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Type 2 diabetes (T2D) and obesity have reached epidemic proportions. Incretin
therapy is the second line of treatment for T2D, improving both blood glucose
regulation and weight loss. Glucagon-like peptide-1 (GLP-1) and glucose-
stimulated insulinotropic polypeptide (GIP) are the incretin hormones that
provide the foundations for these drugs. While these therapies have been
highly effective for some, the results are variable. Incretin therapies target the
class B G protein-coupled receptors GLP-1R and GIPR, expressed mainly in the
pancreas and the hypothalamus, while some therapeutical approaches include
additional targeting of the related glucagon receptor (GCGR) in the liver. The
proper functioning of these receptors is crucial for incretin therapy success and
here we review several mechanisms at the cellular and molecular level that
influence an individual’s response to incretin therapy.
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Introduction

Type 2 diabetes (T2D) is one of the major health concerns affecting ~9% of the global
population, putting those affected at risk of cardiovascular-associated mortality (Editors,
2021). T2D is characterized by elevated blood glucose levels resulting from a combined
failure of pancreatic beta cell function (reduced or dysregulated insulin secretion) and
glucose clearance by peripheral tissues (insulin resistance) (James et al., 2021).

The incretins glucagon-like peptide-1 (GLP-1) and glucose-stimulated insulinotropic
polypeptide (GIP) are peptide hormones secreted from intestinal enteroendocrine cells
(Baggio and Drucker, 2007) that regulate blood glucose levels by potentiating insulin
secretion in response to nutrient intake as well as promoting beta cell survival (Nauck
andMeier, 2018), with the “incretin effect” referring to the greater amount of insulin secreted
in response to an oral glucose load relative to an equal intravenous dose. Incretin mimetics
are ideal candidate therapies for T2D as they exert their actions specifically during
hyperglycaemic conditions and have the additional capacity to regulate body weight
(Kim and Egan, 2008).

Since 2005, six incretin therapy drugs have been approved by the FDA (United States)
and the MHRA (United Kingdom) for T2D treatment: Exenatide, Lixisenatide, Liraglutide,
Dulaglutide, Semaglutide and Tirzepatide, all of which are administered daily or once weekly
via subcutaneous injection; although Semaglutide is now also available as an oral medication
(Latif et al., 2022). Initially, incretin therapies focused on synthesizing GLP-1 analogues that
were resistant to degradation by dipeptidyl peptidase-4 (DPP-4), which rapidly breaks down
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endogenous GLP-1 (Röhrborn et al., 2015). Exenatide, purified from
the Gila monster Heloderma suspectum, has an increased binding
affinity to the GLP-1 receptor (GLP-1R) and reduced rate of
degradation by DPP-4 compared to GLP-1, increasing its half-life
from 1 min to over 2 h (Gao and Jusko, 2011).

Three classes of DPP-4 inhibitors (Gliptins) are in clinical use to
augment the endogenous incretin effect, and these provide 80%–

90% efficacy in inhibiting the peptidase; however, DPP-4 inhibitors
are not administered in conjunction with incretin therapies
(Gallwitz, 2019).

All GLP-1R agonists reduce food intake, body weight, and
HbA1c and improve both blood pressure and blood lipid profiles.
These benefits were highlighted in 2019 when the Lancet published a
meta-analysis of seven clinical trials showing that these treatments
reduced hospital admission by 9%, all-cause mortality by 12% and
deaths associated with kidney disease by 17% (Kristensen et al.,
2019). Then, in 2021, Semaglutide administered once weekly over

68 weeks was shown to result in 32% of participants losing >20% of
their body mass compared to only 1.7% in controls. This study also
showed that 86.4% of individuals lost ≥ 5% of their body mass
(Wilding et al., 2021). Moreover, last year a separate study showed
that 91% of obese individuals receiving a weekly dose of 15 mg
Tirzepatide—a recently developed GLP-1R/GIPR dual agonist, lost
5% of their body mass with 36% of participants on the same dosage
losing at least 25% (Jastreboff et al., 2022).

While these data are astounding—with yearly progress in
efficacy, we should consider that around 9% of patients receiving
these game-changer treatments (Killworth, 2021) were not able to
lose even 5% of their body mass over 72 weeks, and some trials are
still struggling to get participants’ HbA1c below 7% (Table 1).
Additionally, incretin therapies can have overbearing negative
side effects including hypoglycaemia (often in combination with
other glucose-lowering treatments), nausea, vomiting,
gastrointestinal upset (including diarrhoea) and injection site

TABLE 1 Incretin therapy studies including percentage of participants who failed to reach the desired endpoint.

