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Resumen

Esta tesis trata sobre la estructura electrónica de las moléculas H3
+, H3 y H3

– . Se centra
en el cálculo de las energías y configuraciones geométricas del estado fundamental y del
primer estado excitado de dichas moléculas, la representación de las curvas de energía
potencial (PECs, por sus siglas en inglés) y las densidades electrónicas.
Aunque el tema puede ser asociado a la química cuántica y computacional, las molécu-
las consideradas, en especial los iones, son de interés astrofísico.
La molécula más simple, el catión trihidrógeno H3

+ está presente en las atmósferas de
Júpiter, Urano y Saturno y también en las nubes interestelares densas y difusas. Su ob-
servación permite determinar, entre otros, la tasa de ionización de los rayos cósmicos o
el tamaño de una nube.
Al igual queö el ión positivo, se sospecha que el H3

– podría estar presente en el medio
interestelar contribuyendo a bandas de absorción.
La molécula neutra H3 se incluye para completar el estudio de sistemas con tres centros
y dos (H3

+), tres (H3) y cuatro (H3
– ) electrones.

El primer paso consiste en una serie de cálculos que sólo requieren números atómicos
y constantes, que se llaman cálculos ab initio (latín para a partir de primeros principios).
Se empieza con el método Hartree-Fock (HF) de campo autoconsistente para resolver
la ecuación de Schrödinger independiente del tiempo. Inicialmente, se aplica la apro-
ximación de Born-Oppenheimer para desacoplar el movimiento de los electrones y nú-
cleos con el fin de obtener la ecuación de Schrödinger puramente electrónica. Además,
se define la función de onda en forma de una determinante de Slater, construida por
espín-orbitales que se forman mediante combinaciones lineales de orbitales atómicos.
El método HF aplica el principio variacional para encontrar los coeficientes correspon-
dientes a los espín-orbitales que minimizan la energía. En práctica, se realiza un proceso
iterativo puesto que las ecuaciones dependen de su solución.
El método HF promedia la interacción entre los electrones del sistema, lo cual significa
que no considera interacciones instantáneas. Además, no tiene en cuenta la correlación
electrónica, aparte del canje electrónico. Con el objetivo de incluir dicha correlación elec-
trónica y por consiguiente, mejorar los resultados, se han desarrollado otros métodos,
llamados post-HF. Los métodos empleados en esta tesis son la teoría perturbativa de
Møller–Plesset (MPPT) y el método Coupled Cluster (CC). Aunque MPPT y CC utilizan
procedimientos distintos, su forma de incluir la correlación electrónica es a través de
combinaciones de determinantes de Slater del estado fundamental y de estados excita-
dos.
Dado que el método HF trabaja con una combinación lineal de orbitales atómicos, una
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elección de una base de funciones que describen los orbitales. Varias familias de con-
juntos de bases existen, combinando en la mayoría de los casos funciones gaussianas
contraídas para aproximar la forma real de los orbitales. La base elegida en esta tesis
es la aug-cc-pVQZ desarrollada por Dunning. Esta base es optimizada para los méto-
dos que contienen la correlación electrónica y solamente trata los electrones de valencia.
Además incluye orbitales de momento angular mayor para añadir más flexibilidad a la
hora de aproximar enlaces o electrones débilmente ligados.
El último paso práctico consiste en la aplicación del modelo semi-empírico de Hückel,
el cual comienza, similar al método HF, con el principio variacional y la definición de
la función de onda como combinación lineal de orbitales atómicos. El desarrollo lleva
a la ecuación secular que permite encontrar los valores de la energía y los coeficientes
de la combinación lineal. Para resolver dicha ecuación, el modelo utiliza un Hamilto-
niano simplificado e introduce parámetros experimentales, lo cual fundamenta el ca-
rácter semi-empírico. Con la ayuda de los resultados ab initio los parámetros han sido
determinados y la veracidad de los suposiciones del modelo ha sido comprobada.
Los cálculos ab initio HF-SCF, MPPT y CC se realizaron con el paquete de software de
código abierto NWChem accesible a través del nodo 41 contenido en el cluster del de-
partamento de física. Para iniciar un cálculo, se tiene que escribir un fichero de entrada,
incluyendo información sobre el sistema, en este caso la geometría molecular inicial, el
grupo de simetría y la carga. Además, se elige la base y el método deseado, cuyos deta-
lles pueden ser ajustados, como por ejemplo el número máximo de iteraciones.
Antes de estudiar las moléculas principales de este trabajo, se ha calculado con los dife-
rentes métodos la energía y, si procede, la longitud de enlace de las especies sospechadas
de ser productos de la disociación de las moléculas. En este paso previo, gracias a los
valores de la literatura, ya se puede prever una jerarquía de los métodos con respecto a
su exactitud.
En el caso del H3

+ se obtiene que, en el estado fundamental, la molécula forma un trian-
gulo equilátero y en el primer estado excitado, la configuración es lineal simétrico. Los
resultados de la energía de equilibrio son consistentes con los valores de la literatura.
Sus canales de disociación son por un lado, dos átomos de hidrógeno y un protón, tanto
en el estado fundamental como en el estado excitado, y por otro lado una molécula H2

más un protón en el estado fundamental y una molécula H2
+ más un átomo de hidró-

geno en el estado excitado.
Se ha encontrado que en configuración triangular la molécula H3 es inestable en su esta-
do fundamental. En el estado excitado, la curva de potencial presenta un mínimo, pero
debido a la exactitud limitada del cálculo, no se puede resolver ese mínimo con certeza.
En ambos casos, el canal de disociación consiste en tres átomos de hidrógeno.
Por último, el H3

– es estable en una configuración lineal asimétrica, tanto en el estado
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fundamental como en el estado excitado. Las energías y longitudes de enlace encontra-
das son compatibles con los valores de la literatura. Uno de los canales de disociación
es una molécula H2 más un ión de hidrógeno. Otro canal, una molécula H2

– más un
átomo de hidrógeno se puede intuir a partir de las mapas de densidad obtenidas con el
modelo de Hückel.
Para mejorar los resultados, se propone la ampliación de las PEC a otras configuraciones,
especialmente en el caso de la molécula neutra.
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1 Introduction

1.1 Historical Facts and Astrophysical Motivation

The following information is taken from the articles [1] [2] [3], unless other reference is
given.

The present thesis is centered on the electronic and geometric structure of the molecules
H3

+, H3 and H3
– . Even though this project can be assigned to the field of Quantum

Chemistry or Molecular Physics, the studied molecule ions hold a high level of interest
in Astrophysics.
The trihydrogen cation H3

+ is the simplest polyatomic molecule and known to be the
most abundant one in space next to H2. In 1911 it was discovered by J. J. Thomson as
radiation in a discharge tube with a mass to charge ratio three times greater than the
one of H+. The principal formation reaction H2

+ + H2 −−→ H3
+ + H was discovered by

T. R. Hogness and E. G. Lunn. In 1961, the conclusion that H3
+ exists in the interstellar

medium was made. Given that the cation acts as a proton donor, it was held responsible
for the accelerated formation of diverse molecules that have been detected previously.
Followed by the first detection in the laboratory by T. Oka, who predicted that the only
spectral lines of H3

+ are located in the IR region and caused by vibrational transitions,
its emission spectrum was found in the planetary ionospheres of Jupiter, Uranus and
Saturn. Interstellar H3

+ was revealed by the detection of its absorption spectrum, on the
one hand in the sight line of two young stars embedded in a dense cloud in 1996 and on
the other hand in diffuse clouds toward the galactic center in 1997.
The formation of H3

+ requires a previous ionization of H2 by, for instance, cosmic rays.
Its destruction process differs depending on the environment: in dense clouds the dom-
inating mechanism is the proton transfer to CO and in diffuse clouds H3

+ is mainly
destroyed by dissociative recombination with an electron.
The number density in these two domains can be found by equating the formation and
destruction rates. Besides, the observable column density is related to the path length
and to the cosmic ray ionization rate ζ. Accordingly, either the corresponding cloud size
or the ionization rate can be determined.
Other possible applications of H3

+ are the exploitation as a cosmic thermometer or den-
sitometer by measuring its emitted intensities[4].
The existence of a stable negative ion H3

– was predicted by N. Bohr in 1919 and ex-
perimentally observed from discharge plasmas by Wang et al. in 2003[5]. Just like its
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(a) Trihydrogen cation H3
+. (b) Trihydrogen anion H3

– .

