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Abstract
When divergent populations interbreed, the outcome will be affected by the genomicand phenotypic differences that they have accumulated. In this way, the mode of evo-lutionary divergence between populations may have predictable consequences for thefitness of their hybrids, and so for the progress of speciation. To investigate these con-nections, we present a new analysis of hybridization under Fisher’s geometric model,making few assumptions about the allelic effects that differentiate the hybridizing pop-ulations. Results show that the strength and form of postzygotic reproductive isolation(RI) depend on just two properties of the evolutionary changes, which we call the ”to-tal amount” and ”net effect” of change, and whose difference quantifies the similarityof the changes at different loci, or their tendency to act in the same phenotypic direc-tion. It follows from our results that identical patterns of RI can arise in different ways,since different evolutionary histories can lead to the same total amount and net effectof change. Nevertheless, we show how these estimable quantities do contain some in-formation about the history of divergence, and that — thanks to Haldane’s Sieve — thedominance and additive effects contain complementary information.
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1. Introduction
Genomic and phenotypic differentiation between populations are a major cause of repro-ductive isolation (RI), preventing hybrids from forming, or reducing their fitness when they doform. However, differentiation can also be a source of adaptive variation, if hybrids contain newfit combinations of traits or alleles, or act as conduits passing existing combinations from onepopulation to another (Arnold and Hodges, 1995; Bernardes et al., 2017; Bierne et al., 2013;Coughlan and Matute, 2020; Coyne and Orr, 2004; Edmands, 1999, 2002; Schluter and Conte,2009).Which of these outcomes actually takes place must depend on the types of phenotypic andgenomic differences that have accumulated before the hybrids form. A fundamental challengein evolutionary biology is to understand the connections between the mode of evolutionarydivergence, the type of differences that accrue, and the outcomes of subsequent hybridization.This can be framed in two ways: what can we learn about the (unobserved) history of parentaldivergence by observing their hybrids? (Fraser, 2020; Lande, 1981; Schneemann, De Sanctis, etal., 2020; Welch, 2004); and conversely, which divergence scenarios will predictably lead to RI?(Coyne and Orr, 2004). What, for example, are the respective roles of large- versus small-effectmutations in causing RI, and what are the roles of natural selection versus genetic drift (Clo et al.,2021; Coyne and Orr, 2004; Jezkova et al., 2013; Lynch, 1991; Moran et al., 2021; Satokangaset al., 2020)? All of these questions are essential for understanding the opposing processes of
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speciation and adaptive introgression (Abbott et al., 2013), and predicting the outcomes of novelhybridizations, including those that are human-mediated (Chan et al., 2019; Genovart, 2008).One tool to address these questions is Fisher’s geometricmodel. This is amathematicalmodelof selection acting on quantitative traits (Fisher, 1930, Ch. 2), and has been used to understandboth phenotypic data, e.g., QTL for traits involved in adaptive divergence (Orr, 1998), and fitnessdata. In the latter case, the phenotypic model need not be treated literally, but is a simple wayof generating a fitness landscape (Martin, 2014; Martin and Lenormand, 2006). Both uses of themodel have been applied to hybrids (Barton, 2001; Chevin et al., 2014; Fraïsse, Gunnarsson, et al.,2016; Lande, 1981; Mani and Clarke, 1990; Schneemann, De Sanctis, et al., 2020; Schneemann,Munzur, et al., 2022; Simon et al., 2018; Thompson et al., 2021; Yamaguchi and Otto, 2020).Most importantly here, the model allows us to consider the effects in hybrids of evolutionarychanges of different sizes, and which were driven by different evolutionary processes (Chevin etal., 2014; Hartl and Taubes, 1996; Orr, 1998; Schneemann, De Sanctis, et al., 2020; Simon et al.,2018). However, previous analytical results for diploids (Schneemann, De Sanctis, et al., 2020)depended on strong assumptions about the genetic differentiation, such as no variation withinthe parental lines, normality and universal pleiotropy among the fixed effects, and statisticalindependence among traits. Furthermore, the earlier results describe the overall strength of RI interms of a single fitted parameter, whose relationship to the process of evolutionary divergenceremained obscure.In this paper, we extend previous work on Fisher’s geometric model in two ways. First, bycombining and generalizing previous work by several authors (Chevin et al., 2014; Lande, 1981;Schneemann, De Sanctis, et al., 2020; Schneemann, Munzur, et al., 2022; Simon et al., 2018),we give results for the expected fitness of hybrids between diploid populations, applying to allclasses of hybrid, and allowing for variation within the hybridizing populations, and alleles witharbitrary additive and dominance effects. Second, we show how some key quantities that appearin the results relate transparently to the history of divergence between the parental populations.
2. Results

2.1. The phenotypic model and fitness landscape.
Under Fisher’s geometric model, the fitness of any individual depends solely on its valuesof n quantitative traits. The trait values for an individual can be collected in an n-dimensionalvector z = (z1, ..., zn); and its fitness, w , depends on the Euclidean distance of this phenotypefrom an optimum o = (o1, ..., on), whose value is determined by the current environment. Wewill assume the simplest form of the model, where the log fitness declines with the square ofthe distance:

(1) lnw (z, o) = − ∥z − o∥2 = −
n∑

j=1

(zi − oi )
2

This model can be derived either exactly, or approximately, from a wide class of more compli-cated fitness functions (Martin, 2014; Schneemann, De Sanctis, et al., 2020), and in these lattercases, only a few, if any of the n traits, need to be identified with real quantitative traits thatmight be measured in the field. Results can also be applied if fitness declines more rapidly withdistance from the optimum. For example, if lnw = − ∥z − o∥k (Fraïsse, Gunnarsson, et al., 2016;Fraïsse and Welch, 2019; Simon et al., 2018) then results below could be applied directly to thescaled log fitness (−lnw)2/k = ∥z − o∥2.
2.2. Characterizing parental divergence, and describing hybrids.

We will consider hybrids between two diploid parental populations, denoted P1 and P2. Wewill assume that individuals in these populations vary at D biallelic loci, and that the allele fre-quencies might vary between populations, which includes the case when an allele is fixed in onepopulation and absent in the other. If we (arbitrarily) choose one allele at each locus to be thefocal allele, then the frequency of the focal allele at locus i = 1, ...,D is denoted as qP1,i (qP2,i )
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in population P1 (P2). We now make the key simplifying assumptions that (1) there are no sta-tistical associations between alleles within the parental populations, so that both P1 and P2 areat Hardy-Weinberg and linkage equilibrium at all D loci, and (2) there is no phenotypic epistasisbetween the allelic effects.
With these assumptions, the differences in the trait means between P1 and P2 can be writ-ten as the sum of contributions from each of the D loci. As such, for any trait j = 1, ..., n, thedifference in trait means can be written

z̄P2,j − z̄P1,j = 2
D∑

i=1

Aij(2)

where the factor 2 follows from diploidy. A simple consequence of eq. 2 is that the phenotypicdifferentiation between the parental populations can be described as a chain of effects in n-dimensional phenotypic space. Figure 1A shows an illustrative examplewith n = 2 traits, affectedby changes at D = 5 loci. Here, the black arrows represent the 2Aij , connecting the trait meansof P1 and P2, or the centroids of the clouds of points that would represent the two parentalpopulations. Each 2Aij describes the diploid effect on trait j of changing the allele frequency atlocus i from qP1,i to qP2,i .We can also relate the Aij to the parental allele frequencies and the size of the phenotypiceffect, as represented by the Fisherian average effect of a substitution (e.g. Lynch and Walsh,1998, Ch. 4). In particular, we show in the Methods that

Aij = ᾱij (qP2,i − qP1,i )(3)
where ᾱij is the average effect of a substitution at locus i on trait j (e.g. Lynch and Walsh, 1998,eq. 4.10b), averaged across the two parental populations.

When there is phenotypic dominance (Lynch and Walsh, 1998, Ch. 4, Schneemann, Mun-zur, et al., 2022) we also need to account for the dominance deviations associated with allelefrequency changes. We can do this by considering the mean phenotype in the initial F1 crossbetween P1 and P2, in which all loci in all individuals carry one P1-derived allele and one P2-derived allele. We show in the Methods that the difference in trait means between the F1, andthe two parental populations can be written as

z̄F1,j − z̄P1,j =
D∑

i=1

Aij +∆ij(4)

z̄P2,j − z̄F1,j =
D∑

i=1

Aij − ∆ij(5)

where

∆ij = δ̄ij (qP2,i − qP1,i )
2(6)

and δ̄ij is the dominance deviation of a substitution at locus i on trait j averaged across the twoparental populations. The differences between the parental and F1 trait means can also be repre-sented as chains of effects, and this is illustrated by the red and blue arrows in Figure 1A. More-over, we can separate out the additive and dominance effects by considering the differencesbetween the F1 and the midparental mean phenotypes, defined as z̄mp,j ≡ (z̄P1,j + z̄P1,j)/2.
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z̄mp,j − z̄P1,j = z̄P2,j − z̄mp,j =
1
2 (z̄P2,j − z̄P1,j) =

D∑

i=1

Aij(7)

z̄F1,j − z̄mp,j =
D∑

i=1

∆ij(8)
The two resulting chains are illustrated in Figure 1B.The arguments above for the F1 cross generalize to an arbitrary hybrid (say, an F2 or a back-cross). Hybrid genomes can be characterized in a number of different ways. In the main text,we will consider results for crosses, assuming free recombination among the D loci, and that nolinkage disequilibrium has accumulated due to selection on early generation hybrids (see Lynchand Walsh, 1998 Ch. 9, and Schneemann, De Sanctis, et al., 2020 for some generalizations). Inthis case, hybrid genomes can be described solely in terms of their hybrid index, h (defined asthe probability that a randomly chosen allele in the hybrid derives from parental line P2), andtheir inter-class heterozygosity, p12 (defined as the probability that a randomly chosen locus car-ries one allele of P1 origin and one allele of P2 origin). Results in the main text treat h and p12as probabilities determined by the crossing scheme, and which apply to all loci independent oftheir allelic effects. In Appendix A we report equivalent results for sequenced genomes withknown patterns of ancestry, such that h and p12 are known proportions. In either case, our aimis to calculate the expected fitness of a hybrid, conditional on h and p12. When we take expecta-tions, they will be over the particular loci that are in any given ancestry state.We then determinehow this result depends on properties of the additive and dominance effects. These will be col-lected in D × n - dimensional matrices, denoted A = (Aij) and ∆ = (∆ij), and treated as fixedobservations, rather than random variables.

2.3. Expected log fitness of a hybrid.
Given the model described above, the expected log fitness of an arbitrary cross can be de-termined from the expected means and variances of its n traits.