Drug Trial name Year (n) Dose and
frequency

Duration
(weeks)

Target
endpoint

Failure to
reach

endpoint
(%)

Drop
out

due to
AE (%)

Contributing
factors

References

Exenatide 2005 336 10 ug twice
daily

30 HbA1c <7.0% 54 7.1 Metformin Defronzo et al.
(2005)

LEAD-6 2009 231 10 ug twice
daily

26 HbA1c <7.0% 57 13.4 Metformin and
Sulfonylurea

Buse et al.
(2009)

2015 100 5 ug twice daily
for 4 weeks
then 10 ug
twice daily

26 5% loss of body
mass

13 19 Metformin and
Sulfonylurea, all
awaiting bariatric

surgery

Iglesias et al.
(2015)

Liraglutide vs.
Lixisenatide

2016 202 1.8 mg daily 26 HbA1c <7.0%
and no weight

gain

33.5 6.4 Metformin Nauck et al.
(2016)

LEAD-6 2009 233 1.8 mg daily 26 HbA1c <7.0% 46 10.3 Metformin and
Sulfonylurea

Buse et al.
(2009)

Lixisenatide GetGoal-
Mono

2012 119 10–20 ug
(1 step) daily

12 HbA1c <7.0% 53.5 2.5 Fonseca et al.
(2012)

GetGoal-
Mono

2012 120 10–20 ug
(2 step) daily

12 HbA1c <7.0% 47.8 4.2 Fonseca et al.
(2012)

vs. Liraglutide 2016 202 20 ug daily 26 HbA1c <7.0%
and no weight

gain

58.1 7.4 Metformin Nauck et al.
(2016)

Dulaglutide AWARD -1 2014 279 1.5 mg Weekly 26 HbA1c < 7.0% 22 3.2 Metformin and
Glitazone

Wysham et al.
(2014)

AWARD-2 2015 273 1.5 mg Weekly 78 HbA1c < 7.0% 46.8 3.3 Metformin and
Sulfonylurea

Giorgino et al.
(2015)

Semaglutide STEP 1 2021 1306 2.4 mg once
weekly

68 5% loss of body
mass

13.6 7.0 Adults, includes
lifestyle

intervention

Wilding et al.
(2021)

STEP TEEN 2022 134 2.4 mg once
weekly

68 5% loss of body
mass

27 5.0 Adolescents
(<18 years),

includes lifestyle
intervention

Weghuber
et al. (2022)

Tirzepatide SURMOUNT-
1

2022 630 15 mg once
weekly

72 5% loss of body
mass

9 6.2 Majority Caucasian
decent (70.6%)

Jastreboff et al.
(2022)
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reactions that contribute to therapy discontinuation (Trujillo et al.,
2021); this review highlights the current research investigating the
modifiable and non-modifiable factors contributing to the ‘non-
responder’ phenotype to incretin therapies.

Incretin signalling and biased agonism:
Basic concepts

Both GLP-1 and GIP stimulate insulin secretion from pancreatic
beta cells, with GIP also stimulating alpha cells to secrete glucagon
(Manchanda et al., 2022). These functions occur via binding and
activation of their cognate secretin-like (class B) G protein-coupled
receptors (GPCRs). Orthosteric binding of incretin peptides to the
N-terminus (extracellular) region of the receptors causes a
conformational change, stabilizing a binding site in the
intracellular region that allows coupling to and activation of
heterotrimeric guanine nucleotide-binding protein (G proteins)
(Chen and Tesmer, 2022). Heterotrimeric G protein activation
causes their a and βγ subunits to dissociate triggering different
signalling cascades. For the GLP-1R and the GIPR [and also relevant
for the other member of the family, the glucagon receptor (GCGR)],
the predominant G protein recruited is Gαs that activates adenylate
cyclase (mainly isoforms 5 and 8), triggering the production of the
second messenger cyclic adenosine monophosphate (cAMP) from
intracellular ATP (Anton et al., 2022) and subsequent downstream
signalling. Alternatively, Gαi subunits inhibit adenylate cyclase
activity and Gαq triggers the mobilisation of Ca2+ ions via
phospholipase Cβ activity that produces inositol-
1,4,5 triphosphate (IP3) from phosphatidylinositol 4-5-
bisphosphate (PIP2). Additionally, dissociated Gβγ subunits can
also trigger signalling that leads to activation of both the calcium and
the extracellular signal-regulated kinase (ERK1/2) pathways
(Lymperopoulos et al., 2022).