Figure 1.1: Ground state equilibrium configurations. The represented geometric config-
urations have been calculated in this work (see section 4).

positive counterpart, H3
– is stable at the temperature of the interstellar medium. As

other anionic hydrogen clusters, H3
– is also suggested to exist in diffuse interstellar

clouds, contributing to absorption bands[6].
When H3

+ was discovered, it was thought to be the ionized version of a stable H3

molecule. The existence of such a molecule was controversial for a long time and its
history is marked by the back and forth of evidence and disproof. Since the detection of
its spectral lines, also in a discharge tube by G. Herzberg[7], it is known that H3 exists.
The triatomic hydrogen is considered to be an intermediate in the dissociative recombi-
nation process of H3

+[8] and will be included in this project for completeness.

1.2 Objectives

By adding H3 to the investigation, it becomes possible to study the electronic and ge-
ometric structure of a three center system and an increasing number of electrons: H3

+

with two, H3 with three and H3
– with four electrons.

The simplest one, H3
+, a closed shell molecule, forms an equilateral triangle in its elec-

tronic ground state (see Figure 1.1a), belonging to the D3h symmetry group. The bonding
arises from the delocalized electrons resulting in a resonant structure. In its first excited
triplet state, it can exist in a linear symmetric shape.
Other than in its first excited state, the triatomic hydrogen H3 is unstable in its ground
state. To explore this molecule, an equilateral triangle configuration for both the ground
and excited state is presumed.
The trihydrogen ion H3

– , another closed shell molecule, presents in its ground state as
well as in the first excited state a linear antisymmetric shape (see Figure 1.1b), belonging
to the C∞v symmetry group. The ion H3

– is held together by a van der Waals anion
induced dipole bonds.
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The first step of the investigation consists of ab initio (latin for from the beginning)
calculations provided by the computational chemistry software package NWChem. In
this context, ab initio means that the methods employed to solve the Schrödinger equa-
tion only imply fundamental constants and atomic numbers. The Hartree-Fock self-
consistent field (HF-SCF) method, is a first example for an ab initio calculation. It forms
the foundation of more sophisticated methods, like the Møller–Plesset perturbation the-
ory (MPPT) and the Coupled Cluster (CC) methods, pursuing the objective to improve
the HF results by including electronic correlation. Therefore, these kind of methods are
called post-HF.
In this thesis, the focus lies on calculations executed with the afore mentioned CC and
MPPT methods, aiming to find the equilibrium energies and geometries of the molecules
in their ground and first excited states. The results are compared to literature values, if
available, to evaluate the accuracy of the methods employed.
Another interesting concept for the study of the molecules are potential energy surfaces
(PES)[9]. In general, a PES describes the potential energy as a function of the geometry
of a system, forming a complicated hypersurface of 3N-61 dimensions. They provide
information about the optimal configuration, dissociation channels, equilibrium reac-
tion constants and subsequently the present amount of a species. In case of the studies
molecules, N = 3 so the PES depends on three degrees of freedom. There are several sets
of coordinates adapted to the molecular species. One of them are the Jacobi coordinates:
R, as the distance between two proton, ρ and θ, the modulus and orientation angle of the
position vector of the third proton with respect to the center of mass between the other
two protons. Another one is the distances between one selected proton of the molecule
and the other two together with the angle between the corresponding position vectors.
In this project coordinate sets are used but only the dependence on one coordinate is
considered, resulting in potential energy curves (PECs) which are easier to handle than
high dimensional PES. In practice the PECs are obtained fixing the orientational angle
θ while varying the bond lengths between the atoms that constitute the molecule. The
following two options have been chosen to perform this variation: on the one hand, the
size of the molecules is reduced or increased as a whole, what means that all the bonds
are increased by the same amount, and on the other hand the position of two atoms is
held fixed while the third atom is approached or removed. With the curves on hand, the
previously calculated equilibrium geometries are confirmed and possible dissociation
channels are proposed.
The final step consists of a qualitative consideration, applying the semi-empirical Hückel
molecular orbital (HMO) model, which works with empirical parameters and a simpli-
fied Hamiltonian operator. The results obtained involve the electronic ground and first

1In case of linear molecules the PES would have 3N-5 dimension
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excited state and the associated wave functions of the systems. Using these wave func-
tions, the electron density distribution is determined an represented graphically.

2 Theoretical Background
The following information is taken from the books [10] [9] [12] and [11], unless other
reference is given.

2.1 Hartree-Fock (HF) self-consistent field (SCF) Method

The main problem of this work is to solve the time-independent Schrödinger equation in
the most accurate way to obtain the electronic energy and wave function of the molecules
under study. Instead of tackling the entire molecule, the Born-Oppenheimer (BO) ap-
proximation allows to decouple the electronic and nuclear motion by considering the
atomic nuclei as point particles fixed in space. This approach leads to the electronic
Schrödinger equation

(Hel + VNN)Φ(r; R) = Eel(R)Φ(r; R) (2.1)

with the non-relativistic electronic Hamiltonian in atomic units [a.u.]

Hel = −
1
2 ∑

i
∇2

i −∑
i,l

Zl
ril

+
1
2 ∑

i 6=j

1
rij

(2.2)

⇒∑
i

hi +
1
2 ∑

i 6=j
vij. (2.3)

The first term of (2.2) corresponds to the kinetic energy of the electrons, the second
term to the interaction between electron and nucleus and the third term to the electron-
electron interaction. After the second equality sign, the single and pair contributions are
summed up to simplify the notation, substituting

hi = −
1
2
∇2

i −
Zl
ril

(2.4)

and the electron-electron interaction

vij =
1
rij

. (2.5)
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The nucleus-nucleus repulsion term VNN in (2.1) is a constant due to the BO approxi-
mation and will be neglected in the following1. Another consequence is the parametric
dependence of the electronic energy and wave function on the nuclear locations, thus
solving (2.1) for different positions R gives the potential energy surface (PES) whereof
more information can be obtained.
If the electron-electron interaction in (2.3) is ignored for a moment, the Hamiltonian be-
comes separable and the total wavefunction can be written as a product of one-electron
wavefunctions φ, the Hartree product

ΦHP(r1, ..., rNe) = φ1(r1) · ... · φNe(rNe) (2.6)

with Ne number of the electrons. The main problem concerning this product is that the
spin property is missing and does not satisfy the antisymmetry principle for fermions.
By substituting the purely spatial functions φi(ri) in (2.6) by orthonormal spin-orbitals
χ(x), the spin property is taken into account. The four dimensional x includes the space
and spin coordinates. Employing the Slater determinant in short notation for the total
wavefunction

Ψ = (Ne!)−
1
2 det |χ1(x1)χ2(x2)...χNe(xNe)| (2.7)

the antisymmetric character is given. The Slater determinant also respects the fact that
electrons are indistinguishable and guarantees the fulfillment of the Pauli principle.
The electronic energy can be calculated by

Eel = 〈Ψ|Hel|Ψ〉 (2.8)

with Hel from (2.3), including the electron-electron term again. Evaluating (2.8) with the
help of the Slater-Condon rules and slightly changing the notation yields

EHF =
Ne

∑
i
〈i|h|i〉+ 1

2

Ne

∑
i,j
[ii|jj]− [ij|ji] (2.9)

with the one- and two-electron integrals defined as

〈i|h|j〉 =
∫

dx1χ∗i (x1)h(r1)χj(x1) (2.10)

[ij|kl] =
∫

dx1dx2χ∗i (x1)χj(x1)
1

r12
χ∗k(x2)χl(x2). (2.11)

Here the subscripts 1 and 2 are introduced to illustrate the functionality of the one- and
two-electron integrals. They are not related to the tags used in (2.7).

