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Abstract

Background

Chagas disease is a long-lasting disease with a prolonged asymptomatic period. Cumula-

tive indices of infection such as prevalence do not shed light on the current epidemiological

situation, as they integrate infection over long periods. Instead, metrics such as the Force-

of-Infection (FoI) provide information about the rate at which susceptible people become

infected and permit sharper inference about temporal changes in infection rates. FoI is esti-

mated by fitting (catalytic) models to available age-stratified serological (ground-truth) data.

Predictive FoI modelling frameworks are then used to understand spatial and temporal

trends indicative of heterogeneity in transmission and changes effected by control interven-

tions. Ideally, these frameworks should be able to propagate uncertainty and handle spatio-

temporal issues.

Methodology/principal findings

We compare three methods in their ability to propagate uncertainty and provide reliable esti-

mates of FoI for Chagas disease in Colombia as a case study: two Machine Learning (ML)

methods (Boosted Regression Trees (BRT) and Random Forest (RF)), and a Linear Model

(LM) framework that we had developed previously. Our analyses show consistent results

between the three modelling methods under scrutiny. The predictors (explanatory variables)

selected, as well as the location of the most uncertain FoI values, were coherent across

frameworks. RF was faster than BRT and LM, and provided estimates with fewer extreme
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values when extrapolating to areas where no ground-truth data were available. However,

BRT and RF were less efficient at propagating uncertainty.

Conclusions/significance

The choice of FoI predictive models will depend on the objectives of the analysis. ML meth-

ods will help characterise the mean behaviour of the estimates, while LM will provide insight

into the uncertainty surrounding such estimates. Our approach can be extended to the

modelling of FoI patterns in other Chagas disease-endemic countries and to other infectious

diseases for which serosurveys are regularly conducted for surveillance.

Author summary

Metrics such as the per susceptible rate of infection acquisition (Force-of-Infection) are

crucial to understand the current epidemiological situation and the impact of control

interventions for long-lasting diseases in which the infection event might have occurred

many years previously, such as Chagas disease. FoI values are estimated from serological

age profiles, often obtained in a few locations. However, when using predictive models to

estimate the FoI over time and space (including areas where serosurveys had not been

conducted), methods able to handle and propagate uncertainty must be implemented;

otherwise, overconfident predictions may be obtained. Although Machine Learning (ML)

methods are powerful tools, they may not be able to entirely handle this challenge. There-

fore, the use of ML must be considered in relation to the aims of the analyses. ML will be

more relevant to characterise the central trends of the estimates while Linear Models will

help identify areas where further serosurveys should be conducted to improve the reliabil-

ity of the predictions. Our approaches can be used to generate FoI predictions in other

Chagas disease-endemic countries as well as in other diseases for which serological sur-

veillance data are collected.

Introduction

Chagas disease is a neglected tropical disease estimated to affect between 6 and 7 million per-

sons worldwide. While only endemic in 21 countries in Latin America, the number of Chagas

disease cases detected in Europe, North America, and the Far East has greatly increased, due to

migration of infected populations [1]. Being able to identify how the cases are distributed in

space and whether the control interventions implemented have been successful is critical to

identifying how resources should be allocated to eliminate the disease as a public health prob-

lem in the 2021–2030 time horizon [2]. As a long-lasting and chronic disease, analyses based

solely on the current prevalence of infection (typically measured as seroprevalence) has limited

scope. Indeed, the prevalence recorded at a given time does not reflect the current epidemio-

logical situation, as infection may have occurred in the past. The Force-of-Infection (FoI), i.e.

the rate at which susceptible individuals become infected, is a modelling-derived metric that

can be used to understand changes in incidence in space and time as a result of deliberate con-

trol interventions and/or secular changes, including environmental change [3]. However, the

use of FoI raises its own challenges, particularly those regarding quantification and propaga-

tion of uncertainty when used as a response variable in predictive models. A catalytic model
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(fitted to age-structured seroprevalence data, often using Bayesian methods) has been used to

obtain the FoI and thus, the FoI values for each serosurvey and each year are posterior distri-

butions and not only single values [4]. When the derived FoI is used to fit predictive models,

the mean or median values of FoI are predominantly used, neglecting the uncertainty sur-

rounding the estimated values [5–7]. Furthermore, when a non-constant (e.g. a yearly-varying)

FoI is assumed, each serosurvey analysed becomes a temporal series at a certain location,

requiring specific and computationally-intensive methods to be included into predictive mod-

els [8]. Machine Learning methods could represent a faster and more flexible framework to

implement such models.