After activation of signal transduction, the process is then turned
off in a stepwise manner. G protein-coupled receptor kinases
(GRKs) phosphorylate specific sites at the receptor C-terminal
tail, providing binding sites for β-arrestins (Arcones et al., 2021),
scaffold proteins involved in the desensitization and internalization
of GPCRs, as well as engaging in their specific signalling (van Gastel
et al., 2018). When coupled to β-arrestins, GPCRs are desensitized
by abrogated coupling to G proteins and trafficked away from the
cell surface, destined for either re-sensitization following their
recycling back to the plasma membrane, or for final signal
termination resulting from their degradation in lysosomes
(McCorvy et al., 2017). Additionally, internalized receptors and
GPCR:β-arrestin complexes can continue to signal from the
endosome, with this process potentially engaging alternative
signalling cascades (Caengprasath et al., 2020). In this context,
ligand-associated biased agonism is defined as the observation
that certain ligands (in comparison to a reference compound)
specifically favour either G protein or β-arrestin transducer
pathways—within a particular GPCR (Jones, 2021; Kolb et al.,
2022), an effect that has been described for the GLP-1R and
exploited by some GLP-1R agonists in clinical use such as
Tirzepatide (Willard et al., 2020). While beneficial effects are
observed when compounds trigger bias at the GLP-1R towards G
protein signalling (Jones et al., 2018), complete blockade of β-

arrestin action is detrimental (Kuna et al., 2013). This beneficial
effect is evident in the G protein-biased agonist Exendin-phe1,
derived from a single phenylalanine substitution at position 1 in
Exenatide, which displays improved receptor recycling, reduced
receptor desensitization, and sustained incretin-stimulated insulin
secretion (Jones et al., 2018). Similar G protein-biased agonists have
also been developed for the GIPR and the GCGR, but the full extent
of their effects on beta cell function is still unknown (Jones et al.,
2021).

Genetic variation at the incretin
receptors

The most direct answer to why people fail to respond to incretin
therapies is that they might express non-functional incretin
receptors. Genetic missense variants in GLP-1R, GIPR and
GCGR have been identified, with both gain of function (GoF)
and loss of function (LoF) effects. GoF receptors are often
characterised by a greater propensity for G protein versus β-
arrestin recruitment and signalling, slower rate of receptor
internalisation and rapid recycling back to the plasma membrane,
with these characteristics being independent of their surface
expression levels (Liu et al., 2022). LoF variants may be
misfolded, reducing successful biosynthesis and surface
expression; or they might display enhanced β-arrestin
recruitment, higher degradation rates and/or defective ligand
binding ability (Tao and Conn, 2014). A missense variant in the
GIPR, E354Q—whereby a glutamine (Q) at amino acid position
354 replaces a glutamic acid (E), identified in a genome-wide
association study (GWAS), is linked with increased risk of T2D
and higher BMI (Speliotes et al., 2010). GIPR E354Q was
characterized in differentiated adipocytes as having a higher rate
of desensitization and reduced recycling capacity, all markers of
enhanced β-arrestin recruitment. While these features are associated
with a LoF phenotype, other studies suggest that both GIPR agonists
and antagonists may provide benefits to T2D and obesity (Yang
et al., 2022), indicating a complex mechanism of GIPR action within
the processes of blood glucose and weight regulation. A suggested
mechanism involves prolonged GIPR agonism causing receptor
degradation, reducing sustained GIP signalling and, when
combined with GLP-1R agonism, causing increased weight loss
(Killion et al., 2020). However, it remains an open question how
both activation and inhibition of GIPR can lead to beneficial effects,
and whether the presence of the E354Q variant at the GIPR may
affect the efficacy of GLP-1R agonists (GLP-1RAs).

