature inside the brain
and spinal cord parenchyma. One potential mechanism is that,
albeit the extensive network of meningeal lymphatics in the skull-
associated meninges and non-lumenized LECs in the surface of the
brain, the CNS may prevent the LEC sprouting and invasion from
the pre-existing lymphatic vessels in adjacent tissues. The other is
that the CNS may prevent the differentiation of BECs into LECs,
through the suppression of Prox1 expression in CNS ECs.

It seems that the CNS microenvironment provides a permissive
environment for the development of blood vasculature but not
lymphatic vasculature. VEGF-A is expressed and released by
neural progenitors to promote the ingrowth of capillaries in the
developing brain and spinal cord parenchyma. Likewise, VEGF-C is
also expressed in embryonic and early postnatal brain and induces
proliferation of neural progenitors (Le Bras et al., 2006; Ward and
Cunningham, 2015). However, CNS ECs express lower level of
VEGFR3, possibly due to the lack of the positive feedback loop
between Prox1 and VEGFR3. These observations suggest that the
lack of lymphatic vessels in the brain and spinal cord parenchyma is
unlikely to result from an insufficient microenvironment for
lymphatic vessel development.

VEGF-C/VEGFR3 signaling activates lymphangiogenesis in
development as well as pathological settings. In the bone, the
tissue long considered devoid of lymphatic vasculature until the
recent findings (Biswas et al., 2023), the exogenous expression of
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VEGF-C was enough to induce lymphangiogenesis and invasion of
pre-existing lymphatic vessels in the neighbor tissues (Hominick
et al., 2018; Monroy et al., 2020). Similarly, taking advantage of the
plasticity shown by the lymphatic system, several groups promoted
the expansion of meningeal lymphatics by the exogenous expression
of VEGF-C, resulting in a better immune response against brain
tumors or improvement of CSF drainage to reduce
neuroinflammation (Antila et al., 2017; Song et al., 2020).

Brain mural LECs in the zebrafish vasculature model invade
into the brain parenchyma and become lumenized lymphatics
that can drain the ISF and resolve the edema (Chen et al., 2019).
However, in the murine CNS vasculature model, LEC invasion
from the meningeal lymphatic vessels or leptomeningeal non-
lumenized LECs into the brain parenchyma has not been
reported under the steady or pathological conditions. Further
studies are necessary to elucidate the impact of this change
during evolution.

The transcriptional and epigenetic regulators controlling
Prox1 expression in the vascular system maintain the balance
between BEC and LEC fate; nonetheless, little is known about
specific Prox1 regulation in the CNS BECs. There are examples of
non-CNS organs where Prox1 expression is prevented to ensure
the segregation between blood and lymphatic vasculatures.
Findings from Tai-Nagara et al. (2020) highlighted the role of
FLCN gene as a gatekeeper to avoid Prox1 expression in those
BECs that must keep the blood specification. The expression of
FLCN in BECs prevents the translocation of the TFE3 to the
nuclei, impairing the activation of Prox1 and therefore the
induction of lymphatic specification.

What is the link between the lack of lymphatic vessels and
BBB formation? The forced expression of Prox1 in BECs leads to
a reduced expression of junctional proteins and an increase in the
vascular permeability (Kim et al., 2010; Kim et al., 2013). In the
CNS vasculature, these changes are incompatible with the
maintenance of the BBB integrity, raising the possibility that
Prox1 expression should be tightly suppressed in BBB ECs.
Which signaling controls Prox1 suppression and BBB
formation? Wnt/β-catenin signaling is crucial for the
acquisition and maintenance of the BBB properties, including
the induction of TJ and adherens junction proteins as well as the
inhibition of fenestration, permeability, and transcytosis. Of
note, identification of TCF/LEF binding sites upstream of the
Prox1 locus suggested this transcription factor as a downstream
target of Wnt/β-catenin/TCF pathway in different cell types. In a
similar line of research, Sox17 is a major downstream target and
regulator of Wnt/β-catenin signaling, and TCF/LEF and SOX
binding sites overlap in the −43 and −49 kb regions upstream
Prox1 locus. Whether inactivation of Wnt/β-catenin signaling
and Sox17 affects Prox1 expression in CNS ECs remains unclear.
Elegant studies in zebrafish by Das et al. (2022) demonstrated
that anal fin vascularization requires transdifferentiation of

previously formed lymphatic vessels into blood vessels.
Notably, the loss of LEC fate in this model is related to the
upregulation of several BEC markers, where Sox17 plays a
relevant role in the suppression of Prox1 expression to
promote the LEC-to-BEC transition. Considering that
Sox17 expression increases in CNS ECs during BBB
development and maturation, Sox17 might repress LEC fate
and maintain CNS EC properties. Further studies will provide
the fundamental mechanism of lymphatic avascularity in the
brain and spinal cord parenchyma. Moreover, a possible
dysregulation of Prox1 expression could lead to BBB
alterations in pathological scenarios.
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