E (lnwH) = −
n∑

j=1

E
(
(zH,j − oj)

2
)

= −
n∑

j=1

E 2 (zH,j − oj) −
n∑

j=1

Var (zH,j)(9)
In the Methods, we show that each of the two terms in eq. 9 can be written as the sum ofsix terms, weighted by the same six combinations of h and p12. All 12 of these terms are shownin Table 1, where we introduce the notation

VP1 ≡
n∑

j=1

Var (zP1,j) VP2 ≡
n∑

j=1

Var (zP2,j) VF1 ≡
n∑

j=1

Var (zF1,j)(10)
to denote the sum of the phenotypic variances over the n traits in a given population. Wealso introduce two new functions of D × n - dimensional matrices

m(x, y) =
n∑

j=1

(
D∑

i=1

xij

)(
D∑

i=1

yij

)
(11)

M(x, y) =
n∑

j=1

D∑

i=1

xijyij(12)
whose meanings we discuss below. The expected log fitness of any hybrid with a given value of
h and p12 (eq. 9) is equal to the sum of the twelve terms in the second and third columns of Table
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trait 1

tr
ai

t 2

zF1

zP1

zP2

opt

2A i

∑2A i

A i + ∆i

∑A i + ∆i

A i − ∆i

∑A i − ∆i

(A)

trait 1

tr
ai

t 2

θ

zF1

zP1

zmp

opt

A i

∑A i

∆i

∑∆i

(B)

Figure 1 – The key quantities that determine hybrid mean log fitness under Fisher’sgeometric model. The fitness of any given phenotype is determined by its distance fromsome optimum phenotype, as determined by the current environment. This optimumand fitness landscape is illustrated, for n = 2 traits, by the cross and contour lines. (A):The diploid parental populations, P1 and P2, are each characterized by mean phenotypicvalues, zP1 and zP2, and the difference between these points are due to allele frequen-cies changes at D = 5 loci, each affecting one or more of the traits. The diploid changesassociated with each locus are represented by the black arrows, whose components aredenoted 2Aij for the diploid change to the j th trait due to the i th locus. The model al-lows for phenotypic dominance, so that the differences between the trait means of theparents, and the initial F1 cross, also involve dominance effects, denoted as ∆ij for thechange to the j th trait due to the i th locus. (B): the additive (black) and dominance (purple)effects can also decomposed into chains of differences linking the P1 or F1 trait meansto the mid-parental trait mean (zmp ≡ 1
2 (zP1 + zP2)). The mean log fitness of an arbitraryhybrid is affected by the total amount of evolutionary change (the sum of squared lengthsof the arrows in a chain), and by the net effect of the evolutionary change (the squaredlengths of the dotted lines). See text for full details.

1, as weighted by their coefficients in the first column. Examining these terms, it follows that theexpected log fitness depends on both properties of the parental populations (see top two rowsof Table 1), and properties of the initial F1 cross (see third row of Table 1), plus properties of theadditive and dominance effects, as captured by the functions m(·, ·) andM(·, ·) (see the bottomthree rows of Table 1).
Now, let us note that, given the quadratic fitness function of eq. 1, themean fitness of individ-uals in parental population P1 is given by lnwP1 = lnw (z̄P1, o) − VP1. As such, we can combinethe terms in each row of Table 1, to yield:
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Table 1 – Components of expected log hybrid fitness
Coefficient −∑n

j=1 E
2 (zH − oj) −∑n

j=1 Var (zH,j)

1 − h lnw (z̄P1, o) −VP1

h lnw (z̄P2, o) −VP2

p12 lnw (z̄F1, o) − 1
2 (lnw (z̄P1, o) + lnw (z̄P2, o)) −VF1 +

1
2 (VP1 + VP2)

4h(1 − h) − p12 m(A,A) −M(A,A)
p12(1 − p12) m(∆,∆) −M(∆,∆)
2p12(1 − 2h) m(A,∆) −M(A,∆)

E (lnwH) = lnwP

+
(
1
2 − h

) (
lnwP1 − lnwP2

)

+ p12
(
lnwF1 − lnwP

)

+ (4h(1 − h) − p12) (m (A,A) − M (A,A))

+ p12(1 − p12) (m (∆,∆) − M (∆,∆))

+ 4p12
(
1
2 − h

)
(m (A,∆) − M (A,∆))(13)

Here the overbars denote the expected fitness of randomly chosen individuals, either froma single population (subscripts P1, P2 or F1) or from the two parental populations at random(subscript P, such that lnwP ≡
(
lnwP1 + lnwP2

)
/2).

Note that the first three terms of Equation 13 all depend on the current position of the en-vironmental optimum, and so they capture the extrinsic or environment-dependent componentof hybrid fitness. These terms depend solely on the mean log fitnesses of parental and F1 popu-lations. By contrast, the second three terms depend only on the A and ∆ – i.e. on the genomicdifferences accrued by the parental populations, but not on the current position of the environ-mental optimum. As such, these three terms capture the intrinsic, or environment-independentcomponent of hybrid fitness. Note that fixed differences and shared polymorphisms contributein identical ways, as long as the A and∆ are correctly defined (eqs. 3 and 6).We note that the partition of the term shown in eq. 13 is not unique, because it includesthe within-population trait variances within the extrinsic terms (Table 1). However, eq. 13 doescorrespond closely to the partition of Hill, 1982, showing that all of the terms, including thequantities M(·, ·) − m(·, ·) are estimable as composite effects by standard quantitative geneticmethods (Lande, 1981; Lynch, 1991; Lynch andWalsh, 1998, Ch. 9; Clo et al., 2021; Rundle andWhitlock, 2001; Schneemann, De Sanctis, et al., 2020). Moreover, even the separate contribu-tions of the trait means and variances, i.e. the separate functionsM(·, ·) andm(·, ·), are estimableunder some conditions. This is clearest if the dominance effects are negligible (see Schneemann,Munzur, et al., 2022 for a discussion). In that case, all terms containing the∆ vanish, and the F1trait means and variances are equal to the midparental values. As a result, Table 1 simplifies toTable 2, implying thatM(A,A) and m(A,A) can be separately estimated.
Table 2 – Components of expected log hybrid fitness with additive phenotypes

Coefficient −∑n
j=1 E

2 (zH − o) −∑n
j=1 Var (zH)

1 − h lnw(z̄P1, o) −VP1

h lnw(z̄P2, o) −VP2

p12 0 M(A,A)
4h(1 − h) m(A,A) −M(A,A)
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Even when dominance effects are non-negligible, some of the individual function values canbe estimated, if fitness measurements are made in environments to which the parental popu-lations are well adapted (Rundle and Whitlock, 2001). For example, if the mean phenotype ofP1 is optimal (z̄P1 = o), then from Table 1 and eqs. 1, 3 and 11, the log fitness of the mean P2phenotype is lnw(z̄P2, o) = lnw(z̄P2, z̄P1) = − ∥zP2 − z̄P1∥2 = −4m(A,A). A set of equivalentresults for population mean log fitness is shown in Table 3.
Table 3 – Population mean log fitnesses in different environmental conditions

Env. conditions lnwP1 lnwP2 lnwF1

z̄P1 = o −VP1 −4m(A,A) − VP2 −m(A+∆,A+∆) − VF1

z̄P2 = o −4m(A,A) − VP1 −VP2 −m(A − ∆,A − ∆) − VF1

z̄F1 = o −m(A+∆,A+∆) − VP1 −m(A − ∆,A − ∆) − VP2 −VF1

If we also note the following identities:
m (A+∆,A+∆) = m (A,A) +m (∆,∆) + 2m (A,∆)

m (A − ∆,A − ∆) = m (A,A) +m (∆,∆) − 2m (A,∆)(14)
then it follows that the quantities m(A,A) and m(A,∆) can be estimated from reciprocal trans-plant experiments in habitats to which the parental populations are well adapted (i.e. habitatswhere z̄P1 = o and z̄P2 = o). Moreover, the remaining function,m(∆,∆) can be estimated eitherwith genetically homogeneous parental lines (i.e., if VP1 = VP2 = VF1 = 0), or with data from athird environment in which the F1 shows bounded hybrid advantage such that z̄F1 ≈ o.
2.4. Interpreting the functions m(·, ·) andM(·, ·).

In the previous section, we saw that genomic differences between populations influence themean log fitness of their hybrids solely via the functions m(·, ·) and M(·, ·), as applied to theadditive and dominance effects (A and ∆). We also saw that the value of these functions can,in principle, be estimated from hybrid fitness data. In this section we show that these functionshave a simple interpretation, which can be related to the divergence history of the populations.It follows from eqs. 11 and 12, that m(·, ·) and M(·, ·) can be interpreted on a trait-by-traitbasis, as the sum over the means and variances of the changes on each trait. However, it canalso be helpful to consider the overall size of changes in multi-dimensional trait space, i.e. thearrows depicted in Figure 1.To see this, let us begin by noting that the functionm(·, ·) captures the net effect of evolution-ary change. For example, for the additive effects, from eqs. 7 and 11 we find:

m(A,A) =

∥∥∥∥∥
D∑

i

Ai

∥∥∥∥∥

2

=
1

4
∥z̄P2 − z̄P1∥2(15)

so thatm(A,A)will be large if the evolutionary divergence between P1 and P2 led to their evolv-ing very different phenotypes. By contrast,m(A,A)will be small if, due to compensatory changesat different loci, the evolutionary divergence led to little net change in phenotype. Analogousarguments apply to the dominance effects, where, from eqs. 8 and 11, the function m(∆,∆)describes the distance between the F1 and midparental phenotypes.

m(∆,∆) =

∥∥∥∥∥
D∑

i

∆i

∥∥∥∥∥

2

= ∥z̄mp − z̄F1∥2(16)
Finally, for the interaction term, we use eq. 14 from which it follows that

m(A,∆) = 1
4m(A+∆,A+∆) − 1

4m(A − ∆,A − ∆)(17)
= 1

4 ∥z̄F1 − z̄P1∥2 − 1
4 ∥z̄F1 − z̄P2∥2(18)
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The interaction term can therefore be negative or positive, and it tells us whether the neteffect of the evolutionary change has led to the F1 more closely resembling one or other of theparental populations.If the function m(·, ·) describes the net effect of evolutionary change, the function M(·, ·),describes the total amount of evolutionary change. For example, from eq. 12 we have:

M(A,A) =
D∑

i

∥Ai∥2(19)

=

(
D∑

i=1

∥Ai∥
)2

× 1 + CV (∥Ai∥)2
D

(20)
where ∥Ai∥ is the length of an individual black arrow in Figure 1B, and CV (·) is the coefficientof variation among the complete set of D lengths, i.e. their standard deviation divided by theirmean. It follows that M(A,A) will be large if there was a large amount of evolutionary change,i.e. if there were changes at many loci, and the changes were individually large. This appliesregardless of whether or not the changes at each locus were compensatory, such that there wasno net change in phenotype. Equation 20 also clarifies the roles of large- versus small-effectchanges. It implies that for a given amount of phenotypic change (i.e. a given value of the firstfactor in eq. 20, or a given length of the chain of black arrows in Fig. 1B),M(A,A) will be largerif the changes were fewer (lower D) and more variable in size (higher CV (∥Ai∥)).All of the arguments above also apply to M(∆,∆), which concerns the chain of dominanceeffects; while for the interaction term, we use results analogous to eq. 14 to show that