The GLP-1R has itself several LoF variants including R380C,
shown by two independent groups to have normal surface
expression but reduced affinity for Exenatide (Wootten et al.,
2016; Hegron et al., 2023). Another LoF variant, R421W, displays
reduced coupling to mini-Gαs proteins in response to various
endogenous and clinical agonists (Lagou et al., 2021).
Additionally, the T149M variant is associated with increased T2D
risk and has normal surface expression but reduced binding affinity
for GLP-1 and Exenatide, as well as reduced cAMP production
(Beinborn et al., 2005), although a study was able to rescue both
cAMP and ERK1/2 signalling for this variant using the allosteric
modulator Compound 2 (Koole et al., 2011). On the other hand, the
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GLP-1R GoF variant R131Q is associated with decreased T2D risk in
the Japanese population (Suzuki et al., 2019). Patients heterozygous
for R131Q secrete at least double the amount of insulin in response
to GLP-1 during a hyperglycaemic clamp (Sathananthan et al.,
2010). Another GoF variant, A316T, shows a 2-fold increase in
cAMP accumulation (Hegron et al., 2023), and increased Ca2+

mobilization (which is essential for insulin secretion).
Furthermore, A316T shows enhanced recruitment of Gαs and
endocytosis in response to oxyntomodulin, GLP-1, Semaglutide
and Tirzepatide, but not Exenatide (Lagou et al., 2021). Ongoing
research efforts into this variant aim to uncover the molecular
factors associated with its benefits, focusing on the analysis of
transducer factor recruitment and receptor trafficking patterns in
response to a range of clinical and non-clinical GLP-1RAs.

Membrane composition and incretin
receptor action

Dietary polyunsaturated fatty acids are essential to human
health, they play important roles in both membrane
phospholipid composition, which increases plasma membrane
fluidity, and provide the backbone to several signalling lipids
(Baccouch et al., 2023). The ability of receptors to move within
the cellular plasma membrane and into intracellular compartments
is vital to regulate their function (Fang et al., 2020) and an
individual’s cellular membrane composition may be altered
because of diet, medications and genetic factors (Sabapathy et al.,
2022). For example, mice fed a high-fat diet for 21 days have both
lipid and protein compositional changes in cellular plasma
membranes that result in an impaired capacity for oxidative
phosphorylation, increased reactive oxygen species (ROS)
production, hepatosteatosis and insulin resistance (Kahle et al.,
2015). In humans, dietary related alterations in hepatocyte
membrane composition, including an increase in
phosphatidylethanolamines, have been found to contribute to
metabolic-associated fatty liver disease through mitochondrial
dysfunction causing the production of ROS, lipid accumulation
and loss of insulin sensitivity (Shama et al., 2023). Additionally,
in obese humans, visceral fat deposits accumulate where the
membrane composition regulating protein ATB8B1 (or flippase)
is upregulated (Motahari-Rad et al., 2022). These studies all indicate
that diet can influence the make-up of cell membranes and thus, we
hypothesise that it may have a potential direct regulatory impact on
incretin receptor function in target cells.

Cholesterol is a particularly important lipid for the regulation of
incretin receptor function. Lipid rafts (or cholesterol-rich
nanodomains) are regions within the plasma membrane where
weak binding between cholesterol and other phospholipids allows
specific protein interactions to occur (Ho et al., 2022). The GLP-1R
forms clusters within lipid rafts when activated with Exenatide, an
effect not observed for the GIPR, which presents with a higher level
of pre-clustering in basal conditions (Buenaventura et al., 2019).
Palmitoylation of the GLP-1R, referring to the reversible attachment
of a palmitate moiety to a cysteine residue in the C-terminal tail of
the receptor, also contributes to its stabilisation within lipid rafts.
Clustering is also important for the recurring activation of GLP-1R,
and this capacity appears to be regulated by GLP-1R localization to

these cholesterol-rich membrane nanodomains (Buenaventura et al.,
2019). Although cholesterol is essential for lipid raft formation, the
effects of cholesterol on GPCR function are complex (Kiriakidi et al.,
2019). Results from a study where methyl-β-cyclodextrin was used
to deplete cellular cholesterol showed that this lipid is required for
serotonin receptor stability and preservation of signal potential
(Saxena and Chattopadhyay, 2012), as well as for effective
serotonin control of food intake and prevention of hyperphagia
(van Galen et al., 2021). For the GCGR, however, cholesterol levels
are negatively associated with receptor function as demonstrated by
the fact that treatment with the cholesterol-lowering drug
simvastatin increases ex vivo cAMP levels in response to GCG
stimulation in murine hepatocytes (McGlone et al., 2022).
Following these results for the GCGR, we are currently
investigating the effects of statin treatment on GLP-1R function
in the pancreas in vivo and ex vivo. Our preliminary findings suggest
that prescribed statins may indeed be a factor that can regulate
responses to GLP-1RAs. Therefore, exposure to these cholesterol-
lowering drugs may impact the effectiveness of incretin-based
therapies.