1Its only effect is the shifting of the eigenvalue and can be added at the end.
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The Hartree-Fock method states that the spin-orbital which minimizes the energy (2.8)
is the best approximation of the true one. Applying the variational theorem to (2.9),
under the condition that the spin-orbitals remain orthonormal, leads to the Hartree-Fock
equations

f (x1)χi(x1) = εiχi(x1) (2.12)

with the energy εi corresponding to the spin-orbital i and the one-electron Fock operator

f (x1) = h(x1) +
Ne

∑
j

Jj(x1)− Kj(x1) (2.13)

where Jj(x1) is the Coulomb operator, giving the average potential at x1 produced by
the charge distribution of the electron in orbital j. The exchange operator Kj(x1) is a
mathematical consequence of the antisymmetry principle and can be understood as an
interaction between electrons of the same spin. These two operators are defined as

Jj(x1)χi(x1) =

[∫
dx2|χj(x2)|2

1
r12

]
χi(x1) (2.14)

Kj(x1)χi(x1) =

[∫
dx2χ∗j (x2)

1
r12

χi(x2)

]
χj(x1). (2.15)

Due to the fact that the Hartree-Fock equations (2.12) depend on their solutions χi(x1),
the best way to solve them is by numeric iteration, the self consistent field (SCF) proce-
dure, where the spin-orbitals inserted to run a certain iteration step are the ones calcu-
lated in the previous step. These spin-orbitals χi are expressed as a linear combination
of atomic orbitals (LCAO)

χi =
No

∑
µ=1

Cµiχ̃µ (2.16)

where χ̃µ is a set of No atomic orbital basis functions which have to be chosen previously.
Introducing (2.16) to (2.12), multiplying by χ̃∗µ on the left hand side and integrating gives
the Hartree-Fock-Rothaan equations

∑
ν

FµνCνi = εi ∑
ν

SµνCνi (2.17)

⇒ FC = SCε (2.18)
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with the diagonal eigenvalue matrix ε, the coefficient vector C, the overlap matrix S and
the Fock matrix F described by the following expressions:

Fµν =
∫

dx1χ̃∗µ(x1) f (x1)χ̃ν(x1) (2.19)

Sµν =
∫

dx1χ̃∗µ(x1)χ̃ν(x1). (2.20)

If the basis set is chosen to be orthogonal, the overlap matrix is zero and (2.17) turns out
to be a pure eigenvalue problem.
After the SCF procedure, the coefficients which constitute the best combination of spin-
orbitals are identified. Hence the wavefunction (2.7) can be constructed and the total
energy (2.9) can be determined.
To simplify the calculation of the integrals, different assumptions on the spin states
can be made, such as the restricted (RHF) Hartree-Fock approach used for closed shell
molecules, where all the electrons are constrained to be paired.

2.2 Post-Hartree-Fock Methods

One mayor downside of the HF-SCF method is that except for the exchange term (2.15),
the interaction between the electrons is ignored. The Coulomb interaction is treated as a
mean field effect instead of an instantaneous interaction. Therefore, a difference between
the HF energy and the exact energy, the so called electronic correlation energy, exists.
However, the HF method provides a foundation for methods which aim to take electronic
correlation into account. These methods are summed up by the term Post-Hartree-
Fock, such as the Møller-Plesset Perturbation Theory or the Coupled Cluster method,
discussed in the following.

2.2.1 Møller-Plesset second order perturbation theory (HF-MP2)

The objective of the Møller-Plesset (MP) method is to improve the Hartree-Fock results
by estimating the correlation energy. To do so, the method makes use of perturbation
theory.
It begins with stating that the electronic Hamiltonian H can be separated into an unper-
turbed part H(0) and a perturbation term H(1). The unperturbed part it chosen to be the
sum of the Fock operators from (2.13)

H(0) = HHF =
Ne

∑
i=1

fi. (2.21)
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The perturbation operator H(1) then becomes

H(1) = H − HHF =
1
2 ∑

i 6=j

1
rij
−∑

ij
Jj(i)− Kj(i) (2.22)

and can be seen as the deviation from the average interaction approach.
In perturbation theory, the first step consists of expanding the wavefunction and eigen-
value in powers of a parameter λ and inserting the expansion into the Schrödinger
equation. Equating the the terms corresponding to the same order in λ, one obtains for
the zeroth order

H(0) |Ψ(0)〉 = E(0) |Ψ(0)〉 (2.23)

⇒ HHF |ΨHF〉 =
Ne

∑
i=1

εi |ΨHF〉 (2.24)

thus the zeroth order energy is E(0) = ∑∑∑Ne
i=1 εi. It is important to remember that if the

spin-orbitals from (2.12) are eigenfunctions of the Fock operator, the ground state Slater
determinant (2.7) (here called ΨHF) is an eigenfunction of HHF.
The first order correction would be

E(1) = 〈ΨHF|H(1)|ΨHF〉 (2.25)

but rather than solving the integrals2, the sum of E(0) and E(1) will be evaluated:

E(0) + E(1) = 〈ΨHF|HHF|ΨHF〉+ 〈ΨHF|H(1)|ΨHF〉 = 〈ΨHF|H|ΨHF〉 = EHF, (2.26)

showing that the sum of zeroth and first order energy equal the total Hartree-Fock en-
ergy (2.9). The conclusion is that an actual correction to EHF begins at higher orders.
Continuing with the second order correction, the associated expression is

E(2) = ∑
j>0

| 〈Ψ(0)
j |H

(1)|ΨHF〉 |2

E(0) − E(0)
j

(2.27)

where Ψ(0)
j are the zeroth order excited Slater determinants. In accordance to the Bril-

louin’s theorem, single excited Ψj will not contribute, that means only the double excited

2Solving the integrals, one finds that E(1) is the electron-electron interaction term with negative sign,
the one that is counted twice in the sum of the orbital energies εi.
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Ψj remain after applying the Slater-Condon rules, finally giving for (2.27)

E(2) =
occ

∑
i

occ

∑
j>i

vir

∑
a

vir

∑
b>a

([ij|ab]− [ij|ba])2

εi + εj − εa − εb
(2.28)

with the two electron integrals defined in (2.11), the occupied orbitals i, j and unoccupied
(virtual) orbitals a, b.
The final energy given by this method is

EMP2 = E(0) + E(1) + E(2) = EHF + E(2). (2.29)

In this project, only second order (MP2) corrections will be used, but in general, higher
order corrections are possible (MP3, MP4).

2.2.2 Coupled Cluster (CC)

The Coupled Cluster (CC) theory is another method for upgrading the Hartree-Fock
results. It starts with the definition of its wavefunction which arises from a reference, in
this case, the HF wavefunction

|ΨCC〉 = eT |ΨHF〉 (2.30)

where T is the cluster operator

T = T1 + T2 + ... + TNe (2.31)

composed of the excitation operators Ti that create the i-electron excited Slater deter-
minants when acting on ΨHF. For T1 and T2 the effect is described in the following
way:

T1 |ΨHF〉 =
occ

∑
i

vir

∑
a

ta
i |Ψa

i 〉 (2.32)

T2 |ΨHF〉 =
occ

∑
i<j

vir

∑
a<b

tab
ij |Ψab

ij 〉 . (2.33)

The sub- and superscripts are defined as in (2.28), the wavefuntions |Ψa
i 〉 and |Ψab

ij 〉 stand
for one- and two-electron excited Slater determinants, respectively, and the coefficients t
are called amplitudes.
Depending on the Ti included in (2.31), the method’s name is abbreviated: CCS, CCSD,
CCSDT (S→ singly, SD→ singly and doubly, SDT→ singly, doubly and triply excited).
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Another form of the CCSDT method is the CCSD(T) where the triplet contribution is
estimated by the use of perturbation theory, invoking terms obtained from MP4 and
MP5[13].
Expanding the exponential from (2.30), inserting (2.31) and rearranging in groups of the
same excitation yields

eT = 1 + T1 +

(
T2 +

1
2

T2
1

)
+

(
T3 + T2T1 +

1
6

T3
1

)
+ ... (2.34)

The first term reproduces the HF wavefunction, the second term creates all singly excited
determinants, the third term creates all doubly excited determinants and so on.
After introducing the previous expansions into 2.30 the Coupled Cluster wavefuntion
becomes

|ΨCC〉 = |ΨHF〉+ ∑
ia

ta
i |Ψa

i 〉+ ∑
i<j

∑
a<b

(tab
ij + ta

i tb
j − tb

i ta
j ) |Ψab

ij 〉+ ... (2.35)

The first term in parenthesis results from T2, the so called connected double excitation,
and the cross terms in parenthesis follow from 1

2 T2
1 , the disconnected double excitation.

To find the energy ECC, the Schrödinger equation is projected against |ΨHF〉

〈ΨHF|H|ΨCC〉 = ECC. (2.36)

Using (2.35) together with Brillouin’s theorem and the Slater-Condon rules, the final
expression for the energy results in

ECC = EHF + ∑
i<j

∑
a<b

([ij|ab]− [ij|ba])(tab
ij + ta

i tb
j − tb

i ta
j ). (2.37)