M(A,∆) = 1
4M(A+∆,A+∆) − 1

4M(A − ∆,A − ∆)

= 1
4

D∑

i

∥Ai +∆i∥2 − 1
4

D∑

i

∥Ai − ∆i∥2(21)
So eq. 21will be positive if the red arrows in Figure 1A tend to be longer than the blue arrows,and vice versa. This is equivalent to asking whether the alleles that are more common in P2 tendto be phenotypically dominant. M(A,∆) will be positive if P2 alleles tend to be phenotypicallydominant, and negative if they tend to be phenotypically recessive.The comments above shed light on the functions m(·, ·) and M(·, ·) individually, but eq. 13depends on the difference between them, and this difference has its own natural interpretation.To see this, let us use eqs. 15 and 19, to show that:

m(A,A) − M(A,A) =




D∑

i=1

Ai · Ai +
D∑

i=1

D∑

k=1,k ̸=i

Ai · Ak


−

D∑

i=1

Ai · Ai

=
D∑

i=1

D∑

k=1,k ̸=i

Ai · Ak(22)

= (D − 1) M(A,A) −
D−1∑

i=1

D∑

k=i+1

||Ai − Ak ||2(23)

=
D∑

i=1

D∑

k=1,k ̸=i

||Ai ||||Ak || cos(θAi ,Ak
)(24)

So this quantity can be interpreted in two ways. Equation 23 uses the relationship betweenthe dot product and the squared Euclidean distance to show thatm(A,A)−M(A,A) is a measureof the similarity of the evolutionary changes at different loci (Schneemann, De Sanctis, et al.,2020); it take its largest value when changes are identical at all loci (i.e. when ||Ai −Ak || = 0 forall i and k ), but the quantity becomes smaller and negative as the effects become more different.
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Similarly, eq. 24 is a generalized cosine law, and uses θAi ,Ak
to denote the angle between the

ith and the kth vectors of change (see top right of Figure 1B for an illustration). This impliesthat cos(θ) = 1 when the additive effects at two loci point in the same phenotypic direction(such that θ = 0); similarly, cos(θ) = 0 when the vectors are orthogonal (e.g., altering the valuesof different traits); and finally, cos(θ) = −1 for effects that act in opposite directions. It followsthat the differencem(·, ·)−M(·, ·) quantifies the tendency for evolutionary changes at differentloci to act in the same phenotypic direction. It is therefore a measure of the directionality (orconversely meandering) in the chains of evolutionary changes.Again, the same argument applies to the chain of dominance effects (m(∆,∆) − M(∆,∆)).Finally, for the additive-by-dominance interaction, by analogy with eq. 24, we can write

m(A,∆) − M(A,∆) =
D∑

i=1

D∑

k=1,k ̸=i

||Ai ||||∆k || cos(θAi ,∆k
)(25)

So that the interaction term measures the tendency for additive and dominance effects atdifferent loci to point in the same phenotypic direction.
2.5. How does directional selection affect the total amount and net effect of evolutionarychange?.

In the previous section we showed that the functions m(·, ·), M(·, ·) and the difference be-tween them, m(·, ·) − M(·, ·), each have a natural interpretation. In the next two sections, weshow how these quantities vary with the history of divergence between the parental lines (sum-marizing the results in Table 4).We will begin with divergence under directional selection. To supplement verbal arguments,we use illustrative simulations of adaptive divergence under Fisher’s geometric model. Full simu-lation details are given in the Methods, but in brief, we used individual-based simulations, start-ing with a pair of identical and genetically uniform parental populations, which then evolved inallopatry to different conditions of environmental change, i.e. different positions of the pheno-typic optimum (Chevin et al., 2014; Schneemann, De Sanctis, et al., 2020; Yamaguchi and Otto,2020). While multiple variants could segregate during the simulations, the A and∆ values werecalculated only for fixed differences between the populations. This means that we could avoidcomplications from linkage disequilibrium, which we did not treat analytically, but also impliesthat the analytical results apply to cases that we did not simulate.The first set of simulations, summarized in Figure 2, involved six different divergence scenar-ios, illustrated by the cartoons in the left-hand panels. In scenarios I-III, both populations adaptedto distant optima at a distance ||zanc − o|| =
√
1/2 from their shared ancestral phenotype (suchthat their initial fitnesswas exp(−1/2) ≈ 60% of itsmaximumvalue). The sole difference betweenscenarios I-III is the relative positions of the optima experienced by each population. In scenarioI, the two optima moved in identical ways, so that this scenario corresponds to mutation-orderspeciation (Mani and Clarke, 1990). In scenarios II-III, the two optima differed, so that these sce-narios correspond to divergent selection and local adaptation (Schluter, 2000); in scenario II, theoptima differed on different traits, while in scenario III, the optima differed on the same trait, butin opposite phenotypic directions. Finally, scenarios IV-VI corresponded to scenarios I-III, butwith both bouts of adaptive substitution taking place in population P2, while P1 retained theircommon ancestral phenotype. This meant that P2 adapted to two successive changes in envi-ronmental conditions (i.e. two changes in the position of its optimum). After the initial bout ofadaptation in P2, its optimum either jumped back to its initial position (scenario IV), or changedon a different trait (scenario V), or jumped again in the same phenotypic direction (scenario VI).Panels A-I of Figure 2 summarizes the results of 100 replicate simulations under each of thesesix scenarios, after D = 50 substitutions had occurred.

2.5.1. Additive effects. Results for the simulated additive effects are shown in Figure 2A-C. Fig-ure 2A shows that the total amount of evolutionary change,M(A,A), was identical under all six
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Figure 2 – The history of directional selection affects the total amount and net effect ofevolutionary change. Illustrative individual-based simulations of divergence between al-lopatric populations, driven by directional selection. Simulations used six distinct scenar-ios of divergence, illustrated via their net additive and dominance effects in the cartoonsin the left-hand panels. In these panels the lighter (darker) arrows illustrate the evolution-ary changes fixed in the P1 (P2) lineage. The larger arrows show the additive effects (alldefined in the direction from P1 to P2), and the smaller arrows the dominance effects.The ancestral phenotype is shown by an empty black circle. Scenarios are I: both popula-tions adapt to the same distant optimum; II: each population adapts to shifted optimumon a different phenotypic trait; III: each population adapts to a shifted optimum on thesame trait, but in opposite phenotypic directions; IV: P2 alone adapts to an optimumthat shifts in one phenotypic direction, and then shifts back to its initial position; V: P2alone adapts to an optimum that changes on one trait, and then on another; VI: P2 aloneadapts to an optimum that shifts twice in the same phenotypic direction. (A)-(I): Boxesrepresent results for 100 replicate simulations (median, quantiles and full range), eachincluding n = 20 traits, and halted after D = 50 fixations. The quantities shown matchthose in Tables 1 and 3. The quantities vary predictably between the six scenarios, and indifferent ways for the additive and dominance effects (see text). Simulation parameterswere N = 1000, n = 20, and U = s̄mut = 0.01..

scenarios. This is because all scenarios involved two bouts of adaptive substitution under equiv-alent conditions; as such, they led to the same total amount of change, regardless of how thechanges were distributed among the traits and the diverging populations.
Figure 2B shows the net effect of the evolutionary change, m(A,A). This quantity is propor-tional to the squared distance between the parental mean phenotypes (eq. 15). So when pop-ulations are well adapted to their optima, m(A,A) will be proportional to the squared distancebetween these optima. This explains the observed results of m(A,A) ≈ 0 for scenarios I and IV,