Receptor trafficking involves the internalisation of the active
receptor: Ligand complex towards endocytic compartments,
followed by its deactivation/dephosphorylation and recycling
back to the cell membrane, leading to its re-sensitisation, or
trafficking to lysosomal organelles for its degradation and final
signal termination (McGlone et al., 2021). Additional receptor
destinations involve retrograde transport towards the Golgi
apparatus (Bonifacino and Rojas, 2006) or receptor incorporation
into exosomes intended to be secreted, potentially playing a role in
inter-cellular communication (Isola and Chen, 2016).

Evidence from primary mouse islets and clonal beta cells (INS-1
832/3) shows that Exenatide causes a greater amount of GLP-1R
degradation compared to endogenous GLP-1, with this effect
apparently due to differences in the susceptibility of the agonists
for degradation by the endopeptidase endothelin converting enzyme
1 (ECE1) (Fang et al., 2020). Also, Huntingtin-interacting protein-1
(HIP1), a protein essential to the regulation of clathrin-mediated
endocytosis (Metzler et al., 2001) is associated with the control of
GLP-1R function. Data from our laboratory (Buenaventura et al.,
2018) shows that HIP1 knockdown reduces G protein recruitment
to the GLP-1R, with HIP1 being required for effective incretin-
stimulated insulin secretion from murine and human beta cell lines
and primary human islets. Additionally, in this study we also showed
that the endosomal sorting nexin proteins, SNX1 and SNX27,
regulate GLP-1R endosomal trafficking, with SNX1 decreasing
receptor recycling to the cell membrane while SNX27 having the
opposite effect. Therefore, changes in the expression levels of these
endocytic trafficking regulators, or mutations in their genes resulting
in changes in their function could additionally impact the capacity of
GLP-1RAs to exert beneficial effects in some patients.

Effect of the microbiome

The gut microbiome consists of trillions of microorganisms that
contribute to the host digestive system, generating metabolites of
which the short-chain fatty acids (SCFAs): acetate, propionate and
butyrate, are primary components, produced through the
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fermentation of indigestible polysaccharides (O’Donnell et al.,
2023). Short-chain fatty acids are, among other things, ligands
for the rhodopsin-like (Class A) GPCRs free fatty acid receptors
(FFARs), expressed in the gut and the endocrine pancreas. FFA2 is
activated predominantly by propionate and FFA3 by butyrate [EC50

for acetate, propionate and butyrate at FFA2 are 431, 290 and
371 μM respectively, and at FFA3 393, 41 and 33 μM (Brown
et al., 2003)].

The gut microbiome is altered in obesity and T2D, an effect
known as dysbiosis, where the ratio of the main bacterial phyla
(Firmicutes and Bacteroidetes) becomes imbalanced, reducing
diversity while the relative abundance of certain bacteria,
including opportunistic pathogens, increases (Larsen et al., 2010).
A pilot study investigating gut microbiomes of 52 patients receiving
either Dulaglutide or Liraglutide determined a microbial signature
of GLP-1RA responders (n = 34) and non-responders (n = 18) (Tsai
et al., 2022). After adjusting for baseline HbA1c and serum
C-peptide, the bacteria Bacteroides dorei and Lachnoclostridium
sp, both of which are associated with anti-inflammatory
immunomodulation and improved gut barrier integrity (Yoshida
et al., 2018), were positively associated with responders.
Alternatively, Mitsuokella multacida, a bacterium previously
shown to produce trimethylamine oxide, which contributes to
atherosclerosis formation (Fu et al., 2020), correlated with GLP-
1RA non-responders.