That means, as long as T1 and T2 are included the Coupled Cluster energy is always
given by (2.37), due to the fact that higher excitations are eliminated.
Projecting the Schrödinger equation against excited determinants leads the equations for
ta
i , tab

ij and so on. The concrete form of these equations depends on the operator (2.31)
chosen, but in general, they constitute a system of coupled equations which can only be
solved iteratively.
In summary, MP2 as well as CC include electronic correlation by means of deviations
from the single Slater determinant approach, since both methods create a mix of the
ground and excited state Slater determinants.
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2.3 Basis sets

As mentioned before, the ab initio methods require the selection of a basis set for the
LCAO in equation (2.16).
The election of the functions should be reasonable in a chemical sense, that means the
shape of atomic orbitals should be described correctly. Slater-type orbitals (STOs) satisfy
this condition but mathematically, they are impracticle as the two-electron integrals in
(2.11) cannot be solved analytically with STOs.
A solution to the problem is the use of Gaussian-type orbitals GTOs. In cartesian coor-
dinates, the form of a GTO centered on an atomic nucleus is

gijk(r) = Nxiyjzke−αr2
(2.38)

with α > 0, normalization constant N and positive integers i, j, k, defining the nature
of the orbital described, for example i = j = k = 0 corresponds to s-type orbitals,
i + j + k = 1 to p-type orbitals, where three different combinations are possible, leading
to px, py and pz orbitals.
Even though GTOs present computational advantages since they permit the calculation
of the integrals, STOs reflect the correct orbital shape, especially around the nucleus. To
approximate the STO shape, contracted Gaussians are used:

χo = ∑
i

doigi (2.39)

where doi are the contraction coefficients and gi the primitive Gaussians from (2.38). The
coefficients as well as the exponents of the gi are known from previous optimizations
and remain fixed during the iteration process.
Several families of basis sets build their basis functions from contracted Gaussians where-
upon the number of basis functions used for each orbital may vary. For instance, the
minimal or single-ζ basis set, STO-nG uses one basis function for each orbital, con-
structed by n primitive Gaussians. Accordingly, multiple-ζ basis sets use more than one
basis function. Another approach is the split-valence basis set by Pople. As the name
implies, it consists of a distinction between core and valence orbitals, ascribing a differ-
ent number of functions to each of them.
The basis set family employed in this project is the correlation consistent (’cc’) polar-
ized (’p’) valence-only (’V’) basis set designed by Dunning[14] with the full notation
cc-pVXZ, where ’X’ stands for the number of functions ζ, adopting the letters D,T,Q,..
(double, triple, quadruple,..). Correlation consistent means that the coefficients and ex-
ponents have been optimized for calculations which include electron correlation. The
fact that the basis set is polarized implies that functions of higher angular momentum
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are present to add more flexibility suitable for describing molecular bonds3. In the case
of first row atoms (H and He), the structure of orbitals obeys the following scheme:

• cc-pVDZ uses two s orbitals for the valence 1s orbital and adds one set of p orbitals
for polarization

• cc-pVTZ uses three s orbitals for the valence orbital and adds two sets of p orbitals
and one set of d orbitals

• cc-pVQZ uses four s orbitals for the valence orbital and adds three sets of p orbitals,
two set of d orbitals and one set of f orbitals.

Besides polarization functions, diffuse Gaussians with small exponents can be added to
model the function shape far from the nucleus in order to provide flexibility for weakly
bound electrons like in anions. In practice, diffuse functions are included in the basis
set by adding an extra function for each angular momentum present, resulting in the
’augmented’ basis set aug-cc-pVXZ.
Once a basis set is chosen, the respective coefficients and exponents of the contracted
Gaussians (2.39) can be found in the Exchange Basis Set repository[15].
The ideal case of a basis set is the use of an infinite number of functions, the complete
basis set (CBS), but in practice, only finite basis sets can be implemented, unless ex-
trapolation techniques are used to reach the CBS limit. The finite character implies the
appearance of a truncation error. To minimize this error and achieve a high accuracy,
one could think about using a large basis set. However, it is important to be aware of
the fact that a high number of basis functions results in a higher computational cost so
that a compromise has to be made.

2.4 Hückel Molecular Orbital (HMO) Model

Apart from the ab initio calculations, the species under question are also studied with the
semi-empirical Hückel method. The objective is to find the energy level structure, the
corresponding wave functions and following to that, the electron density of the molecu-
lar electronic state.
Similar to the HF method, the Hückel theory is based on the variational principle aim-
ing to minimize the energy of the system by varying the wavefunction. The general
expression for the energy in (2.8) is ∫

ΨHΨdr∫
Ψ2dr

≥ E0, (2.40)

3The basis set for a hydrogen atom would consist of s orbitals. However, combining only s orbitals for
the hydrogen molecule is not sufficient to describe the H-H bond properly so a set of p orbitals has to be
added.
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which always figures an upper bond for the energy. Substituting the wavefunction Ψ by
a LCAO of the form

Ψ =
N

∑
i

ai ϕi, (2.41)

where the ai are the variational coefficient and ϕi represent the atomic orbitals associated
with the N atoms. Taking the derivative of the energy to find the minimum, one obtains
a system of N equation

N

∑
i=1

ai(Hki − ESik) = 0 ∀k (2.42)

where Hki is the matrix element 〈ϕk|H|ϕi〉 called resonance integral, and Sik is the over-
lap matrix as in (2.20)

Sik =
∫

ϕi ϕkdr. (2.43)

Only if the determinant formed by (Hki − ESik) is equal to zero, equation (2.42) has a
non-trivial solution. The expression where the determinant is set to be zero is called
secular equation and yields to solutions for the energy E. The coefficients ai can than be
determined by substituting the energies into (2.42) and solving the system of equations
obtained for each solution of E. In this procedure, it is important to remember that the
wavefunctions have to be orthogonal and normalized.
In order to simplify the computation of (2.42), the HMO assumes the following conven-
tions[10]:

1. Sik = δik, meaning that the atomic orbitals do not overlap

2. Hii = α, fixing the same energy value for each atom

3. Hik = βik only if the atoms i and k are direct neighbors, otherwise Hik = 0.

The experimental parameters α and β are defined to be negative[9]. Item 2. and 3.
show the semi-empirical character of the HMO, since they reflect the simplification of
the Hamiltonian.
Actually, the HMO was developed for planar hydrocarbon π-electron systems, that
means the atomic orbitals are supposed to be of the type p. For the σ-electron sys-
tems studies in this project, this constraint is ignored, and one s-type orbital per atom,
centered on the nucleus, is assigned. From this follows that N in (2.42) is equal to the
number of atoms.
The assumption that Hii = α only holds for high symmetry molecules, such as those
with equilateral triangle shape. Nevertheless, it is adopted for the linear configurations
as well.
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Furthermore, the approximation of zero overlap is questionable. Thus, S is included and
determined in the calculations to evaluate the validity of the assumption.
Once the coefficients ai have been found, the total wavefunction associated with the
energy levels can be composed and the electron density can be estimated.

3 NWChem Software
For the ab initio calculations, the open source computational chemistry software package
NWChem developed by the Experimental Molecular Science Laboratory (EMSL) at the
Pacific Northwest National Laboratory (PNNL)[16] was employed. The tools provided
in this package enable, among others, quantum mechanical calculations such as SCF-HF,
post-HF and Density Functional Theory (DFT). Furthermore, it is possible to treat large
systems and their dynamics, to include relativistic effects and to study excited states.
The program is accessible on the node 41 of the computer cluster Molec3 in the Depart-
ment of Physics of the University of La Laguna.
In order to launch a calculation, an input file must be set up. It includes a series of
commands to define the system and to configure the chosen method. In the following
list, some of the most important commands for this project are specified[17]:

• START1 + name: initiating and assigning a name to the job and to the associated
auxiliary files created during calculation

• ECHO: Print the input file at the beginning of the output file

• GEOMETRY + input units: List of atoms followed by their cartesian coordinates

– SYMMETRY: Point group of the molecular geometry

• BASIS: Fixing the basis set for every atom. The basis functions are taken from the
basis set library included in NWChem

• CHARGE: Charge of the ion

• SCF: Self-consistent field HF calculation. Even if post-HF methods are performed,
the underlying HF calculation is executed previously. Some possible specifications
are:

– UHF/RHF/ROHF: Unrestricted, Restricted or Restricted Open shell HF

– SINGLET/DOUBLET/TRIPLET: Multiplicity of the energy state

– NOPEN: Number of singly occupied orbitals (open shells)