Machine Learning (ML) methods are computational processes based on probabilities and

algorithms that use prior knowledge to produce predictions. ML can handle non-linear and

non-parametric models that are able to flout the linearity, normality (Gaussian distribution)

and equal variance assumptions of statistical models [9]. Essentially, ML methods make no

assumptions about the statistical distribution of the data [9].

These methods have previously been used in contexts in which those assumptions are chal-

lenged, such as spatial, temporal and spatiotemporal analyses of infectious diseases, e.g. map-

ping of human leptospirosis [10,11], severe fever with thrombocytopenia syndrome [12],

lymphatic filariasis [13], or to identify individuals with a higher risk of HIV infection based on

socio-behavioural-driven data [14].

Two types of ML models have been extensively used in the context of infectious disease epi-

demiology, namely, Boosted Regression Trees (BRT) and Random Forest (RF). Although they

are not spatial approaches (as data locations and sampling patterns are ignored to produce esti-

mates), they have shown potential in spatial modelling [15], in particular, when used with

appropriate sampling strategies [16]. Specifically, BRT and RF have been used to study the spa-

tial spread of numerous infectious diseases, including epidemics among swine farms in the

USA [17], Ebola case-fatality ratio [18], risk factors for visceral leishmaniasis [19,20], African

swine fever [21], scrub typhus [22], dengue incidence [23], and dengue FoI [5]. RF also proved

its potential in modelling epidemics in a spatiotemporal framework, outperforming time series

models [17].

This paper aims to compare the performance of two ML methods, namely, BRT and RF,

with a Linear Model (LM) framework we have previously developed [8] in their ability to pre-

dict the FoI of Chagas disease across space and time. We use detailed data from Colombia as a

case study and describe the advantages and disadvantages of using such Machine Learning

methods compared to Linear Model frameworks, specifically focussing on their ability to han-

dle uncertainty on the response variable.

Methods

1. Data sources

Current and past exposure to Chagas disease can be characterised by estimating the (time-

varying) Force-of-Infection (FoI), i.e. temporal changes in the per susceptible rate of parasite

acquisition [3,4]. Using results of 76 age-stratified serosurveys conducted at municipal level in

Colombia between 1998 and 2014 (S1 Fig), yearly-varying FoI values were estimated, for each

serosurvey, by fitting a catalytic model to age-stratified seropositivity data (see [4] for details).

For each serosurvey, FoI estimates, for the period ranging from the birth of the oldest partici-

pants to the year when the serosurvey was conducted, were obtained using a Bayesian frame-

work to fit the catalytic model to data, thus allowing for extraction of the full joint posterior

distribution of the yearly FoI estimates. We refer to those municipalities where at least one ser-

osurvey was conducted as municipalities ‘in catchment areas’, whereas those municipalities for
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which serosurveys were not conducted, not available, or not used in our analyses, are referred

as ‘out of catchment areas’. S1 Fig in the Supporting Information file depicts the geographical

distribution of the available serosurveys (‘ground-truth’ data).

The predictors used in these analyses included demographic, entomological and climatic

variables (recorded at the municipality level), contextual information about the serosurveys

(location, year conducted and setting, i.e. urban, rural, mixed and indigenous (as defined in

[4]), and information from public blood banks on the prevalence of Chagas disease and num-

ber of blood units tested (available at the departmental level). A full list and description of the

predictors is available in S1 Table of the Supporting Information File.

2. Linear Model (LM) framework

The LM framework relied on a list of plausible linear combinations of predictors selected

based on expert knowledge and to avoid correlation between predictors. They were then inte-

grated into an ensemble model using model averaging with weights based on the performance

indicators of each individual linear model. The 10 best models for each setting type (urban,

rural and indigenous) were averaged and used to obtain FoI predictions. The LM framework

has been fully described in [8].

3. Machine Learning (ML) framework

Both ML methods tested in this paper are based on decision trees. A decision tree is an intui-

tive process that builds an algorithm by generating a step-by-step tree, whereby the dataset is

repeatedly split to make a decision at each node. The splitting relies on optimising a variable-

specific threshold that best discriminates the data into two branches at each node. Sequentially,

the entire dataset is divided by defining new variable-specific thresholds defining the nodes in

the decision tree.