m(A,A) ≈ 2||zanc − o||2/4 = 0.25 for scenarios II and V, and m(A,A) ≈ ||2(zanc − o)||2/4 = 0.5for scenarios III and VI.
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Figure 2C combines results from Fig. 2A-B, to quantify the directionality in the chain of ad-ditive effects that differentiate P1 and P2. From eq. 24, this value will be positive if the effectsmostly point in the same direction, such that cos(θ) ≈ 1 holds for most pairs of changes. Thisoccurs under scenarios III and VI, where most of the additive effects point from the P1 pheno-type to the P2 phenotype. Results are also positive, but around half as large, in scenarios II andV, since cos(θ) ≈ 1 for half of the pairs of changes and cos(θ) ≈ 0 for the other half. By contrast,when natural selection tends to return the chain of additive effects to its starting point, as inscenarios I and IV, then cos(θ) < 0 will hold on average, leading to a negative value.All of the quantitative results above will, of course, vary over time (as more divergence ac-crues), andwith the various parameters of themodel. For example, previouswork has shown thatpopulations often approach their optima more efficiently if the number of traits under selection,
n, is small, because mutations tend to have fewer deleterious pleiotropic effects (e.g. Chevin etal., 2014; Matuszewski et al., 2014; Orr, 1998; Welch and Waxman, 2003). This is confirmed inFigure 3A, which shows results for scenarios II-III as a function of the divergence,D .Whenwe re-duced the number of traits from n = 20 to n = 2 populations approached their optimamuchmorerapidly. Figure 3B shows how the relative sizes of M(A,A) and m(A,A) change with the diver-gence. In the initial stages of divergence, as the distant optima are approached (see Fig. 3A), theadditive effects point in a consistent direction, and so the ratio decreases. More quantitatively, itfollows from eq. 20 that if the changes at each locus act in the same direction, then the first termof eq. 20 will equal m(A,A). If these changes are also similarly sized (such that CV (∥Ai∥) ≈ 0),thenM(A,A)/m(A,A) ≈ 1/D should hold. This prediction – indicated by the grey line in Figure3B – does hold approximately for scenario III when n = 2 (solid red line in Figure 3B), whilethe optimum remains distant. The decline is slower than 1/D (implying a less direct approach tothe optimum), when populations fixed deleterious pleiotropic effects (n = 20; dashed red line),or when the position of the ancestral phenotype led to effects acting in different phenotypicdirections (scenario II; green lines). The decline also slows as the optimum is approached, andpopulations begin to fix alleles of smaller effect (thereby increasing CV (∥Ai∥); Orr, 1998). In allcases, the ratio M(A,A)/m(A,A) starts to increase after the optimum is reached, when evolu-tionary changes continue to accrue, but without much net phenotypic change (Schiffman andRalph, 2021).
2.5.2. Dominance and interaction terms. Results for the simulated dominance effects under thesix divergence scenarios are shown in Figure 2D-F. For the total amount of evolutionary change(M(∆,∆); Fig. 2D), results are indistinguishable, just as they were for the additive effects (Fig.2A). By contrast, results for net effect (m(∆,∆); Fig. 2E) are qualitatively different, and so – inconsequence – are results in Fig. 2F.The key fact here is Haldane’s Sieve – the tendency for directional selection to preferen-tially fix alleles that are dominant in the direction of past selection (Crnokrak and Roff, 1995;Frankham, 1990; Haldane, 1924, 1927; Schneemann, Munzur, et al., 2022), especially whenadaptation takes place from new mutations, rather than standing variation (Orr and Betancourt,2001). This means that dominance effects reflect the history of past selection in a different wayto the additive effects.The result is that for scenarios I and VI, all of the dominance effects point in a consistent di-rection (from the ancestral state to the new optimum); leading to large net changes in phenotype(i.e. to large m(∆,∆); Fig. 2E) and to large positive values of m(∆,∆) − M(∆,∆) (Fig. 2F). Bycontrast, for scenarios III and IV, the dominance effects point in opposite directions (half towardsone new optimum, and half towards the other), leading to a small values of m(∆,∆) (Fig. 2D)and weakly negative values of the difference m(∆,∆) − M(∆,∆) (Fig. 2F).Finally, results for the additive-by-dominance interactions are shown in Figure 2G-I. Unliketerms involving additive or dominance effects alone, the interaction terms tell us whether thetwo populations have evolved in different ways (eqs. 18, 21 and 25). As such, it is unsurprisingthat all of these terms are close to zero for scenarios I-III, where both populations underwentsimilar amounts and patterns of evolution. By contrast, for scenarios IV-VI, P2 alone adaptedto a distant optima, and did so via dominant substitutions. It follows that, for these scenarios,
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Figure 3 – The net effect and total amount of evolution change predictably during direc-tional selection. Panels show (A): the net effect of evolutionary change in the additiveeffects,m(A,A). and (B): the ratio of the total amount to the net effect,M(A,A)/m(A,A),both plotted as functions of D , the number of substitutions that have accumulated. Re-sults are compared for different numbers of phenotypic traits, namely n = 2 (solid lines)and n = 20 (dashed lines), and for two scenarios detailed in Figure 2. All curves repre-sent means over 100 replicate simulations, with shaded areas representing one standarddeviation. The grey curve in (B) shows the prediction ofM(A,A)/m(A,A) ≈ 1/D , whichholds when the additive effects at each locus are identical (eq. 20). Other simulation pa-rameters matched Figure 2 (N = 1000 and U = s̄mut = 0.01)..
the P2 alleles tended to be phenotypically dominant, leading to M(A,∆) > 0; eq. 21; Fig. 2G).If the parental populations differ phenotypically (scenarios V-VI), then the F1 will more closelyresemble the population carrying the dominant alleles (m(A,∆) > 0; eq. 18; Fig. 2H). The result,shown in Figure 2I, is that the additive and dominance effects at different loci tend to point inopposite directions for scenario IV (for whichm(A,∆)−M(A,∆) is weakly negative), but in thesame phenotypic direction for scenarios V-VI (for which m(A,∆) − M(A,∆) is positive).
2.6. Howdoes stabilizing selection affect the total amount andnet effect of evolutionary change?.

Now let us turn to evolution under stabilizing selection. The arguments in this section areillustrated by simulation results shown in Figure 4. In these simulations, the optima for bothpopulations remained stationary and identical, matching their common ancestral phenotype. Assuch, any evolutionary change was due to the drift-driven fixation of mildly deleterious muta-tions, combined with compensatory changes.
2.6.1. Additive effects. The first key point about stabilizing selection is that the net phenotypicchange,m(A,A), will reach a stochastic equilibrium, reflecting the deviations of the populationsfrom the optimum due to mutation and drift. Barton (2017) showed that, with independent locibut otherwise very general assumptions, the expected log fitness under stabilizing selection on ntraits is∼ −n/(4Ne) (see also Chevin et al., 2014; Hartl and Taubes, 1996; Lande, 1976; Lourençoet al., 2011; Poon and Otto, 2000; Roze and Blanckaert, 2014; Tenaillon et al., 2007; Zhang and
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Hill, 2003). Now, if the two populations are maladapted in random phenotypic directions (suchthat their displacements from the optimum are orthogonal on average; Schneemann, Munzur,et al., 2022), then it follows from eqs. 1 and 15, that
E (m(A,A)) = −1

4 (E (lnwP1) + E (lnwP2))

≈ n/(8Ñe)(26)
where Ñe is the harmonic mean of the two effective population sizes. This result is confirmed bysimulations reported in Appendix B as shown in Supplementary Figure B.1.While the net effect of change is determined largely by n and Ne , the total amount of changewill depend on the size of mutations that fix (as determined by the distribution of scaled selectiveeffects: Nes). Evolutionary changes will continue to accrue even after m(A,A) has equilibrated(Schiffman and Ralph, 2021), so thatM(A,A)will increase over time at a constant rate. The resultis illustrated by the solid blue lines in Figure 4A-D, which show thatm(A,A)−M(A,A) declinessteadily under stabilizing selection.
2.6.2. Dominance and interaction terms. The evolution of dominance effects under stabilizingselection is more complex, and sensitive to the underlying model of mutation. For this reason,some of the discussion is relegated to Appendix B, while here we report the clearest patterns.Figure 4A-B show results with the mutation model used in Figure 2, in which each newmuta-tionwas equally likely to be phenotypically recessive or phenotypically dominant. In this case, wefound that m(∆,∆) ≈ M(∆,∆) at all levels of divergence (dashed red lines), because m(∆,∆)and M(∆,∆) both increased with D , but at identical rates. The reason is that, unlike the addi-tive effects, the dominance effects are not expressed together in the parental genotypes duringthe divergence process, and so unlike the additive effects, the dominance effects show little ten-dency to be coadapted to their optimum, but are free to wander in phenotypic space (Schnee-mann, De Sanctis, et al., 2020; Schneemann, Munzur, et al., 2022).Figure 4C-D shows comparable results when we adopted the mutational model of Schnee-mann, Munzur, et al. (2022), in which larger effect mutations were more likely to be phenotypi-cally recessive (Billiard et al., 2021; see Appendix B for full details). Now, as shown by the dashedred lines,m(∆,∆)−M(∆,∆) decreases over time. This is because bothM(∆,∆) andm(∆,∆)increase with D , but at different rates. This implies that the dominance effects, too, have a ten-dency to be coadapted to the optimum. The explanation is clear if we consider the extreme caseof complete phenotypic recessivity. In that case, the additive and dominance effects of muta-tions would be equal and opposite (such that the heterozygous effects were zero). As such, theapparent “coadaptation” of the dominance effects would follow trivially from the coadaptationof the additive effects (see Appendix B for more details). The dominance curves in Figure 4C-Dshow this effect in less extreme form, so thatm(∆,∆)−M(∆,∆) decreases with D , but slightlyless rapidly than m(A,A) − M(A,A).Consider finally the interaction terms, shown by the dotted purple lines in Figure 4. As shownin Figure 4A and C, the interaction terms are always close to zero when both populations un-dergo similar patterns of evolution (in this case due to their identical population sizes). Moresurprisingly, as shown in Figure 4B, with the standard model of mutation, results remain qualita-tively unchanged when P2 remained in its ancestral state, while all of the evolution took placein P1. The explanation is that, with this mutation model, the evolving population showed notendency to fix phenotypically recessive mutations – and recalling that, under this model, muta-tions can be recessive for fitness, even if they are additive, or even dominant, for the phenotype(Manna et al., 2011). By contrast, when mutations tended to be phenotypically recessive (Figure4C-D) then M(A,∆) becomes non-zero, and the interaction term becomes a reliable guide towhether the recessive mutations were fixed more-or-less equally in both populations (such that
m(A,∆) ≈ M(A,∆) ≈ 0; Figure 4C), or mostly in P1 (m(A,∆) − M(A,∆) < 0; Figure 4D) orin P2 (m(A,∆) − M(A,∆) > 0; not shown). Note that this signal would remain even after atransient reduction in Ne , as long as a substantial number of phenotypically recessive mutationswere fixed during the bottleneck.
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Figure 4 – The net effect and total amount of evolution change predictably under stabi-lizing selection. Each plot compares the amount of directionality in the additive effects(m(A,A)−M(A,A); solid blue lines), dominance effects (m(∆,∆)−M(∆,∆); dashed redlines), and the interaction term (m(A,∆)−M(A,∆); dotted purple lines), plotted againstthe level of genetic divergence (D) under stabilizing selection to a stationary optimum. A-B: results with the standard model of mutation (as in Figure 2), with all mutations equallylikely to be phenotypically recessive or dominant. C-D: results with biased mutation, inwhich mutations of larger phenotypic effect were more likely to be recessive (see Ap-pendix B). A and C: Both populations had identical population sizes of N = 100, so thatthey accrued substitutions at a similar rate; B and D: We assumed that P2 remained inthe optimal ancestral state, while P1 (with N = 100) underwent all of the evolutionarychange. Lines and shaded areas represent the mean and one standard deviation across200 replicate simulations. Other simulation parameters matched Figure 2 (n = 20 and
U = s̄mut = 0.01). .

3. Discussion
This work has explored how the mode of divergence between parental populations impactsthe fitness of their hybrids. We have focused on expected hybrid fitness, and not the variance orhigher moments, and on results that apply to controlled crosses, where the measures of genomecomposition (h and p12) are probabilities determined by the crossing scheme. However, as weshow in Appendix A, the results can also be applied to data of other kinds, e.g. when h and p12are estimates of ancestry from individual genome sequences. To generate simple, testable pre-dictions, we have used a simple model of selection on quantitative traits introduced by Fisher
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(1930), but have extended and generalized previous work on this model, both by allowing for ar-bitrary additive and dominance effects at each locus, and by accounting for segregating variationwithin the parental populations.
Results show how the expected fitness of hybrids depends on only a handful of summarystatistics, which describe the evolutionary changes that differentiate the populations, and whichare described by the functions m(·, ·) and M(·, ·) (eqs. 11-12). If the population genetic param-eters, or the history of environmental change, influence the outcomes of hybridization (Chevinet al., 2014; Schneemann, De Sanctis, et al., 2020; Yamaguchi and Otto, 2020), then they doso via these quantities. The statistics, moreover, are estimable by quantitative genetic methods(Clo et al., 2021; Hill, 1982; Lynch, 1991; Rundle and Whitlock, 2001; Schneemann, De Sanctis,et al., 2020), and have a natural interpretation. In particular, m(·, ·) represents the “net effectof evolutionary change”, M(·, ·) represents the “total amount of evolutionary change”, and thedifference m(·, ·)−M(·, ·) (which appears directly in eq. 13) represents the similarity of changesat different loci (eqs. 24-25; Chevin et al. (2014), Fraïsse and Welch (2019), and Martin, Elena,et al. (2007)). Applied to additive effects, m(A,A) − M(A,A), closely resembles an QST -FSTcomparison (Whitlock, 2008).
It follows immediately from the results above that very different histories of evolutionarydivergence can yield identical patterns of hybrid fitness, as long as they lead to the same valuesof m(·, ·) − M(·, ·). Nevertheless, we have shown that some information about the divergencehistory is present in hybrid fitness data (Figure 2). These results are summarized in Table 4, whichcontains the predicted signs of the key quantities that appear in the three final terms in eq. 13.
As is clear fromTable 4, the simplest results concern directional selection. In particular,m(A,A)−