1Previous to this directive, a memory allocation command can be added.
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– MAXITER: Maximum number of iterations, occasionally needed to facilitate
convergence

• TCE (Tensor Contracted Engine): A module consisting of programs interfaced with
NWChem implementing approximations to optimize the calculations. Some meth-
ods, like the combination of MP2 and ROHF or the CCSDT are only possible when
embedded in the TCE module. One of the optimizations used in TCE is:

– DIIS (Direct Inversion in the Iterative Subspace): Extrapolation procedure to re-
duce the number of iterations and stabilize convergence. Indicating a value,
for example DIIS 10 means that the procedure is performed every ten itera-
tions

• TASK + method + task: To select the method and the calculation task. Possible
methods are SCF, MP2, CCSD(T) and CCSDT, when included in the TCE. The task
Optimize determines the lowest energy and by varying the geometry. Task Energy is
used to obtain potential energy curves since it fixes the configuration and calculates
the associated energy

Other constraints, such as the convergence threshold, are set to default. A sample input
file is provided in appendix A.
To finally launch the calculation, a one-line command in the node prompt is necessary,
providing the number of processors and the names of the input and output file.
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4 Results and Discussion
The following calculations have been realized using exclusively the aug-cc-pVQZ ba-
sis set, including 46 functions (5s4p3d2f) for hydrogen, which are contracted Gaussians
consisting of a varying number of primitives. This choice was made after some trial
calculations, testing possible candidates and showing that the aug-cc-pVQZ basis set
yields to the most accurate results. In addition, it is also used in similar contexts in the
literature.
Before analyzing the results for H3

+, H3 and H3
−, their possible dissociation products

are presented. Table 4.1 includes the optimized equilibrium ground state energies calcu-
lated with HF, MP2, CCSD(T) and CCSDT and the corresponding bond lengths, in the
case of molecular hydrogen and its positive ion. For closed shell systems, such as H2 and
later H3

+, the CCSD(T) was used and for open shell systems, the CCSDT method. It was
verified1 that the two methods do not differ in a relevant extent, so that both CCSD(T)
and CCSDT are denoted CCSD(T) in the following.

Table 4.1: Ground state equilibrium energies and bond lengths (in [a.u.]) of the possible
asymptotic dissociation species calculated with HF, MP2 and CCSD(T)

H2 (X1Σ+
g ) H2

+ (X2Σ+
g ) H– (1S) H (2S)

HF -1.133532 -0.602554 -0.487827 -0.499953
MP2 -1.166853 -0.602554 -0.517153 -0.499953
CCSD(T) -1.173907 -0.602554 -0.527162 -0.499953
Literature -1.174719[18] -0.602635[18] -0.527634[19] -0.500000
MP2 bond length 1.39 2.00
CCSD(T) bond length 1.40 2.00
Literature[18] 1.40 2.00

It can be seen that the bond length literature values are well reproduced by the
CCSD(T) method, while MP2 shows a slight deviation in the third decimal in case of H2.
Considering the energy results, a hierarchy of the methods becomes visible: for one-
electron systems, HF gives the same value as MP2 and CCSD(T) because electron corre-
lation does not occur. For systems with more than one electron the post-HF methods are
superior to HF in terms of accuracy. The best results with an accordance up to the third
decimal are provided by CCSD(T).

1As an example, the energy of the H3
+ ground state calculated with CCSD(T) is E = −1.343233 a.u.

while with CCSDT the energy is E = −1.343238 a.u.. The difference lies in the sixth decimal, irrelevant for
the comparison with literature values conducted in this section.
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4.1 Trihydrogen cation H3
+

4.1.1 Electronic Structure and Potential Energy Curves (PECs)

The singlet ground state and first excited triplet state equilibrium geometries, calculated
with CCSD(T) and the corresponding energies of H3

+, calculated with MP2 and CCSD(T)
are summarized in table 4.2.
In the ground state, H3

+ is a stable molecule in the form of an equilateral triangle,
belonging to the point group D3h, with side length Re = 1.65 a.u. and in the first excited
triplet state, it takes a linear symmetric shape, with an internuclear distance of 2.45 a.u.
These results are in agreement with the literature.
Similar to the dissociation species, the best energy results for H3

+ originate from the
CCSD(T) calculations, with an accuracy up to the third decimal in both energy states.

Table 4.2: H3
+ ground 1A′1 and first excited 3Σ+

u state equilibrium energies and geometric
configurations calculated with MP2 and CCSD(T) (energies and distances in [a.u.]).

Bond length MP2 Energy CCSD(T) Energy
1A′1 (equilateral triangle) Re = 1.65 -1.335840 -1.343231
Literature Re = 1.65[18] -1.343837[18]; -1.343836[20]

3Σ+
u (linear symmetric)

Re
ab = 2.45

-1.115135 -1.115989Re
bc = 2.45

Re
ac = 4.91

Literature[21]
Re

ab = 2.45
Re

bc = 2.45 -1.116046
Re

ac = 4.90

Different than in optimization jobs, potential energy curves (PECs) are obtained by
fixing the position of the protons and calculating the associated energy, where each
point of the curve belongs to a different position. Comparing the asymptotic energies
with combinations of the energy values of the species from table 4.1, the dissociation
products can be identified.
Due to the accuracy of the CCSD(T) results in table 4.1 and 4.2, the PECs are calculated
exclusively with the CCSD(T) method.

Figure 4.1 shows the PECs of the H3
+ ground state. In Figure 4.1a the potential

energy is presented as a function of the triangle size R. The minimum of the curve at
R = 1.65 a.u. confirms the result obtained from geometry optimization. At high values
for R, the molecule dissociates into two free hydrogen atoms and a free proton. Another
information that can be drawn from 4.1a is the full dissociation energy as the difference
between the asymptotic energy and the minimum of the curve. For H3

+, the full disso-
ciation energy is Edis = 0.343231 a.u.
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(a) Potential energy curve associated to the ground state as a function of the triangle
size R calculated with CCSD(T). The asymptotic limit corresponds to a dissociation
into two free hydrogen atoms and a free proton. The horizontal line is drawn at the

literature value taken from Table 4.1.

(b) Potential energy curve associated to the ground state as a function of the distance
D between the center of mass of two fixed hydrogen atoms (H-H) and a proton,
which is removed from the molecule. The (H-H) distance is fixed at the H3

+ (green)
and H2 (blue) ground state equilibrium. The asymptotic limit corresponds to a disso-
ciation into a free H2 and a free proton. The horizontal line is drawn at the literature

value taken from Table 4.1.

Figure 4.1: H3
+ ground state potential energy curves.



Chapter 4. Results and Discussion 19

(a) Potential energy curve associated to the ground state as a function of the size
R = Rab = Rbc calculated with CCSD(T). The asymptotic limit corresponds to a
dissociation into two free hydrogen atoms and a free proton. The horizontal line is

drawn at the literature value taken from Table 4.1.

(b) Potential energy curve associated to the ground state as a function of the distance
R = Rbc between two fixed hydrogen atoms (H-H) and a proton, which is removed
from the molecule. The (H-H) distance is fixed at the H3

+ excited state (green) and H2
ground state (violet) equilibrium. The asymptotic limit corresponds to a dissociation
into a free H2

+ a free hydrogen atom. The horizontal line is drawn at the literature
value taken from Table 4.1.