The size of the tree, its complexity (reflecting predictors’ interactions), the number of obser-

vations in the terminal nodes and the criteria to stop the process are defined as model hyper-

parameters and form the basis of more complex designs.

3.1. Boosted Regression Trees (BRT)

Boosting Regression Trees (BRT) or Gradient Boosting Trees (GBT) are based on the building

of a large number of small decision trees. The boosting aspect refers to fitting repeatedly very

simple and basic classifiers, in which a different subset of the data is used for fitting at each iter-

ation [9]. The Gradient technique is used to reduce the variance in the model; sequentially,

each new tree added to the model is fitted to explain the remaining variance from the previous

trees.

While BRT is considered a robust ML method, including its use for spatiotemporal analyses

[19,20,22,24], it is known as having a tendency to overfit, unless a very large amount of data is

available [25].

3.2. Random Forest (RF)

Random Forest (RF), first described by Breiman in 2001 [26], consists of a large collection of

decision trees [9]. To grow an RF tree, random inputs and predictors are selected at each node

[26], and this randomness is thought to reduce overfitting. RF is also considered a robust ML

method that can handle outliers and noise while being faster than bagging- and boosting-

based methods [26].
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RF is not explicitly designed to explore spatial observations [15], and is known to produce

suboptimal prediction when sampling is spatially biased and/or in the presence of strong spa-

tial correlation [15]. However, spatiotemporal resampling strategies and variable selection pro-

cesses have been developed to overcome this challenge [16,27].

4. Models’ workflow

In order to assess the importance of integrating uncertainty on the response variable, we

implemented two approaches The former relies on generating and assessing model predictions

using the median estimates of the FoI for each serosurvey as an outcome (referred to as Med-

FoI). The latter seeks to propagate the uncertainty linked to the catalytic model-derived ‘obser-

vations’ by accounting for the full posterior distribution of the FoI estimates (referred to as

FullPostFoI).

With the MedFoI approach, models are fitted to the median FoI estimates and the perfor-

mance indicator, the predictive R2, is based on central tendencies only. With the FullPostFoI

approach, models are fitted on the full posterior distribution of FoI estimates and the perfor-

mance indicator is based both on central tendency and on the amount of overlap between the

‘observed’ and predicted distribution of the outcome. This allowed us to quantify the ability of

the models to match the uncertainty surrounding the FoI estimates (i.e. the outcome) inherited

from the catalytic model (Fig 1). The percentage of overlap was obtained using the “overlap”

function from the Overlapping R-package [28] and provided the proportion of the area of two

kernel density estimations that overlap [29].

For the two approaches, we defined six different coefficients of determination (R2) linked to

the sampling strategy. An R2 was estimated based directly on the data used to fit the models; a

predictive R2 was estimated based on a proportion of the dataset that was not used to fit the

models, i.e. the cross-validation (CV) set. In addition, both urban- and rural-specific predictive

R2 were estimated based on the urban/rural data from the CV set. Finally, in the ML frame-

works, a resample R2 was estimated based on out-of-sample data for each resample iterations

(see Fig 2 for a schematic representation of these approaches).

Fig 1. Graphical representation of the two modelling approaches used for each of the frameworks tested. The upper panel corresponds to MedFoI (fitted

on median FoI); the lower panel depicts the FullPostFoI (fitted on full posterior FoI). The predictive R2 values are calculated on cross-validation sets for both

approaches (see Fig 2). In the upper panel, the performance indicator, Ind, is the R2, based on central tendency alone; in the lower panel, both central tendency

and percentage of overlap enter into the calculation of the performance indicator, Ind (as the arithmetic mean between R2 and percentage overlap). The

percentage of overlap (% of overlap) represents the proportion of the ‘observed’ and predicted distributions that overlap.

https://doi.org/10.1371/journal.pntd.0010594.g001
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While the LM framework necessitated transformation of the data to normalise them, ML

methods should, in principle, to be able to handle data without requiring normalisation (i.e.

without requiring that their distribution is Gaussian). However, this process can help improve

the performance of the model and was, therefore, tested (i.e. ML approaches were used to pre-

dict the FoI values both on non-transformed and log-transformed scales).