SCFAs are known to indirectly influence the incretin effect
(Arora et al., 2021) through the activation of FFA2 and FFA3 on
both L and K enteroendocrine cells, triggering the secretion of GLP-
1 and GIP, respectively (Ørgaard et al., 2019). Both FFA2 and
FFA3 are expressed in pancreatic islets (DiGruccio et al., 2016), and
their direct effect on insulin responses has so far provided mixed
results. Ex vivo analysis of both murine and human islets has linked
acetate and propionate to both increased and decreased glucose-
stimulated insulin secretion (GSIS) (Priyadarshini et al., 2015; Tang
et al., 2015; Pingitore et al., 2017). Butyrate administered in
pharmacological doses (5 mM) directly to ex vivo rat islets can
increase GSIS (Wang et al., 2022), but this effect might potentially be
due to mechanisms unrelated to its binding to FFARs, such as on
chromatin remodelling (Bridgeman et al., 2021). Furthermore
(Priyadarshini et al., 2015), found that primary isolated wild-type
mouse islets secrete 50% more insulin in a GSIS assay following co-
stimulation with acetate and Exendin-4 compared to FFA2 KO
islets. In an FFA3 study, propionate signalling via Gαi negatively
impacted GLP-1R function, significantly reducing Exendin-4-
stimulated potentiation of insulin secretion (Priyadarshini and
Layden, 2015). This study also showed that a global KO of
FFA3 results in the downregulation of GLP-1R levels in mouse
islets. The authors suggest that FFA3 might act to prevent
hyperphagia-induced over-secretion of insulin that would cause
beta cell exhaustion during dietary-related stress (Priyadarshini
et al., 2020). While some progress is being made linking the gut
microbiome with obesity and T2D (Perry et al., 2016; Sanna et al.,
2019; Utzschneider et al., 2020), a major question remains: Do
SCFAs produced in the gut reach the pancreas in relevant
concentrations to influence local receptors? Most butyrate
synthesized in the gut is utilized by colonocytes, with only
1–12 µM reaching systemic circulation (Stevens and Hume,
1998). Propionate is entirely metabolised by hepatocytes

(Guarner and Malagelada, 2003), and acetate, a major substrate
for lipogenesis, reaches a systemic concentration of 19–160 µM
(Bloemen et al., 2009), meaning that only a small fraction of the
acetate produced by the microbiome would be available to reach the
pancreatic islets. So, while the gut microbiome is topical, microbial
metabolites might have a challenging time directly affecting incretin
responses at the pancreas. Alternatively, the pancreas may host its
own microbiome, synthesizing SCFAs that might directly activate
cognate receptors located in pancreatic islet endocrine cells. In this
context, del Castillo et al. (2019) have compared the similarities
between rRNA sequences isolated from the pancreas and duodenum
of 50 pancreatic cancer and 34 non-cancer patients. Their findings
show that the microbial signatures of these two tissues do not differ
significantly, and both contain highly diverse microbial
communities. They identified that cancer patients have
significantly less Lactobacillus in their pancreas. Lactobacilli are
lactic acid-producing bacteria capable of generating both acetate
and butyrate (Hati et al., 2019). Future investigations tackling the
role of the microbiome in the control of blood glucose levels in
healthy and T2D conditions, as well as its influence on obesity, may
consider including the potential effect that local microbiome
metabolites such as SCFAs might have on modulating incretin
receptor responses. Overall, the influence of the microbiome on
pancreatic islet function and incretin mimetic treatments warrant
further investigation.

Functional interactions of incretin
receptors with other GPCRs

To understand the function of a specific GPCR, it is fundamental to
consider the context in which this receptor is signalling, including both
physical and functional interactions with other co-expressed receptors
(Figure 1). GPCRs can formdimers and oligomers bothwith themselves
and with other GPCRs, suggesting the existence of mechanisms
whereby one receptor can influence the function of another, a
concept known as receptor crosstalk (Hur and Kim, 2002).

Multiple previous studies have shown that incretin receptors can
form heterodimers, as demonstrated, for example, using
bioluminescence resonance energy transfer (BRET) (Schelshorn
et al., 2012; Whitaker et al., 2012; Dale et al., 2022). In particular
(Roed et al., 2015), have shown that both the GIPR and the GCGR form
heteromers with the GLP-1R when expressed in HEK-293 cells. This
process negatively affects cAMP production and modulates β-arrestin
recruitment to the GLP-1R. Another study also carried out in HEK-293
cells showed that incretin heterodimers can form constitutively and that
stimulation of GLP-1R with GLP-1 promotes incretin
heterodimerisation whereas GIP stimulation reduces it (Al-Zaid
et al., 2022). This study additionally showed that GIP stimulation
reduces Gαq and β-arrestin recruitment to the GLP-1R whereas
GLP-1 stimulation enhances recruitment of Gαs to the GIPR. Future
work is required to determine these effects in pancreatic endocrine cells
under endogenous levels of receptor expression.