M(A,A)will tend to be positive only when the divergence between the parental lines was drivenby positive selection towards distinct environmental optima. The size of the term will dependon further details of the adaptive divergence (Figure 3). It is maximized, for example, when allallelic changes produced identical effects (eq. 23), and decreases in size if the adaptive changeis achieved via a circuitous route (e.g. because of deleterious pleiotropy, overshoots of the op-timum, fluctuating environmental conditions, or maladapted ancestral states); and – for a givenamount of phenotypic change – the term decreases if the number of loci is smaller, and theireffects more variable in size (eq. 20; see also Chevin et al., 2014). Additional and complemen-tary information about the divergence history is present in the dominance and interaction terms(m(∆,∆) − M(∆,∆) and m(A,∆) − M(A,∆)). Due to Haldane’s Sieve (Haldane, 1924), domi-nance effects will often point in the direction of past selection. For example, if one populationadapted to new conditions via dominant mutations, while the other remained in their sharedancestral habitat, then we would expected both m(∆,∆) − M(∆,∆) and m(A,∆) − M(A,∆)to be positive, as well as m(A,A) − M(A,A). It follows, therefore, that the analysis of hybridfitness might tell us not only about the presence of past directional selection (e.g. Fraser, 2020),but also about the direction of that selection, and the lineage in which the adaptation occurred(see Figure 2; Table 4).
Ifm(A,A)−M(A,A) is negative, then inferences about the evolutionary divergence are morechallenging, since negative values can arise in a number of different ways (see Figures 2 and 4and Table 4). Nevertheless, even in this case, the dominance and interaction terms might yielduseful information. Consider, for example, a pair of populations with similar current phenotypesand fitness, but which nonetheless produce unfit hybrids, due to m(A,A) − M(A,A) ≪ 0. Inthis case, an estimate of m(∆,∆) − M(∆,∆) ≈ 0 would not be very informative, as it can ariseunder stabilizing selection, fluctuating selection, or even directional selection if Haldane’s Sieve isweak (Orr and Betancourt, 2001). However, a strongly positive estimate ofm(∆,∆)−M(∆,∆)would be consistent with the populations having diverged via different genomic responses toidentical directional selection (Figure 2 scenario I). By contrast, if this dominance term werenegative, and the interaction term was also non-zero, then this would be consistent with one ofthe populations having undergone prolonged periods of low Ne , and fixing deleterious recessivemutations (Figure 4D). The sign of the interaction term, m(A,∆) − M(A,∆), would then tellus which of the two populations had experienced the low Ne . Note that, from eq. 13 the result
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would be alleles from one parental line being selected against, despite the lines having equalfitness (Barton, 1992).A major caveat of all of the results presented here is the extreme simplicity of the phenotypicmodel (with its lack, for example, of phenotypic epistasis, and directional plasticity; Stamp andHadfield, 2020). However, this model can be defended as an approximation of more complexand realistic models (Martin, 2014), or simply as a way of generating a fitness landscape withfew parameters (Simon et al., 2018). In this case, as shown in Appendix A, we can follow Chevinet al. (2014), and reframe our results in terms of fitness effects, rather than phenotypic changes.Of course, even as a fitness landscape, the quadratic model of eq. 1 remains very simple, andprecludes strong fitness epistasis and multi-locus fitness interactions (Barton, 2001; Fraïsse andWelch, 2019; Martin, Elena, et al., 2007) – both of which are often observed in cross data (Coyneand Orr, 2004; Fraïsse, Elderfield, et al., 2014; Fraïsse, Gunnarsson, et al., 2016). Yet even in thepresence of such effects, results might still apply to transformed fitness measurements (Fraïsse,Gunnarsson, et al., 2016; Schneemann, De Sanctis, et al., 2020; Simon et al., 2018).A second major caveat is our neglect of linkage disequilibrium (Lande, 1981; Schneemann,De Sanctis, et al., 2020), which is essential to studying the full dynamics of introgression. Never-theless, even the current results have suggestive implications for the stability of local adaptation,and the evolution of genetic architectures (Dekens et al., 2022; Yeaman, 2022). For example, thedominance of alleles may be a major determinant of the effective rates of migration betweendemes, and the possibility of allele swamping (Barton, 1992). Directional dominance, resultingfrom local adaptation, may therefore act as a source of asymmetric gene flow between derivedand ancestral populations. Similarly, a body of previous work suggests that the architecture ofadaptation will be affected by the presence or absence of gene flow (as reviewed in Yeaman,2022). In particular, adaptation in the face of gene flow should create architectures that aremore “concentrated”, i.e., involving fewer, larger effects, and tighter linkage. Combined with re-sults here (eq. 20), this implies that ongoing gene flow during local adaptation might sometimesincrease the strength of resulting intrinsic RI.
4. Methods

4.1. Derivation of main result.
We assume that individuals from our two diploid parental populations, P1 and P2, vary at Dbiallelic loci. We can arbitrarily choose one allele at each locus to be the focal allele, denoted B,such that the other allele can be denoted b. Since loci are assumed to be independent, let us firstspecify the genetic model for a single locus, following the standard conventions of quantitativegenetics (e.g. Lynch and Walsh, 1998, Ch. 4). Accordingly, we define the contribution of the bbgenotype to the trait j as 0, so that the point (0, 0, ..., 0) in n-dimensional trait space correspondsto the individual with only bb genotypes at each of the D loci. The contribution of the Bb geno-type on locus i to the trait j is defined as aij + dij , and the contribution of the BB genotype onlocus i to trait j is 2aij . This is summarized in Table 5.

4.1.1. Properties of the three focal populations. Here wewill specify properties of three key popu-lations, namely the two parental populations, P1 and P2, and the initial F1 cross. Crucially, thesepopulations correspond to the three possible ancestry states of any given locus in the hybrid,i.e. either both alleles are derived from P1, or both from P2, or there is mixed ancestry with oneallele derived from each population. Table 6 gives a list of fundamental parameters in our modelin each of these three populations.
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Table 4 – Inference of divergence scenario from the signs of terms in eq.13
Scenario Figure Additive Dominance Interaction
Neutrality, or erratically wandering optimum Fig. B.1 0 0 0
Divergent selection, acting only in P1 – + +1 -1
Divergent selection, acting only in P2 Fig. 2-V&VI + +1 +1

Divergent selection where both populations evolve insimilar phenotypic directions Fig. 2-II + +1 0

Divergent selection where both populations evolve in dis-similar phenotypic directions Fig. 2-III + 0/-1 0

Stabilizing selection; most evolution in P1 Fig. 4B&D, and B.2-B.3 - 0/-2 0/-2
Stabilizing selection; most evolution in P2 – - 0/-2 0/+2

Stabilizing selection; evolution in both populations Fig. 4A&C, and B.1-B.3 - 0 0
Cyclically moving optima Fig. 2-IV - 0/-1 0
Independent genetic responses to identical directional se-lection in both populations Fig. 2-I - +1 0

Note: Additive: m(A,A) − M(A,A), Dominance: m(∆,∆) − M(∆,∆), Interaction:
m(A,∆) − M(A,∆);1. Only if Haldane’s Sieve acts.; 2. Weak without mutational bias towards phenotypicallyrecessive mutations.

Table 5 – The genotypic values for locus i and trait j
Locus i genotype Contribution to trait jbb 0Bb aij + dijBB 2aij
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Table 6 begins by defining the marginal frequency of the focal (B) allele at locus i as qP1,iand qP2,i in populations P1 and P2 respectively. The marginal frequency of the B allele in the F1population is the mean of the marginal frequencies in P1 and P2, denoted q̄i . By assumption, thetwo parental populations are at Hardy-Weinberg equilibrium, but the F1 population will have anexcess of heterozygotes, which can be parameterized by a negative coefficient of inbreeding, fi .The frequencies of the three possible genotypes at the locus, bb, Bb and BB, then follow fromstandard results (e.g., Lynch and Walsh, 1998, eqs. 4.21). The F1 genotype frequencies can alsobe written in terms of the parental allele frequencies (for example, the F1 bb frequency is theproduct of the marginal frequencies of the b allele in P1 and P2), which allows us to solve forthe inbreeding coefficient, as shown in the Table. The next lines of the Table follow standardquantitative genetics (e.g. Cockerham, 1954; Fisher, 1930; Lynch and Walsh, 1998, Ch. 4) anddefine the average effects and dominance deviations of an allelic substitution at the locus ineach of the populations (see, e.g., eqs. 4.10b and 4.22 in Lynch and Walsh, 1998).These are all of the results needed to derive eqs. 3-6. Let us begin with the contribution tothe mean of trait j from locus i in populations P1 and P2. This is given by the sum of the threegenotype frequencies in the population, weighted by their trait contributions, as given in Table5.
z̄P1,ij = 2aijq

2
P1,i + (aij + dij) · 2qP1,i (1 − qP1,i )(27)

z̄P2,ij = 2aijq
2
P2,i + (aij + dij) · 2qP2,i (1 − qP2,i )(28)

in populations P1 and P2 respectively. Equation 3 then follows immediately as
Aij ≡ 1

2(z̄P2,ij − z̄P1,ij) =
1
22aij (qP2,i − qP1,i ) +

1
2dij (2qP2,i (1 − qP2,i ) − 2qP1,i (1 − qP1,i ))(29)

= aij (qP2,i − qP1,i ) + dij (qP2,i − qP1,i ) (1 − qP1,i − qP2,i )

= αij (qP2,i − qP1,i )

where the mean average effect is defined as
αij ≡ 1

2(αP1,ij + αP2,ij) = aij + dij(1 − qP1,i − qP2,i )(30)
Similarly, to derive eq. 6, we use the genotype frequencies for the F1 as shown in Table 6, toyield the contribution of locus i to the mean of trait j in the F1

z̄F1,ij = 2aijqP1,iqP2,i + (aij + dij)(qP1,i (1 − qP2,i ) + qP2,i (1 − qP1,i ))(31)
and so it follows that

△ij ≡ z̄F1,ij − 1
2(z̄P2,ij + z̄P1,ij) = 2aij

(
1
2(qP2,i + qP1,i ) − 1

2(qP2,i + qP1,i )
)(32)

+ dij
(
qP2,i (1 − qP1,i ) + qP1,i (1 − qP2,i ) − 1

2 (2qP2,i (1 − qP2,i ) + 2qP1,i (1 − qP1,i ))
)