Fig 2. Description of the modelling workflow for the Linear Models (LM) and the Machine Learning (ML) frameworks. ML framework include Boosted

Regression Trees (BRT) and Random Forest (RF) methods). CV denotes cross-validation; Pred R2 urban and Pred R2 rural denote urban- and rural-specific

predictive R2 values that were estimated based on the urban/rural data from the CV set; %Overlap indicates the proportion of the ‘observed’ and predicted

distributions that overlap (see Fig 1), assessed over all settings and for urban and rural settings separately.

https://doi.org/10.1371/journal.pntd.0010594.g002

PLOS NEGLECTED TROPICAL DISEASES Machine Learning for Force-of-Infection of Chagas disease

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010594 July 19, 2022 6 / 19

https://doi.org/10.1371/journal.pntd.0010594.g002
https://doi.org/10.1371/journal.pntd.0010594


While the LM framework relies on a list of plausible and pre-defined linear models includ-

ing interactions between factors (predictors) and excluding correlated predictors, the ML

framework is implemented in two steps, to be fitted only on the ten most important variables.

At first, ML models were fitted using all the predictors available, then the importance/influ-

ence of each predictor was assessed, and the 10 most influential factors were used in the second

step, during which the models were fitted again, and predictions extracted.

Finally, ML requires a tuning step, during which the best hyperparameters are selected.

Also, the resampling strategy used within the LM framework relies on random resampling

while a spatiotemporal resampling strategy has been used for the ML framework. A detailed

description of the tuning of hyperparameters and the comparison of several resampling strate-

gies is available in S1 Appendix of the Supporting Information File, including details about the

tuning of hyperparameters and the comparison of several resampling strategies.

5. Indicators used to compare LM with ML frameworks

The best ML models obtained were then compared with the LM framework previously devel-

oped [8] in terms of their performance indicators, predictions, and ability to propagate uncer-

tainty. In addition to these aspects, the models’ ability to deal with temporal and spatial

correlation, as well as their different computational aspects entered the comparison.

To allow comparison of predictive ability across multiple serosurveys, the distributions of

predictions were standardised to the ‘observations’, allowing us to visualise whether the

median and confidence intervals of the predictions matched those (median and credible inter-

vals) of the catalytic model-derived FoI ‘observations’. This process was performed at the sero-

survey level to assess how much of the uncertainty inherited from the FoI calculation (via

catalytic model fitting) was propagated into the predictions (see S2 Appendix in the Support-

ing Information File for details).

The uncertainty in the predictions was quantified using the Coefficient of Variation based

on the standardised Median Absolute Deviation (MAD-CV), as FoI values were not normally

distributed [30]. (Note that MAD-CV refers to coefficient of variation, whilst CV denotes

cross validation.)

The residual spatial correlation was assessed using the Moran’s I heterogeneity test from

the “spdep” R package [31]. For the LM framework, the Moran’s I test was applied on all the

residuals (originating from the cross validation (CV) and fitting sets) excluding those from the

rural–urban mixed settings (as LM model selection was based on setting type and no model

was explored, selected or averaged for mixed settings, and thus no predictions were produced

for the ‘observed’ FoI values corresponding to such settings). For ML models, the Moran’s I
test was applied to the residuals of the CV set. Residuals for a single year were used to exclude

potential temporal autocorrelation, and for presentation purposes, we selected 2005 as the year

with the largest number of independent FoI ‘observations’.

The residual temporal correlation was tested using a Durbin-Watson test (DW) [32] (see

Eq 1 for the DW statistic). In order to capture the residual correlation inherited from the esti-

mation of the FoI values through fitting the catalytic model, the residuals being compared

were always from the same serosurvey and for consecutive years. Thus, the DW statistic pro-

vided the residual serial correlation for a lag of one year,

DW ¼
Pn

i¼0
ðri � lagðriÞÞ

2

Pn
i¼0

r2
i

Eq1

where r denotes the residuals for i serosurveys, lag is one year (for consecutive, yearly series of

serosurveys), and n the number of ‘observations’ tested.

PLOS NEGLECTED TROPICAL DISEASES Machine Learning for Force-of-Infection of Chagas disease

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010594 July 19, 2022 7 / 19

https://doi.org/10.1371/journal.pntd.0010594


All ML analyses were run under the mlr3 framework (an object-oriented machine learning

framework in R) [33] using R-4.0.3 software [34].