Figure 4.2: H3
+ first excited triplet state potential energy curves.
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The second ground state PEC in figure 4.1b represents the behavior of the molecule when
one proton is removed. To obtain the green curve, two of the three H atoms are fixed on
the y-axis at the H3

+ ground state equilibrium distance between them, while their center
of mass lies in the origin. In other words, one side of the triangle stays unaltered. The
third H atom varies its distance D on the x-axis, approaching or removing itself from
the center of mass of the two fixed H atoms, maintaining an isoceles triangular config-
uration. For the blue curve, the procedure is repeated, fixing the distance between the
two H atoms on the y-axis at the H2 ground state equilibrium.
For small distances, the configuration with a distance of 1.65 a.u. between the two H
atoms possesses a lower energy, because at R = 1.65 a.u. it passes through the equilat-
eral equilibrium configuration of H3

+. At higher distances, when the atom is far from
the remaining hydrogen molecule, the curves cross and the equilibrium configuration
of H2 presents a lower energy than a H2 with a bond length of R = 1.65 a.u. This fact
indicates that the dissociation products are a free H2 and a free proton.
A better illustration of this transition could be achieved performing a geometry opti-
mization on the H2 for each point. Instead of two curves, only one would be needed for
this case.
For the excited state, the PECs are obtained in the same way. Firstly, in figure 4.2a, the
whole molecule in linear configuration is dispersed, increasing the the distance of both
bonds Rab = Rbc. Again, the minimum confirms the optimization result. The asymptotic
limit shows that in the excited state the molecule dissociates into the same products as
the ground state, with a dissociation energy of Edis = 0.115989 a.u.
The PECs in figure 4.2b are obtained by fixing the distance between two of the hydro-
gens on the x-axis equal to the bond length of a H2

+ molecule for the purple curve and
equal to Re

ab = 2.45 a.u. (table 4.2) for the green curve and approaching or removing the
third H atom, also along the x-axis. Now the transition between the two configurations
takes place shortly after the passage through the equilibrium of the excited H3

+. The
abruptness of the transition can be assigned to the difference between the slopes of the
curves in this point. A geometry optimization in each step, as suggested before, may
give rise to a smoother curve.
The purple curve has a lower energy in the asymptotic region, indicating that the H3

+

molecule in its first excited state dissociates into a free H2
+ a free hydrogen atom.

4.1.2 Application of the HMO Model

In order to start applying the HMO method to the equilateral triangle configuration of
H3

+, the reference system has to be established. Its origin is defined by the center of
mass of the triangle. The x-axis, which also figures one of the C2 symmetry axis of the
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system, passes through one of the protons and the z-axis coincides with the C3 symmetry
axis. Besides, the protons occupying the vertices of the triangle are named a, b, c and the
atomic orbitals from (2.41) centered on the respective protons are called 1sa, 1sb and 1sc,
since only one s-type orbital for each atom is used.
The secular equation arising from (2.42) after adopting the Hückel conditions is then
given by ∣∣∣∣∣∣∣

α− ε β− Sε β− Sε

β− Sε α− ε β− Sε

β− Sε β− Sε α− ε

∣∣∣∣∣∣∣ = 0. (4.1)

Due to symmetry, the overlap integrals S and the parameters β are set to be equal
(S = Sab = Sbc = Sac; β = βab = βbc = βac).
Evaluating (4.1) and recollecting that α, β < 0, the lowest energy level is found to be

ε1 =
α + 2β

1 + 2S
(4.2)

with its corresponding wavefunction calculated with Mathematica

Ψ1 =
1√

3(1 + 2S)
(1sa + 1sb + 1sc). (4.3)

The first excited level is two fold degenerate, without considering electronic spin, with
an energy value of

ε2 = ε3 =
α− β

1− S
(4.4)

and orthonormal wavefunctions

Ψ(1)
2 =

1√
2(1− S)

(−1sa + 1sc) ; Ψ(2)
2 =

1√
2(1− S)

(−1sa + 1sb). (4.5)

It has to be kept in mind that the ground and excited states obtained with the HMO
theory are based on the same geometry. Therefore, the ground state obtained from the
HMO theory can be assigned to the 1A′1 state from table 4.2 and the first excited state
corresponds to a 3E′ state instead of a 3A′ state.
Knowing the mono electronic energy levels, the electron configuration can be established
(see figure 4.3): in the ground state, two electrons occupy the ε1 level and in the first
excited state, one electron is located in ε1 and the other one in the ε2 = ε3 level.

The total equilibrium energy of these states is assembled as follows:

E(1A′1) = 2ε1 (4.6)

E(3E′) = ε1 + ε2. (4.7)
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(a) Ground state configuration (b) One possible excited state configuration

Figure 4.3: Qualitative illustration of the H3
+ ground and excited state mono electron

configuration.

Their values have been determined using the same methodology in the reference [22]:
E(1A′1) = −1.342520 a.u.2 and E(3E′) = −0.792082 a.u.. Substituting (4.2) and (4.4) into
(4.6) and (4.7) and solving the system of equations, the parameters α and β are found to
adopt the following values: α ' −0.538421 a.u. and β ' −0.494683 a.u.

Electron density

To continue the simple HMO analysis, the exact 1s wavefunction of hydrogen[23] in
atomic units

Ψ1s(r) =
1√
π

e−r (4.8)

where r(x, y, z) denotes the absolute value of the position vector r(x, y, z), is chosen
for the 1sa, 1sb and 1sc atomic orbitals. Shifting the orbitals (4.8) to the positions of
the protons and using (2.43), the off-diagonal elements of the overlap matrix can be
evaluated numerically using Python, giving the result that S = Sab = Sbc = Sac ' 0.683
and therefore confirming the assumptions that the overlap is the same for every atom
and S 6= 0.

2This result is slightly higher than the literature values and the CCSD(T) result from table 4.2, however,
due to consistency reasons, E(1 A′1) and E(3E′) should originate from the same calculation procedure.
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Figure 4.4: H3
+ ground state density map ρ(x, y, 0) obtained with the HMO model.

(a) Profile ρ(x, 0, 0) in [a.u.]−1 along the x-axis
in [a.u.]

(b) Profile ρ(0, y, 0) in [a.u.]−1 along the y-axis
in [a.u.]

(c) Profile ρ(0, 0, z) in [a.u.]−1 along the z-axis
in [a.u.]

Figure 4.5: H3
+ ground state density profiles
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(a) Density map ρ+(x, y, 0) (b) Density map ρ−(x, y, 0)

Figure 4.6: H3
+ first excited state density maps obtained with the HMO model.

In the case of the ground state 1A′1, the electron density can be estimated by

ρ(x, y, z) = 2|Ψ1|2. (4.9)

Figure 4.4 shows the density map in the molecular plane ρ(x, y, 0) for the case with
S = 0.683. The iso-density curves are drawn in steps of 0.05 a.u.−1, in accordance with
the color bar. It can be seen that the highest electron density is located around the
protons. However, a charge density unequal to zero exists in the central region of the
triangle, illustrating the delocalization of the electron.
In figure 4.5 the density profiles along the three spatial axis are represented for the cases
S = 0.683 and S = 0. When no overlap is considered, the density is higher, since S
appears in the denominator of (4.3) and (4.5).
In the first excited state 3E′, two combinations of Hückel’s molecular orbitals (4.5) have
to be considered in order to form the wavefunction Ψ2 associated with the degenerate
energy level:

Ψ+
2 =

1√
6(1− S)

(Ψ(1)
2 + Ψ(2)

2 ) and Ψ−2 =
1√

2(1− S)
(Ψ(1)

2 −Ψ(2)
2 ) (4.10)

giving rise to two possible electron densities

ρ+(x, y, z) = |Ψ1|2 + |Ψ+
2 |

2 (4.11)

ρ−(x, y, z) = |Ψ1|2 + |Ψ−2 |
2 (4.12)

which are represented in the molecular plane in figure 4.6. The electron density results,
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both for the ground and excited state are compatible with the supplementary material
reported in reference [20].

4.2 Trihydrogen H3

4.2.1 Electronic Structure and Potential Energy Curves (PECs)

The neutral molecule H3 can exist in different geometric configurations[24]. In the fol-
lowing, only the equilateral triangle shape will be considered for the ground (2E) and
the first excited state (4E).

Table 4.3: H3 gound 2E and first excited 4E state equilibrium energies and geometric
configurations calculated with CCSD(T) (energies and distances in [a.u.]).

Bond length CCSD(T) Energy
2E (equilateral triangle) Re = 1.97 -1.574747
4E (equilateral triangle) Re = 7.77 -1.499915

Figure 4.7: H3 ground state energy as a function of the triangle size R calculated with
CCSD(T). The asymptotic limit corresponds to a dissociation into three free hydrogen
atoms. The second limit corresponds to the dissociation into one free hydrogen molecule
and one free hydrogen atom and is included to prove the instability of the neutral
molecule. The horizontal lines are drawn at the literature value taken from Table 4.1.
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Table 4.3 summarizes the equilibrium energies and bond lengths. The ground state
configuration presented does not originate from an optimization. The reason why the
ground state is not presented in its optimized configuration lies in the peculiarity of this
state to be influenced by the Jahn-Teller effect. Instead, it was determined by means of
the PEC in figure 4.7, which shows a minimum at Re = 1.97 a.u. and E = −1.574747 a.u.
This value lies above the dissociation limit into one hydrogen molecule plus one hydro-
gen atom, calculated with the data shown in table 4.1. Accordingly, the neutral molecule
cannot be stable in its ground state. Furthermore, the PEC indicates the possible disso-
ciation into three free hydrogen atoms for high values of R, with a dissociation energy
of Edis = 0.074747 a.u.