= dij (qP2,i − qP1,i )
2

= δij (qP2,i − qP1,i )
2

which is equation 6, and where the mean dominance deviation is simply
δ̄ij =

1
2 (δP1,ij + δP2,ij) = dij(33)

Having defined the mean trait values of each population, let us now consider their variances.The contribution of locus i to the variance in trait j in population P1 is
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Var (zP1,ij) = E (z2P1,ij) − z̄2P1,ij(34)
= (2aij)

2 q2P1,i + (aij + dij)
2 · 2qP1,i (1 − qP1,i )

− (2aijq
2
P1,i + (aij + dij) · 2qP1,i (1 − qP1,i ))

2

= α2
P1,ijqP1,i (1 − qP1,i ) + (2qP1,i (1 − qP1,i )δij)

2

= σ2
α,ij(P1) + σ2

δ,ij(P1)

where we have partitioned the result into an additive variance and a dominance varianceterm, as listed in Table 6, and following eqs. 4.12 of Lynch and Walsh (1998). Similarly for P2,
Var (zP2,ij) = α2

P2,ijqP2,i (1 − qP2,i ) + (2qP2,i (1 − qP2,i )δij)
2(35)

= σ2
α,ij(P2) + σ2

δ,ij(P2)

and for the F1
Var(zF1,ij) = (2aij)

2qP1,iqP2,i + (aij + dij)
2(qP1,i (1 − qP2,i ) + qP2,i (1 − qP1,i ))(36)

= σ2
α,ij(F1) + σ2

δ,ij(F1)

which all agree with results in Cockerham (1954). So far, we have given the contributions of asingle locus to a single trait. The general results, found in Table 1, simply require summing overall loci i = 1, ...,D and all traits j = 1, ..., n. That is, we can write the sums of trait variances forP1, P2 and F1 as

VP1 ≡
n∑

j=1

D∑

i=1

Var(zP1,ij) = n∑

j=1

D∑

i=1

(
σ2

α,ij(P1) + σ2
δ,ij(P1)

)(37)

VP2 ≡
n∑

j=1

D∑

i=1

Var(zP2,ij) = n∑

j=1

D∑

i=1

(
σ2

α,ij(P2) + σ2
δ,ij(P2)

)(38)

VF1 ≡
n∑

j=1

D∑

i=1

Var(zF1,ij) = n∑

j=1

D∑

i=1

(
σ2

α,ij(F1) + σ2
δ,ij(F1)

)(39)

4.1.2. Extension to an arbitrary hybrid. Now, to derive the results found in Table 1 and eq. 13,let us consider an arbitrary hybrid. Let us begin by parameterizing the hybrid’s genome usingthe probabilities p1, p2 and p12, which are the probabilities that a randomly chosen locus in thehybrid is in each of the three possible ancestry states. That is, p1 is the probability that a randomlychosen locus in the hybrid inherits both alleles from the P1 population, p2 that it inherits bothalleles from the P2 population, and p12 that it inherits one allele from each population (as withall loci in the F1). It therefore follows that
p1 + p2 + p12 = 1(40)

We also define the hybrid index
h = p2 +

1
2p12(41)

as the probability that a randomly chosen single allele in the hybrid has P2 ancestry.Using results in Table 6, it then follows that the probabilities of the BB and Bb genotypes ata locus i in the hybrid are
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PBB,i = p1q
2
P1,i + p2q

2
P2,i + p12qP1,iqP2,i(42)

= (1 − h)q2P1,i + hq2P2,i − 1
2p12(qP2,i − qP1,i )

2

PBb,i = p12qP1,i (1 − qP1,i ) + p22qP2,i (1 − qP2,i ) + p12 (qP1,i (1 − qP2,i ) + qP2,i (1 − qP1,i ))(43)
= 2(1 − h)qP1,i (1 − qP1,i ) + 2hqP2,i (1 − qP2,i ) + p12(qP2,i − qP1,i )

2

so the overall marginal probability of the B allele is

PB,i ≡ PBB,i +
1
2PBb,i(44)

= (1 − h)qP1,i + hqP2,i

We can now derive Equation 13. First, the contribution to the mean trait value for the hybridat locus i and trait j is

z̄H,ij = E (zH,ij) = p1z̄P1,ij + p2z̄P2,ij + p12z̄F1,ij(45)
= z̄P1,ij + 2hAij + p12∆ij

which can be seen by substituting in equations 29 and 32. Summed over the D loci, we have

E (zH,j) =
D∑

i=1

E (zH,ij) = z̄P1,j + 2h
D∑

i=1

Aij + p12

D∑

i=1

∆ij(46)

Let us now compute E (zH,j − oj)
2, which appears in the first term of eq. 9. It will first beuseful to define the intermediate variable

Kj ≡ (1 − h) (zP1,j − oj)
2 + h (zP2,j − oj)

2 + p12
(
(zF1,j − oj)

2 − 1
2

(
(zP1,j − oj)

2 + (zP2,j − oj)
2
))

(47)

= (zP1,j − oj)
2 + 4h(zP1,j − oj)

D∑

i=1

Aij + 2p12 (zP1,j − oj)

(
D∑

i=1

∆ij

)
+ 4h

(
D∑

i=1

Aij

)2

+ p12



(

D∑

i=1

∆ij

)2

−
(

D∑

i=1

Aij

)2

+ 2

(
D∑

i=1

Aij

)(
D∑

i=1

∆ij

)


such that

−
n∑

j=1

Kj = (1 − h) lnw (z̄P1, o) + h lnw (z̄P2, o) + p12(lnw (z̄F1, o) − 1
2 (lnw (z̄P1, o) + lnw (z̄P2, o)))

(48)

which corresponds to the sum of the top three rows for the squared mean term in Table 1.
Then we find by Equation 46,
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E 2 (zH,j − oj) =

(
zP1,j − oj + 2h

D∑

i=1

Aij + p12

D∑

i=1

∆ij

)2

(49)

=(zP1,j − oj)
2 + 4h (zP1,j − oj)

D∑

i=1

Aij + 2p12 (zP1,j − oj)
2

D∑

i=1

∆ij

+ 4h2
(

D∑

i=1

Aij

)2

+ p212

(
D∑

i=1

∆ij

)2

+ 4hp12

(
D∑

i=1

Aij

)(
D∑

i=1

∆ij

)

= Kj − (4h(1 − h) − p12)

(
D∑

i=1

Aij

)2

− p12(1 − p12)

(
D∑

i=1

∆ij

)2

(50)

− 2p12 (1 − 2h)

(
D∑

i=1

Aij

)(
D∑

i=1

∆ij

)

Summing over traits and using the definition of the functionm(·, ·) in eq. 11, we can see that

−
n∑

j=1

E 2 (zH,j − oj) = (1 − h) lnw (z̄P1, o) + h lnw (z̄P2, o)

+ p12(lnw (z̄F1, o) − 1

2
(lnw (z̄P1, o) + lnw (z̄P2, o)))

+ (4h(1 − h) − p12)m(A,A) + p12(1 − p12)m(∆,∆) + 2p12(1 − 2h)m(A,∆)

as given in the second column of Table 1.The calculation for the variance follows in the same way, but is much more involved alge-braically. The result, as shown in the third column of Table 1, is
n∑

j=1

Var(zH,j) =
n∑

j=1

D∑

i=1

(2aij)
2PBB,i + (aij + dij)

2PBb,i − (2aijPBB,i + (aij + dij)PBB,i )
2(51)

= (1 − h)VP1 + hVP2 + p12(VF1 +
1

2
(VP1 + VP2))

+ (4h(1 − h) − p12)M(A,A) + p12(1 − p12)M(∆,∆) + 2p12(1 − 2h)M(A,∆)

where VP1,VP2 and VF1 are defined as in eqs. 34-36, and the function M(·, ·) is defined by eq.12. The first equality follows from the definition of variance and the independence of loci. Thesecond follows by substituting variables as per their definitions above. Because the full proofis rather lengthy, although straightforward, we provide a proof in the form of a Mathematicanotebook instead of writing it out here, available at https://doi.org/10.5281/zenodo.7520470(De Sanctis et al., 2023).
4.2. Simulations.

The illustrative simulations shown in Figures 2-4, calculated new quantities from runs re-ported previously by Schneemann, Munzur, et al. (2022) (and which were themselves basedon the simulation methods reported in Schneemann, De Sanctis, et al., 2020). Simulations wereindividual-based, and used pairs of allopatric (i.e. independently simulated) populations. The pop-ulations followed theWright-Fisher assumptions, and containedN simultaneous hermaphrodites,with discrete non-overlapping generations. Every generation, parents were selected with a prob-ability proportional to their fitness (as calculated from eq. 1) with n traits under selection. Ga-metes were generated from the parental genomes with free recombination among all sites, andmutation. For mutation, a Poisson-distributed number, with mean 2NU , of mutations were ran-domly assigned to unique sites, and we set U = 0.01. The n homozygous effects for each newmutationwere drawn from amultivariate normal distributionwith zeromean and no covariances,
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and a common variance set such that the mean deleterious effects of a mutation in an optimalbackground was s̄mut = 0.01. The heterozygous effect of each mutation on each trait was set atits homozygous effect multiplied by a beta-distributed random number, with bounds at 0 and 1(corresponding to complete recessivity or complete dominance), a mean µ = 1/2 (implying addi-tivity on average), and a variance of ν = 1/24 (Schneemann, Munzur, et al., 2022). After a total of
D substitutions had fixed across both populations, the two parental genotypes were chosen asthe genotypes containing only the fixed effects in each population. For Figures 2-3 one or bothpopulations adapted to a optimum at a distance√1/2 from its ancestral phenotype. In scenariosI-III, both populations in this way, while for scenarios IV-VI, we re-analysed the same simulations,but we treated all substitutions as if they had occurred in P2 while P1 remained in their commonancestral state. This was done by the contrivance of combining the first 25 substitutions accruedin two simulated populations, ensuring, therefore, that the total amount of evolutionary changewas identical across all six scenarios. Scripts are in https://doi.org/10.5281/zenodo.7520470 (DeSanctis et al., 2023).

Appendix A. Results with homogeneous parental populations
In this Appendix, we show (1) howour results apply to datawhere the ancestry proportions ofthe hybrid genome are known, and (2) how results can be expressed in terms of selective effects,rather than phenotypic changes. In both cases, for reasons explained below, we will rely on theadditional assumption that parental populations are genetically homogeneous. In particular, wewill assume that the focal B allele is fixed in P2 but absent in P1, such that all qP2,i = (1−qP1,i ) = 1.It therefore follows from eqs. 29 and 32 that the between-population differences at each locus(eqs. 7-8) correspond directly to the genotypic effects at that locus (Table 5) i.e.