Results

1. Comparison of the performance of LM and ML frameworks

The predictive R2 values for the LM framework obtained, on average, for its 5 best-fitting mod-

els, were 77% and 70%, with %overlap of 54% and 39% for urban and rural settings, respec-

tively [8]. For the ML frameworks, the MedFoI approach yielded substantially better predictive

R2 values (ranging between 90% and 98%), but the degree of overlap between the distributions

of the FoI ‘observations’ and the predictions was substantially lower (19%–25%), reflective of a

tighter distribution around the central estimates and thus indicating over-confidence in the

predictions when using such a simple approach (i.e. an approach that ignores the uncertainty

linked to the outcome). The FullPostFoI approach gave a more balanced performance indica-

tor, with predictive R2 values ranging between 39% and 70%, and %overlap between 22% and

42% (Table 1). For both BRT and RF methods, the use of log-transformation to normalise the

distribution of the FoI ‘observations’ consistently led to improved results (Table 1), with pre-

dictive R2 values ranging between 59% and 70%, and %overlap between 34% and 42%.

Nested resampling, tested on the RF method with log-transformation, did not substantially

improve model performance. Thus, the following subsections focus on the results obtained by

fitting the frameworks on the full posterior distribution of the log-transformed FoI.

2. Comparison of the influence of predictor variables

The factors selected for the ML models were consistent with those that had been selected for

the LM framework (Table 2); a Spearman correlation test showed that there was substantial

rank correlation of the predictors included among the three models investigated (with Spear-

man rank correlation coefficient, rS, between LM and BRT = 0.50; between LM and RF = 0.54,

and between BRT and RF = 0.64, all p-values <0.05).

Table 1. Median cross-validation performance values for the two Machine Learning modelling methods investigated.

BRT RF

All settings Urban Rural All settings Urban Rural

non log non log non log non log non log non log

MedFoI
R2 (%) 98 95 95 96 94 90 98 96 90 98 93 93

Overlap 23 19 21 19 25 19 22 21 20 21 25 21

FullPostFoI
R2 (%) 60 58 53 68 39 68 63 59 63 68 69 70

Overlap 25 36 24 34 22 36 40 42 42 42 40 42

Indicator 43 48 37 52 25 52 51 50 50 55 52 55

MedFoI: models fitted on median FoI; FullPostFoI: models fitted on full posterior FoI, without (non) or with log-transformation (log) of Force-of-infection (FoI)

‘observations’ (generated by fitting catalytic models to age-stratified serological surveys for Chagas disease in Colombia, with yearly-varying FoI [8]).

BRT: Boosted Regression Trees; RF: Random Forest methods; performance indicators are reported for either all settings (urban, rural, indigenous and mixed), urban, or

rural settings separately. The predictive R2 values were calculated on cross-validation datasets and are expressed as percentage.

Overlap: proportion (expressed as percentage) of ‘observed’ and predicted distributions that overlaps (reflective of the degree of dispersion around central tendency).

For MedFoI models, the performance indicator is the value of R2 alone. Therefore % overlap is presented for comparison but was not used in fitting or selecting models.

For FullPostFoI, the performance indicator is the arithmetic mean between R2 and % of overlap (see Fig 1).

https://doi.org/10.1371/journal.pntd.0010594.t001
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Table 2. Standardized relative influence, importance and rank of the predictors included in Boosted Regression Trees (BRT) and Random Forest (RF) Machine

Learning models and normalised number of times the predictors were used in the linear model (LM) framework and their rank when using the full posterior distri-

bution of FoI estimates.

Predictors BRT RF LM

Code Name Influence Rank Importance Rank Used Rank

Serosurvey characteristics:

S01 Year of the survey 0.20 2 0.17 1 0.05 4

S02 Rural setting 0.03 11 0.03 11 0.14 2

S03 Urban setting 0.03 10 0.04 7 0.15 1

S04 Indigenous setting 0.20 1 0.12 4 0.15 1

S05 Latitude 0.14 3 0.16 2 0.14 2

S06 Longitude 0.04 8 0.09 5 0.02 7

Blood-bank data:

B01 Seroprevalence 0.00 NU 0.03 14 0.04 5

B02 Proportion of blood units screened 0.00 NU 0.03 10 0.01 8

Demography:

D01 Population density 0.10 4 0.13 3 0.01 8

D02 Poverty 0.07 6 0.01 15 0.04 5

D03 Rural Indigenous Population size 0.00 NU 0.03 9 0.00 NU

Climate:

Continuous
C01 Polar climate frequency 0.03 12 0.00 18 0.04 5

C02 Tropical climate frequency 0.03 9 0.04 8 0.01 8

C03 Temperate climate frequency 0.04 7 0.00 17 0.00 NU

C04 Arid climate frequency 0.00 NU 0.00 21 0.00 NU

Categorical
C05 Tropical climate categorised NT 0.06 3

C06 Polar Climate Presence 0.00 NU 0.00 NU 0.00 NU

Entomological data:

At departmental level
V01 R. prolixus geographical extent 0.00 NU 0.06 6 0.02 7

V02 T. dimidiata geographical extent 0.00 NU 0.03 12 0.01 8

V03 R. prolixus presence 0.00 NU 0.00 NU 0.00 NU

V04 T. dimidiata presence 0.00 NU 0.00 NU 0.03 6

At municipality level
V05 R. prolixus density 0.00 13 0.00 NU 0.01 8

V06 T. dimidiata density 0.00 15 0.00 16 0.01 8

V07 R. prolixus presence 0.00 NU 0.00 NU 0.00 NU

V08 T. dimidiata presence 0.00 NU 0.00 20 0.00 NU

Interventions:

At municipality level
I01 Intervention intensity 0.00 14 0.00 NU 0.00 NU

I02 Intervention category NT NT 0.01 8

At household level
I03 Household intervention 0.00 NU 0.00 NU 0.00 NU

I04 Household intervention category NT NT 0.01 8

Temporal factors:

T01 Year 0.09 5 0.03 13 0.01 8

(Continued)
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The type of setting was the most important factor for both the LM and BRT. Latitude, year

when the serosurvey was conducted, and population density also played an important role.

Poverty, climatic and entomological features had a moderate role.

For the ML frameworks, blood-bank and intervention-related features were less influential

than for the LM framework. Generally, the year (temporal trend) seemed to play a greater role

in the ML models.

3. Comparison of spatial trends in predictions

All methods showed generally similar spatial trends and comparable levels of uncertainty (Fig

3) for FoI prediction across Colombia (using the year 1990 for illustration as the pattern is con-

sistent in time). Generally, FoI estimates were higher in northern and eastern municipalities

and lower in the south of the country, with the latter being associated with higher uncertainty

(Fig 3). The BRT framework predictions showed increased spatial heterogeneity, while predic-

tions from the LM framework resulted in more spatially uniform predictions.

When comparing FoI predictions directly across the three methods, for urban and rural set-

tings (Fig 4), we found good agreement between all of them, particularly between RF and LM.

Generally, the BRT tended to predict higher FoI values in both settings. The patterns observed

in the entire country seemed to follow what was observed in the catchment areas (municipali-

ties where at least one serosurvey was conducted).

4. Comparison of temporal trends in predictions across serosurveys

When comparing ‘observations’ with predictions over time, all methods performed well

regarding their ability to capture central trends (Fig 5). However, the LM framework was bet-

ter at capturing uncertainty, as the confidence bounds of the predictions mirrored more

closely the credible intervals (CrI) of the ‘observations’.

The median uncertainty across municipalities (Table 3) was comparable using any of the

methods and restricting the assessment to ‘in catchment area’ only (i.e. municipalities where at

least one serosurvey had been conducted) or not (‘out of catchment area’). However, for some

municipalities, the uncertainty associated with the LM framework increased dramatically.

Comparatively, the RF method produced more uniform uncertainty across predictions,

with median and range similar to those yielded by the other (BRT and LM) methods, but with

fewer municipalities with substantial uncertainty (defined as MAD-CV>2), and only a moder-

ate number of municipalities with extreme uncertainty (defined as MAD-CV>5).

5. Residual spatial and temporal correlation

While the ML-based methods did not show any significant spatial correlation in their residu-

als, this was not the case with the LM framework (Table 4). For all models, the DW test’s statis-

tic (see Eq 1) showed a significant residual temporal correlation between residuals from the

Table 2. (Continued)

Predictors BRT RF LM

Code Name Influence Rank Importance Rank Used Rank

T02 Decade 0.00 NU 0.00 NU 0.00 NU

NU: Not used in the model; NT: not tested in the model.

R. prolixus: Rhodnius prolixus; T. dimidiata: Triatoma dimidiata.

The shade of green is associated to the rank of the predictors with darker green predictors having more importance.

https://doi.org/10.1371/journal.pntd.0010594.t002
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same serosurvey, with a stronger effect for serosurveys conducted in indigenous settings (S2

Fig in Supporting Information File).