Figure 4.8: H3 first excited quartet state energy as a function of the triangle size R
calculated with CCSD(T). The asymptotic limit corresponds to a dissociation into three
hydrogen atoms. The horizontal line is drawn at the literature value taken from Table

4.1.

In the case of the first excited state, the configuration was optimized using CCSD(T).
The minimum is only observable after performing a zoom, as illustrated in figure 4.8. Be-
cause of consistency, the horizontal line is drawn at the calculated value from 4.1, given
that the y-axis is strongly amplified and the error connected to the CCSD(T) becomes
perceivable. The dissociation channel found for the excited state of H3 also corresponds
to three free hydrogen atoms.
Knowing from the results in table 4.2 that the accuracy of the CCSD(T) method is guar-
anteed up to the third decimal and obtaining that the minimum energy of H3 and the
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dissociation limit differ in the fourth decimal, the consequence is that the minimum
cannot be detected with certainty. In other words, it is not possible to resolve the dis-
sociation energy of Edis = 8.5 · 10−5 a.u. with the employed calculation method. Due to
that, no additional PECs for the search of dissociation channels have been calculated.

4.2.2 Application of the HMO Model

(a) One possible ground state configuration (b) First excited state configuration

Figure 4.9: Qualitative illustration of the H3 ground and excited state mono electron
configuration.

Since the configuration assumed for H3 is the same as for H3
+, the derivation of the

energies and wavefunctions is the same as the one seen in section 4.1.2, the results
corresponding to H3 are equal to the equations (4.2)-(4.5). The only difference lies in the
bond lengths, which have to be adopted to the values from table 4.3, and in the electronic
configuration. Being a system of three electrons, two of them occupy the lowest energy
level ε1 forming a pair and one unpaired electron is located in the ε2 = ε3 level (see
figure 4.9a). As for the first excited state of H3

+, the ground state of H3 presents two
possible electron densities ρ+ and ρ−, displayed in figure 4.10a and 4.10b. Shifting the 1s
wavefunctions to the positions of the atoms, the overlap was determined to be S = 0.594.
The residual charge density in the central region of the H3 is lower compared to H3

+,
what might be related to the instability of the H3 molecule.
Concerning the first excited state, one of the two electrons in ε1 migrates into the ε2 = ε3

level, but without forming a pair with the other electron located on this level (see figure
4.9b). The corresponding density map is presented in figure 4.10c, where the overlap
was determined to be S = 0.0122.
The parameters α and β are obtained using the same procedure as in the case of H3

+.
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Now the total energies are compounded in the following way:

E(2E) = 2ε1 + ε2 (4.13)

E(4E) = ε1 + 2ε2. (4.14)

With the expressions (4.2) and (4.4), one obtains

E(2E) = 2
α + 2β

1 + 2S
+

α− β

1− S
(4.15)

E(4E) =
α + 2β

1 + 2S′
+ 2

α− β

1− S′
. (4.16)

Substituting the energy values from table 4.1 and taking S = 0.594 and S′ = 0, what
is approximately true for the excited state, the parameters are α ' −0.499972 a.u. and
β ' −0.179119 a.u.

Although no PECs to explore other dissociation channels, such as those where one H
atom is removed, have been calculated, the electron density map of the first excited state
in figure 4.10c may give an evidence for an additional dissociation channel. It can be seen
that the charge located around the atom on the x-axis is slightly higher than around the
other two atoms. This could indicate a possible dissociation into a H2

+ molecule and a
H– , when the geometric configuration is more appropriate.
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(a) Ground state density map ρ+(x, y, 0) (b) Ground state density map ρ−(x, y, 0)

(c) First excited state density map

Figure 4.10: H3 ground and first excited state density maps obtained with the HMO
model.



Chapter 4. Results and Discussion 30

4.3 Trihydrogen anion H3
–

4.3.1 Electronic Structure and Potential Energy Curves (PECs)

Finally, the system with the highest number of electrons in this study, H3
– will be ana-

lyzed. Table 4.4 summarizes the equilibrium configurations and energy values obtained
from the ab initio optimizations.
The calculations reveal that the ground as well as the excited state exist in a linear
asymmetric configuration. For the ground state, the results are in agreement with the
literature values. Once again, the energy result is accurate up to the third decimal.
In the case of the first excited state only one references has been found, supporting the
possibility of a linear asymmetric shape[25].
The distance Re

ab attracts attention, since for both states it is equal or nearly equal to the
equilibrium bond length of H2.

Table 4.4: H3
– ground 1Σ and first excited state 3Σ energies, calculated with MP2

and CCSD(T) and equilibrium geometries, calculated with CCSD(T). Energies and bond
lengths in [a.u.].

Bond length MP2 Energy CCSD(T) Energy

1Σ (linear asymmetric)
Re

ab = 1.41
-1.686202 -1.702901Re

bc = 5.57
Re

ac = 6.99

Literature[19]
Re

ab = 1.41
Re

bc = 5.57 -1.703298[19]
Re

ac = 6.99

3Σ (linear asymmetric)
Re

ab = 1.40
-1.631235 -1.638646Re

bc = 14.34
Re

ac = 15.74

The ground state potential energy as a function of the distance Rbc is shown in figure
4.11. In other words, one atom is removed from the molecule, maintaining the lin-
ear shape. The minimum of the curve coincides with the optimization results and the
asymptotic limit indicates a dissociation into a free H2 and a free H– . For the horizontal
line, the calculated energy values of the dissociation products from table 4.1 have been
used, due to the same reason as in the case of 4.8. The small distance between the points
and the line can be explained by the fact that the distance between the remaining H2 is
not exactly the same as the equilibrium distance of a hydrogen molecule.
Comparing the energies of the asymptotic line and the minimum of the curve, the full
dissociation energy is found to be Edis = 1.832 · 10−3 a.u.
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Figure 4.11: H3
– ground state potential energy as a function of the distance Rbc calcu-

lated with CCSD(T). The (H-H) distance is fixed at the H3
– equilibrium. Total curve (top)

and amplification (bottom). The asymptotic limit corresponds to a dissociation into one
free hydrogen molecule and one free hydrogen anion. The horizontal line is drawn at

the calculated value taken from Table 4.1.
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Figure 4.12: H3
– first excited state energy as a function of the distance Rbc calculated

with CCSD(T). The (H-H) distance is fixed at the H3
– equilibrium.

In figure 4.12, the PEC of the excited state as a function of Rbc is presented. The
global minimum confirms the result of 4.4. Combinations of the energies from table
4.1 do not lead to the identification of a definite dissociation channel. The inclusion of
H2

– was tested, yielding to an energy near −1.630 a.u. for the sum of a H2
– molecule

and a H atom. However, this value is also relatively far from the asymptotic region. In
addition, no reference for the energy of a H2

– molecule was found and therefore, it is
not included in table 4.1.
A secondary minimum exists near Rbc ≈ 5 a.u. It was verified, by the calculation of
the potential energy as a function of Rab fixing the distance Rbc at the value in this
secondary minimum (see figure 4.13), that it also appears in the dimension of Rab. In
practice, with 4.12 and 4.13 two cuts of the two dimensional PES have been obtained. It
can be concluded, that the secondary minimum corresponds to either a local minimum
or a saddle point on the PES. To identify the definite character, a PEC as a function of
the angle has to be added.
The dissociation energies are estimated by comparing the energy of the point at Rbc ≈
25 a.u. with the global minimum energy, finding that E(1)

dis = −0.069374 a.u. and for the
secondary minimum, comparing its energy with the local maximum near Rbc ≈ 7 a.u.,
resulting in E(2)

dis = −1.588 · 10−3 a.u.



Chapter 4. Results and Discussion 33

Figure 4.13: H3
– first excited state energy as a function of the distance Rab calculated

with CCSD(T). The Rbc distance is fixed at the distance where the secondary minimum
appears.