Aij = aij , and ∆ij = dij if qP2,i = (1 − qP1,i ) = 1(52)
It will also be useful to rearrange the results shown in Table 1 so that they are expressed interms of the three probabilities p1, p2 and p12 rather than the two probabilities h and p12 (seeeqs. 40-41). Accordingly, using eqs. 11-12 and 40-41, and substituting in eq. 52 to account forthe genetic homogeneity of the parental lines, we have the result shown in Table 7.

Table 7 – Components of log hybrid fitness with homogeneous parental populations
Coefficient −∑n

j=1 E
2 (zH − o) −∑n

j=1 Var (zH)

p1 lnw(zP1, o) 0
p2 lnw(zP2, o) 0
p12 lnw(zF1, o) 0

p1p12 m(a+ d, a+ d) −M(a+ d, a+ d)
p2p12 m(a − d, a − d) −M(a − d, a − d)
p1p2 m(2a, 2a) −M(2a, 2a)

Note that with homogenous populations, p1, p2 and p12 are now the probabilities of the threegenotypes, bb, BB and Bb, as well as the ancestry states. Moreover, the arguments of the func-tions M(·, ·) and m(·, ·) now correspond to the phenotypic effects of inserting single alleles ineither heterozygous or homozygous state into a fixed background.
A.1. Results with known ancestry proportions.

In the main text, we treated the quantities h and p12 (or equivalently, p1, p2 and p12) as prob-abilities determined by the crossing scheme. However, for some data, the ancestries of hybridscan be estimated directly from genome sequences. Moreover, if the parental populations are ge-netically homogeneous (as assumed in Table 7), then the ancestry proportions for divergent sitescan be known with certainty. In this section, we show that our results also hold approximatelyfor such data.
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If p1, p2 and p12 are known proportions, instead of probabilities, loci in the hybrid become non-independent, but in a simple way so that results can be derived with basic combinatorics. Forexample, given some D, p12 and p2, we can choose any Dp12 out of D sites to be heterozygous,and any Dp2 out of the remaining D(1 − p12) sites to be homozygous for the allele from thesecond parental population, so there will be a total of
(

D

Dp12

)(
D(1 − p12)

Dp2

)
=

D!

(Dp1)!(Dp2)!(Dp12)!

possible hybrids, and by assumption, each has equal probability. In theory, one could write outthe complete discrete probability distribution function for the hybrid fitness over all possiblehybrids in a given situation. One can also compute arbitrary moments using the same indicatorfunction approach as detailed below (see also Chevin et al., 2014).To calculate expected hybrid fitness, let J1 be the subset of the D loci in the hybrid that arehomozygous for the P1 allele, J2 be the subset of the loci that are homozygous for the P2 allele,and J12 the subset of loci that are heterozygous. The sizes of these sets are then:
|J1| /D ≡ p1

|J2| /D ≡ p2(53)
|J12| /D ≡ p12 = (1 − p1 − p2)

Since all divergent loci must be in one of these three states, any two of these sets can com-pletely characterize the hybrid. We can therefore write the j-th trait value of an arbitrary hybridas:
zH,j = zP1,j +

∑

i∈J2

2aij +
∑

i∈J12

(aij + dij)(54)
Let us now drop the subscript j for brevity, and calculate the expected squared deviation ofthe trait value from its optimum:

E ((zH,j − oj)
2) = E ((zH − o)2) = E





zP1 − o + 2

∑

i∈J22

ai +
∑

k∈J12

(ak + dk)




2



= E

(
(zP1 − o)2 + 4


∑

i∈J22

ai




2

+


∑

i∈J12

ai




2

+


∑

i∈J12

di




2

+ 2(zP1 − o)


2

∑

i∈J22

ai +
∑

k∈J12

(ak + dk)




+ 2
∑

i∈J12

ai
∑

k∈J12

dk + 4
∑

i∈J22

ai
∑

k∈J12

(ak + dk)

)
(55)

In these expressions, the expectations are not over the additive and dominance effects, butover the particular set of loci that are homozygous and heterozygous in the hybrid. That is, theyare over the sets J22 and J12. To obtain expectations over these sets, we define indicator func-tions.

IJ(i) =

{
1 if i ∈ J

0 otherwise
Using x and y as placeholder variables, we can then use these functions as follows:
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E


∑

i∈J

xi


 = E

(
D∑

i=1

xi IJ(i)

)
=

D∑

i=1

xiE (IJ(i))

=
D∑

i=1

xiP(i ∈ J) =
|J|
D

D∑

i=1

xi

≡ |J|
D

Sx

where |J| is the size of the set. We have introduced the notation

Sx ,j ≡
D∑

i=1

xi ,j

Let us also introduce

Sxy ,j ≡
D∑

i=1

xi ,jyi ,j

For both, we will again leave out the subscript j for brevity.
For the square and cross-terms in eq. 55, we use the same approach.

E


∑

i∈J

xi
∑

k∈J

yk


 = E

(
D∑

i=1

D∑

k=1

xiyk IJ(i)IJ(k)

)

=
D∑

i=1

xiyiP(i ∈ J) +
D∑

i=1

D∑

k=1,k ̸=i

xiykP(i ∈ J ∩ k ∈ J)

=
|J|
D

D∑

i=1

xiyi +
|J| (|J| − 1)

D(D − 1)

D∑

i=1

D∑

k=1,k ̸=i

xiyk

=
|J|Sxy
D

+
|J| (|J| − 1)

D(D − 1)
(SxSy − Sxy )

=
|J| (D − |J|)
D(D − 1)

(Sxy − SxSy ) +
|J|
D

SxSy

and similarly

E


∑

i∈J

xi
∑

k∈K

yk


 =

D∑

i=1

D∑

k=1,k ̸=i

xiykP(i ∈ J ∩ k ∈ K )

=
|J| |K |

D(D − 1)

D∑

i=1

D∑

k=1,k ̸=i

xiyk

=
|J| |K |

D(D − 1)
(SxSy − Sxy )

Now we can combine these results, with eqs. 53 and 55. After some algebra, we obtain
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E ((zH − o)2) = (zP1 − o)2 + 2(zP1 − o)((2p2 + p12)Sa + p12Sd)

+ 4p2S
2
a + p12S

2
a + p12S

2
d + 2p12SaSd

+ (4p2(1 − p2) + p12(1 − p12) − 4p2p12)
D

D − 1

(
Saa − S2

a

)

+ p12(1 − p12)
D

D − 1

(
Sdd − S2

d

)

+ (2p12(1 − p12) − 4p2p12)
D

D − 1
(Sad − SaSd)(56)

Some rearranging, and summation over traits, yields

E (lnwH) = p1 lnwP1 + p2 lnwP2 + p12 lnwF1

(57)

− D

D − 1
(p1p2 (m(2a) − M(2a)) − p12p1 (m (a+ d) − M(a+ d)) − p12p2 (m(a − d) − M(a − d)))

The sole difference between eq. 58 and the results summarized in Table 7 is that the functions
m(·, ·) and M(·, ·) are now weighted by a new factor D/(D − 1) – which stems from the non-independence among loci when true ancestry proportions are known. Note too thatD/(D−1) ≈
1 when the number of divergent sites is large. It follows, therefore, that the results in the maintext apply approximately to data with known ancestry proportions.
A.2. Results in terms of selective effects.

We will now follow Chevin et al. (2014) and show how results can be expressed in terms ofthe fitness effects of alleles, rather than their phenotypic effects. This implies that the quantities
M(·, ·) and m(·, ·), which describe the total amount and net effect of evolutionary change, mayhave a simple interpretation, even when the phenotypic model cannot be interpreted literally(e.g. Martin, 2014). We use results in Table 7 rather than the more general Table 1, becauseselection coefficients apply to the heterozygous and homozygous effects of alleles in a givenbackground, rather than to the average and dominance effects of substitutions in a population.Note also that the results below apply only with the quadratic fitness function of eq. 1, and notwith other fitness functions with higher curvatures that would allow for complex epistasis (i.e.fitness interactions between three or more loci).To express the results in Table 7 in terms of fitness effects, let us first consider the net effectof evolutionary change – a quantity which corresponds to the fitness effects of whole genotypes.For example,m(2a, 2a) is simply the fitness of one parental genotype,measured in environmentalconditions where the alternative parental genotype is optimal:

m(2a, 2a) = − lnwP2, if lnwP1 = 0(58)
= − lnwP1, if lnwP2 = 0(59)

Similarly, m(a+ d+ d) and m(a− d, a− d) are the fitnesses of the F1 genotype measured inconditions where one or other of the parental genotypes is optimal.
m(a+ d, a+ d) = − lnwF1, if lnwP1 = 0(60)
m(a − d, a − d) = − lnwF1, if lnwP2 = 0(61)

The total amount of evolutionary change depends on the fitness effects of the individualdivergent alleles, introgressed one at a time into an optimal background. To see this, let si denotethe deleterious fitness effect of inserting a single homozygous substitution i into an otherwiseoptimal background. This selection coefficient is defined in the standard way, as s = (w ′ −w)/w
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where w ′ (w ) is the fitness of the mutant (wild-type). For small selection coefficients, we alsohave si ≈ − ln(1 − si ). If the wild-type genotype is phenotypically optimal, it follows that

si ≈ − ln(1 − si ) =
n∑

j=1

(2aij)
2(62)

and so, if s̄ denotes the mean selection coefficient across all D substitutions, the total amountof evolutionary change is

M(2a, 2a) = −
D∑

i

ln(1 − si ) ≈ Ds̄(63)
Equivalent results hold for M(a ± d, a ± d) for the heterozygous selection coefficients. Itfollows therefore that the total amount of evolutionary change will be large if the parental lineshave fixed many mutations with (potentially) large fitness effects.We will now show that the difference between the total amount and net effect of change is ameasure of fitness epistasis. Let us first note that, with the quadratic model of eq. 1, all epistaticinteractions are pairwise (Martin, Elena, et al., 2007). If we define sik as the fitness effect ofinserting a given pair of substitutions into an optimal background, then the pairwise epistaticeffect is the log fitness of the double mutant, minus the log fitnesses of the two single mutants:

ϵik ≡ ln(1 − sik) − ln(1 − si ) − ln(1 − sk)

= −8
n∑

j=1

aijakj .(64)
(e.g. Martin, Elena, et al., 2007). It then follows from eq. 22 that the key quantity for hybrids is

m(2a, 2a) − M(2a, 2a) = 4
D∑

i=1

D∑

k=1,k ̸=i

ai · ak

= −1
2

D∑

i=1

D∑

k=1,k ̸=i

ϵik

= −1
2D(D − 1)ϵ̄(65)

which agrees with results from Chevin et al. (2014). Equation 64 shows that the sign of thefitness epistasis relates to the tendency of mutations to point in the same direction (Chevin et al.,2014; Fraïsse andWelch, 2019; Martin, Elena, et al., 2007). Deleterious mutations with positiveepistasis will tend to be compensatory (pointing in opposite phenotypic directions), and thosewith negative epistasis will tend to be synergistic (pointing in the same phenotypic direction);epistasis will be maximally negative when all substitutions have identical individual effects, inwhich case ϵ = −2s . Note also that m(2a, 2a) − M(2a, 2a) will vanish when there is no epistasison average (ϵ̄ = 0), as would be the case if the populations accumulated randomly-orientatedmutations (Fraïsse andWelch, 2019; Martin, Elena, et al., 2007; Simon et al., 2018). Evolutionarydifferences that show positive epistasis will tend to increase RI among hybrids.