Additionally, there is potential for functional interaction
between incretin receptors and other GPCRs, including the
SCFA-activated FFARs, to occur in the islets of Langerhans (as
previously discussed), but also in the gut and the hypothalamus, all
of which could influence incretin therapy responses. Other examples
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of potential functional interactions might include the receptor for
long-chain saturated fatty acids, FFA1, which is also expressed in
pancreatic beta cells, where its activation leads to GSIS potentiation
via Gαq transducer pathways (Kimura et al., 2020), as well as in
hepatocytes (Secor et al., 2021) and enteroendocrine L and K cells,
where it contributes to incretin hormone secretion, with FFA1 KO
mice exhibiting obesity on a low-fat diet (Lu et al., 2021). It is also
conceivable that GLP-1R functional interactions might occur in
appetite control centres of the hypothalamus: For example,
FFA4—the receptor for long-chain polyunsaturated fatty acids,
that can regulate energy homeostasis (Dragano et al., 2017), and
is expressed alongside the GLP-1R in the arcuate nucleus (Singh
et al., 2022). Furthermore, the gut-brain-pancreas axis is connected

via the parasympathetic vagus nerve with afferent neurons linking
the intestinal mucosa, portal vein and hypothalamus. FFA3 is
expressed in the enteric sympathetic ganglion (Kimura et al.,
2011) and the vagal ganglion (Nøhr et al., 2015) and the GLP-1R
is expressed in vagal afferent neurons including the nodose ganglion
(Zhang et al., 2020), suggesting the possibility of functional
interactions between these two receptors at these neuronal
locations. Intraperitoneal injection of butyrate has been shown to
regulate food intake in mice via the vagus nerve, causing ERK1/
2 phosphorylation in nodose ganglion neurons (Goswami et al.,
2018); therefore, investigation of potential individual-specific FFAR/
incretin receptor functional interactions in the different locations
where these receptors are co-expressed is paramount to determine if

FIGURE 1
Incretin receptor expression and proposed GPCR functional interactions.
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co-stimulation of both GPCR families might results in enhanced,
reduced or biased GLP-1RA responses, an effect which might be
regulated by the action of the microbiome.

Conclusion

In this review, we have discussed several factors that might
contribute to an individual’s ability to respond to incretin therapy.
Weight loss of at least 5%–10% is known to reduce complications of
T2D and improve quality of life (Apovian et al., 2019), and achieving
an HbA1c level below 7% (preferably 6.5%) is indicative of sustained
blood glucose regulation; therefore, failure to reach these targets
under incretin treatment should define a reasonable threshold
beyond which a personalised medicine approach needs to be
considered. Identifying genetic factors in “non-responders” will
help guide treatments, and further research is required to identify
muti-targeted approaches that can improve incretin therapies under
these conditions. In the meantime, novel dual and tri-incretin
agonists are already in development. For example, MEDI0382, a
synthetic palmitoylated dual agonist of GLP-1R and GCGR derived
from oxyntomodulin, achieved both significant weight loss and
blood glucose lowering effects in obese and T2D patients during
phase 2 trials (Ambery et al., 2018). G49 is another GLP-1R/GCGR
dual agonist shown to improve liver regeneration in non-alcoholic
fatty liver disease (Valdecantos et al., 2016). Additionally, a single
molecule tri-agonist of GLP-1R, GIPR and GCGR can increase
insulin secretion and improve blood glucose handling in mice
beyond the cumulative effects of the three individual agonists
separately (Khajavi et al., 2018). These benefits were associated
with increased Ca2+ mobilisation observed in human clonal
pancreatic beta cells. Increased Ca2+ mobilization may be
achieved in future novel treatment strategies by co-targeting
Gαq-coupled GPCRs present in beta cells, including FFA1 and 2.

The relevance of optimised incretin therapies extends beyond
their action on blood glucose regulation and control of body

weight, with GLP-1RAs providing beneficial effects for blood
pressure disorders (Martins et al., 2020) and neurodegenerative
conditions including Alzheimer’s (Bomfim et al., 2012) and
Parkinson’s disease (de Pablo-Fernandez et al., 2018).
Therefore, with the current strain on health and social care
services around the globe, particular investment should be
funnelled into this research topic.
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