4.3.2 Application of the HMO Model

In the case of H3
– , the ab initio calculations revealed a linear equilibrium configuration

in the ground state. Hence, for the reference system it is suitable to align the molecule
with the x-axis, fixing the proton named a in the origin, the proton b in x = 1.41 a.u. and
proton c in x = 5.57 a.u., according to table 4.4. Consequently, there are only two pairs
of direct neighbors: ab and bc. Due to the very different distance between these pairs, it
is suggested to work with two parameters for the resonance integral, βab = β1, βbc = β2

and taking βac = 0. In the same way, the overlap integral is expected to be zero for large
distances, so that Sac = Sbc = 0 and Sab = S.
Adopting these constraints, the secular equation takes the following form:∣∣∣∣∣∣∣

α− ε β1 − Sε β2

β1 − Sε α− ε 0
β2 0 α− ε

∣∣∣∣∣∣∣ = 0. (4.17)

Evaluating the determinant, the lowest energy level is

ε1 =
1

1− S2 (α− β1S−
√

∆) (4.18)
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where ∆ stands for
∆ = (αS− β1)

2 + β2
2(1− S2). (4.19)

The wavefunction belonging to E1 is than given by

Ψ1 =
1

(2(β1 − Sε1)2 + 2β2
2 + 2(β1 − Sε1)S

√
(β1 − Sε1)2 + β2

2)
1
2

·

·
(√

(β1 − Sε1)2 + β2
21sa + (β1 − Sε1)1sb + β21sc

)
. (4.20)

The excited levels, this time not degenerate, are

ε2 = α (4.21)

with its wavefunction

Ψ2 =
1

((β1 − Sε2)2 + β2
2)

1
2
(β21sb + (β1 − Sε2)1sc) (4.22)

and
ε3 =

1
1− S2 (α− β1S +

√
∆) (4.23)

with

Ψ3 =
1

(2(β1 − Sε3)2 + 2β2
2 + 2(β1 − Sε3)S

√
(β1 − Sε3)2 + β2

2)
1
2

·

·
(
−
√
(β1 − Sε3)2 + β2

21sa + (β1 − Sε3)1sb + β21sc

)
. (4.24)

Electron density

Being a molecule with four electrons, in the ground state of H3
– , two electrons occupy

the ε1 and the other two occupy the ε2 level (see figure 4.14a). In the first excited state,
one of the electrons in ε2 migrates to the ε3 level, forming a triplet state (see figure
4.14b).
Knowing the electron configuration, the density associated to the ground state repre-
sented in figure 4.15a can be calculated by means of

ρ(x, y, z) = 2|Ψ1|2 + 2|Ψ2|2. (4.25)

For the graphic representation it was necessary to choose values for α, β1 and β2, given
that the wavefunctions depend on these parameters. The selection is arbitrary, choosing
α = −0.5 a.u., β1 = −0.1 a.u. and β2 =

Re
ab

Re
bc

β1, setting β2 to be proportional β1, weighted
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(a) Ground state configuration (b) First excited state configuration

Figure 4.14: Qualitative illustration of the H3
– ground and excited state mono electron

configuration.

by the quotient Re
ab

Re
bc

. Due to this approximation, the values of the parameters have not
been calculated explicitly as done for H3 and H3

+.
The overlap integrals have been determined to be Sab = 0.75, Sac = 0.06 and Sbc = 0.17,
confirming that the highest overlap occurs between the atoms a and b.
Figures 4.15b and 4.15c show profiles of the density map 4.15a along the x- and z-
axis, manifesting that in the ground state, the charge is concentrated on atom c. This
observation is in accordance with the dissociation channel found before in 4.11.
The figures also help to clarify the small deviation of the Re

ac distance from the H2

equilibrium. The presence of atom c with accumulated charge density provokes a small
perturbation of the bond leading to a H2 bond length of 1.41 a.u. instead of 1.40 a.u.

To find the electron density associated with the first excited state of H3
– , the distances

have to be adopted to the excited state configuration from table 4.4. The overlap integrals
are in this case Sab = 0.75, Sac = 4.96 · 10−5 and Sbc = 0.00017, confirming even more the
election of Sac = Sbc = 0 than in the ground state. Considering the electron configuration
from figure 4.14b, the density can be obtained by

ρ(x, y, z) = 2|Ψ1|2 + |Ψ2|2 + |Ψ3|2. (4.26)

Choosing the same values for the parameters as in the ground state, the corresponding
density is represented in figure 4.16a. Together with the density profiles along the x-
and z-axis in figures 4.16b and 4.16c it becomes clear that in the first excited state, the
charge distribution shifts towards the H2 molecule. This fact might be an evidence for
the existence of a H2

++H dissociation channel.
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(a) H3
– ground state density map ρ(x, y, 0) obtained

with the HMO model.

(b) Profile ρ(x, 0, 0) in [a.u.]−1 along the x-axis
in [a.u.]

(c) Profile ρ(0, 0, z) in [a.u.]−1 along the z-axis
in [a.u.]

Figure 4.15: H3
– ground state density map and profiles. Due to symmetry, the profile
along the y-axis is identical to the one along the z-axis.
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(a) H3
– first excited state density map ρ(x, y, 0) ob-

tained with the HMO model.

(b) Profile ρ(x, 0, 0) in [a.u.]−1 along the x-axis
in [a.u.]

(c) Profile ρ(0, 0, z) in [a.u.]−1 along the z-axis
in [a.u.]

Figure 4.16: H3
– first excited state density map and profiles. Due to symmetry, the

profile along the y-axis is identical to the one along the z-axis.
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5 Conclusions
Comparing the performance of the methods, table 4.1 already gives an impression on
the quality differences between HF, MP2 and CCSD(T) and their dependence on the size
of the system. For example, the importance of electron correlation becomes clear when
the number of electrons increases and the post-HF methods outmatch the simple HF
calculation.
In summary, all the results obtained for the trihydrogen cation H3

+ are in good agree-
ment with the literature.
The results from table 4.2 allow the evaluation of the employed methods, finding that
the CCSD(T) method in combination with the aug-cc-pVQZ basis set is accurate up to
the third decimal. Given that the CCSD(T) method is the "gold standard" [9], an im-
provement could be achieved by choosing a larger basis set like the aug-cc-pV6Z used
in the reference [18].
As mentioned before, a better way to calculate the PECs 4.1b and 4.2b might be a ge-
ometry optimization between the H2 molecule in every step while the third H atom is
removed progressively. It has to be inquired if NWChem provides a suitable way to
realize this idea.
The case of the neutral molecule H3 gives room for improvements, regarding the PECs
and the accuracy of the numeric results. Knowing from the reference [24] that the ex-
cited states of H3 can exist in various geometric configurations, such as linear symmetric
and asymmetric, an exploration of these configurations could be realized if the accuracy
of the calculation is increased. The article [24] also asserts that the energy levels of H3

present degeneration and conical intersections, which are crossing of PECs correspond-
ing to different states with the same symmetry. Thus, the level of complexity rises for the
PECs of H3 and a detailed analysis of this system could figure the topic of an advanced
study.
The ground state energy as well as its geometry of the trihydrogen anion H3

– are in
accordance with the literature values. For the missing dissociation channel in figure 4.12
no solution is found so far. A general suggestion for both ground and excited state is
the calculation of the potential energy as the function of angles instead of bonds and
thereby taking a step toward potential energy surfaces.
During the calculations related to H3

– , the concept of computational cost became clear.
Although the anion is a relative small molecule, the optimization of the first excited state
using CCSDT and the aug-cc-pVQZ basis set took three days and only converged when
the initial guess of the geometry was linear. Therefore, it has to be kept in mind that
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the election of a larger basis set in order to obtain more accurate results implies a higher
computational cost. The scaling behavior, or in other words the measure of computa-
tional cost is given by N4 for HF, N5 for MP2 and N8 for CCSDT, being N the size of the
basis set[9]. Instead of simply increasing N, the before mentioned extrapolation to the
complete basis set (CBS) could be performed to improve the numeric results.
Regarding the outcomes obtained with Hückel’s model, it can be said that the model
gives a good overview on the energy level configuration and electron densities, without
contradictions. However, the rough approximations, such as setting the overlap equal to
zero in every case, have to be treated with caution.
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A Sample Input File

memory heap 200 mb stack 1000 mb global 2800 mb

start H3_cation_ex_E1

echo

charge 1

geometry units au

symmetry C1

H 0.0 0.0 0.0

H 2.45 0.0 0.0

H -1.50 0.0 0.0

end

basis

H library aug-cc-pVQZ

end

scf

rohf

maxiter 5000

triplet

nopen 2

end

tce

scf

ccsdt

diis 10

maxiter 5000

end

task tce energy
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