Appendix B. Further simulations under stabilizing selection
In this Appendix, we report the results of additional simulations, to explore how the keyquantities that determine hybrid fitness (Table 1) behave under stabilizing selection.
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B.1. The effects of population genetic parameters under stabilizing selection with the additivemodel.
Let us first consider the effects of varying the population genetic parameters, which have alsobeen explored in several previous studies (Barton, 2017; Chevin et al., 2014; Hartl and Taubes,1996; Lourenço et al., 2011; Poon and Otto, 2000; Roze and Blanckaert, 2014; Tenaillon et al.,2007; Welch and Waxman, 2003; Zhang and Hill, 2003), but here, we explicitly report the totalamount (M(A,A)) and net effect (m(A,A)) of evolutionary change.To do this, we re-analysed simulation results from Schneemann, De Sanctis, et al. (2020) eachcomprised of 500 substitutions accrued under stabilizing selection, with a stationary optimum.Overall, 128 conditions were simulated, using a fully crossed set of parameters. Here, dominancecoefficients were drawn from a uniform distribution bounded at 0 and 1, such that mutationswere on average phenotypically additive. The parameters variedwere (i) the population size (N =

1000, or N = 10), (ii) the mean selection coefficient of a new mutation in an optimal background(s̄mut=0.01 or s̄mut=0.0001), (iii) the genomic mutation rates (U ∈ {0.01, 0.001, 0.0001, 0.00001}),(iv) the number of traits under selection (n = 2 or n = 20), (v) the rate of recombination (eithera single chromosome with map length one Morgan, and Haldane’s mapping function, such thatthe mean crossover fraction was c̄ ≈ 0.216; or free recombination among all loci, such that
c̄ = 0.5), and (vi) the shape of the distribution of mutational effects (either “top down”, wherethe magnitudes of new mutations were drawn from an exponential distribution, with a randomorientation in n-dimensional space; or “bottom up”, where themutational effect on each trait wasdrawn independently from a normal distribution; Poon andOtto, 2000). Of these six parameters,four had appreciable effects on the results, and these are indicated visually in Figure B.1.The results in Figure B.1 show a few clear patterns. First, and unsurprisingly, populationsfixed larger changes (largerM(A,A)) when the population size was smaller, and mutations werelarge (smaller N , larger s̄mut). Results for m(A,A) generally support eq. 26, whose value for thefour values of n/N are shown by the vertical dashed lines (Barton, 2017). The sole exceptionsare results with Ns̄mut = 0.001 (empty blue points in Fig. B.1). In this case, selection was soineffective that the populations had failed to reach their equilibrium level of maladaptation after
D = 500 substitutions. In consequence, results fell on the line m(A,A) ≈ M(A,A), implyingthat the evolutionary changes were wandering erratically in phenotypic space, as under strictneutrality. In all other cases, the action of stabilizing selection was apparent from the fact that
m(A,A) ≪ M(A,A).We note finally that with higher mutation rates the dependencies on N and n can change(Roze and Blanckaert, 2014). This is due to accumulation of linkage disequilibria, not treated inthe current work.
B.2. Dominance effects under stabilizing selection.

This section explores stabilizing selection when mutations may be phenotypically dominantor recessive, with a particular focus on the evolution of the dominance effects. In all cases, thiswill involve modifying the model of mutational dominance reported in the Methods, to enhancethe influence of dominance effects.Let us begin with the simulations reported in Figure 4C&D, which are also reported in greaterdetail in Figure B.2 (see De Sanctis et al., 2023). These simulations used a mutational model ofSchneemann, Munzur, et al. (2022). Under this model, as with the standard simulations, the het-erozygous effect of a new mutation on a given trait was set to its homozygous effect multipliedby a beta-distributed random number with mean µ and variance ν. But in this case, both µ and
ν were set to vary with the size of the mutation, such that

µ = 1 − 1

1 + exp
(
−2 |a|

σa

)

ν = (2µ − 1)3 − (2µ − 1)(66)
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Figure B.1 – The value for the total amount and net effect of evolutionary change un-der stabilizing selection depend on model parameters in predictable ways. Simulationresults are shown pairs of populations, diverging under stabilizing selection. Simulationsused an additive phenotypic model, and were halted after D = 500 substitutions havefixed. Each panel contains results from 64 population pairs, using a fully crossed setof population-genetic parameters. Varied were the population size (N : red versus bluepoints), the mean selection coefficient of a new mutation in an optimal background (s̄mut:filled versus unfilled points); and the number of phenotypic traits (n: circular versus trian-gular points). Mutation and recombination rates also varied, but neither had a qualitativeeffect in the parameter regimes simulated, and so are not indicated visually. (A) showsresults when the mutational effects on each trait were i.i.d. normal. (B) shows resultswhen the magnitudes of new mutations were drawn from an exponential distribution,with random orientations in n-dimensional space; In both panels, vertical lines show theexpected value of m(A,A) at stochastic equilibrium (namely n/(8N); eq. 26). This equi-librium was not reached, however, when selection was very ineffective (Ns̄mut = 10−3:empty blue points), and in this case evolutionary changes wandered erratically in pheno-typic space (such thatM(A,A) ≈ m(A,A)).

where σa is the standard deviation in the additive effects of new mutations. The result is thatsmall-effect mutations were additive on average (with µ ≈ 1/2), whereas larger effect mutationsbecame increasingly recessive (Billiard et al., 2021; Manna et al., 2011). Figure B.2G (red curve)shows clearly that, with this mutation model, populations evolving under stabilizing selectionhave a strong tendency to fix phenotypically recessive mutations (eq. 21). Now if P1 had fixedwholly recessivemutations (with no phenotypic effect in heterozygous form) then it would followthat aij = dij for all loci and traits (see Table 5). If we then consider genetically homogeneousparental populations (as in Appendix A), it would follow trivially that m(A,A) = m(∆,∆) =
m(A,∆) and thatM(A,A) = M(∆,∆) = M(A,∆). In this way, the tendency for highly recessivemutations to fix, explains the similarities of the red lines shown in Fig. B.2C, F and I (which areplotted together in Figure 4D).Note, however, that the fixations were not wholly recessive, and so the red lines are similar,but not identical. In particular, a stochastic equilibrium is reached by the red curves in bothFigure B.2B (eq. 26) and Fig. B.2H (where the recessive fixations in P1 imply that the F1 willclosely resemble P2: eq. 18). However, from Figure B.3E it is clear that the lack of coadaptationbetween the dominance effectsmeans that their net effect,m(∆,∆), still wanders in phenotypicspace, and increases steadily with divergence.
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Figure B.2 – The net effect and total amount of evolutionary change predictably understabilizing selection, when mutations tend to be phenotypically recessive. The simula-tions reported correspond to be shown in Figure 4C-D, and the curves in panels C, F and Ireplicate those in Figure 4C (blue curves), and Figure 4D (red curves). All simulations usedthe dominance model of Schneemann, Munzur, et al. (2022), in which larger effect muta-tions were more likely to be phenotypically recessive (eq. 66). All curves show the meansacross 100 replicate simulations, and shaded areas (often barely visible) show the stan-dard deviation. Other simulation parameters were N = 100, n = 20 and U = s̄mut = 0.01..
While the results in Figures 4C-D and B.2 assumed that mutations will tend to be pheno-typically recessive, it is not clear that this will hold in nature. This is partly because the traits inFisher’s model need not correspond to real-world quantitative traits (Martin, 2014), and partlybecause, under the fitness function of eq. 1, mutations can be recessive for fitness, even if theyare additive or weakly dominant for the phenotype (e.g. Manna et al., 2011).As such, we repeated our simulations of stabilizing selection, with no special tendency formutations to be recessive, but also increasing the variance in the dominance effects. To do this,we simply set µ = 1/2 and ν = 1/12 so that the heterozygous effect of a new mutant wasits homozygous effect, multiplied by a uniformly-distributed random number. As with the maintext simulations, we first assumed that eachmutation had a unique dominancemultiplier on eachtrait – so that we used n uniform random numbers per mutation. However, we also comparedthis “per-trait dominance” model, to a “per-mutation dominance” model, in which the effects oneach trait shared a dominance multiplier – so that we used only a single uniform random numberper mutation. The effect of both of these changes to the mutational model was to make it morelikely that mutations with extreme levels of dominance would fix, but with no tendency for newmutations to be phenotypically recessive. The results of these simulations are shown Figure B.3,
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with the “per-trait dominance” results as thinner lines, and the “per-mutation dominance” resultsas thicker lines.Consider first, results for the interaction terms (Figure B.3G-I). Figure B.3G shows that a ten-dency to fix phenotypically recessive mutations (an increasingM(A,∆)) can occur via a selectivesieve without mutational bias, but only for some models of mutation – in this case, only for the“per-mutation” model (thicker red line), in which each mutation has the same level of dominanceon all n traits. However, the corresponding negative trend in m(A,∆)−M(A,∆) (Figure B.3I) isnow very weak – both compared to its standard deviation between runs (so that the term will bepositive for a substantial proportion of runs) – and compared to negative trend in the additiveterm (Fig. B.3C).Consider finally results for the dominance effects (Figure B.3D-F). Remarkably, the trend inFigure B.3F is opposite of that shown in Figure B.2F, with a weak tend for dominance effectsto point in same phenotypic direction. This applies in all cases, including when the sole evolvingpopulation tended to fix phenotypically recessive alleles. Note, however, that this tendency isagain weak - both compared to its standard deviation and the negative trend in the additive term(Fig. B.3C). The upshot is, at least in the models we simulated, dominance terms will be difficultto interpret in the absence of a mutational bias towards phenotypic recessivity.
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Figure B.3 – Dominance effects can show weak directionality under stabilizing selec-tion, even without a tendency for mutations to be phenotypically recessive. Simulationresults under stabilizing selection, with a stationary optimum. Compared to the main textsimulations, the variance in the dominance effects of mutations was increased (by draw-ing dominance multipliers for each mutation from a uniform distribution with µ = 1/2and ν = 1/12), and we also compared our standard model (“per-trait dominance") to amodel in which each mutation was equally dominant or recessive on all n traits (“per-mutation dominance"). Lines and shaded areas represent the mean and one standarddeviation across 200 replicate simulations. Other simulation parameters were N = 10,
n = 20 and U = s̄mut = 0.01 .
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