6. Computational aspects

Computationally, RF and BRT required the least effort (31 and 42 hrs respectively, on standard

laptop, with an i7-8565U processor and 16.0 GB RAM) (Table 5). By contrast, although

Fig 3. Spatial distribution of the Force-of-Infection of Chagas Disease (per year and per susceptible individual), in Colombia. The predicted distribution

was generated using two Machine Learning (Boosted Regression Trees (BRT) and Random Forest (RF)) methods and a Linear Model (LM) framework (main

maps); the associated uncertainty (small map insets) presents the Median Absolute Deviation (MAD) Coefficient of Variation (MAD-CV). Predictions were

obtained at the municipality level for urban and rural settings, in 1990. (Borders shapefile at the ADM2 level obtained from GADM, https://gadm.org/

download_country.html).

https://doi.org/10.1371/journal.pntd.0010594.g003
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implementation of LM required far fewer R-packages than the ML framework, it took over

twice the time to run when compared to RF (72 hr). Also, the computer hard-drive space that

was required to store ‘objects’ and model outputs was about 20 times higher for LM than for

Fig 4. Comparison of predicted Chagas disease Force-of-Infection (FoI) values for urban or rural settings at municipality level, in Colombia for the year

1990. The values were obtained by two Machine Learning (Boosted Regression Trees (BRT) and Random Forest (RF)) methods and a Linear Model (LM)

framework using log-transformed FoI estimates from the FullPostFoI approach (see Models’ workflow subsection in Methods and Fig 1 for a description of this

approach). The upper panel presents the results for urban settings; the lower panel presents the results for rural settings. Purple-coloured dots denote

municipalities where at least one serosurvey had been conducted (‘in catchment area’); teal-coloured dots denote municipalities where no serosurveys had been

conducted or were not included in our analyses (‘outside catchment area’). The black solid diagonal line represents perfect agreement between the two

frameworks being compared.

https://doi.org/10.1371/journal.pntd.0010594.g004

PLOS NEGLECTED TROPICAL DISEASES Machine Learning for Force-of-Infection of Chagas disease

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010594 July 19, 2022 12 / 19

https://doi.org/10.1371/journal.pntd.0010594.g004
https://doi.org/10.1371/journal.pntd.0010594


the ML framework. Finally, the overall implementation of the models was substantially simpler

for the ML framework; particularly to make adjustments and updates.

Discussion

Our comparative analyses indicated generally consistent results among the three modelling

methods investigated to generate Chagas disease FoI predictions, namely, the linear model

(LM) framework we previously developed [8], and the two Machine Learning (ML) methods

explored here (Boosted Regression Trees (BRT) and Random Forest (RF)). The predictors that

were selected, as well as the location of the most uncertain FoI values were coherent and gener-

ally consistent among the three methods (Table 2 and Figs 3 and 4). Not entirely surprising,

RF was faster to run than BRT and LM [26] (Table 5).

Fig 5. Standardised comparisons of ‘observed’ and predicted distributions across serosurveys and by setting type. Comparisons were made for two

Machine Learning (Boosted Regression Trees (BRT) and Random Forest (RF)) methods (upper and middle panels) and a Linear Model (LM) framework

(lower panel) using log-transformed (log) Force-of-Infection (FoI) estimates from the FullPostFoI approach for urban and rural Chagas disease settings in

Colombia across 9 decades. The solid lines and envelopes show standardised distances between FoI ‘observations’ and predictions, with purple-colour lines

representing the median, and the pink and blue lines representing, respectively, the upper and lower bounds of the 95%CrI. If medians and 95% confidence

bounds of the predictions matched exactly the corresponding measures for all the ‘observations’ across serosurveys, then the solid and dashed lines would fully

overlap.

https://doi.org/10.1371/journal.pntd.0010594.g005
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Based on the performance indicators used, RF performed best (Table 1) but did less well

when considering the propagation of uncertainty in the FoI inherited from the catalytic model

(Fig 5). Also, RF generated fewer municipality-level predicted values with substantial or

extreme uncertainty (Table 3). All methods, when fitted on the median FoI alone (MedFoI

approach), were unable to capture the uncertainty in the response variable (the FoI ‘observa-

tions’ generated by fitting the catalytic model to the age-stratified serosurveys), leading to over-

confident predictions (with high predictive R2 values but smaller % of overlap values). This

highlights an important issue not fully addressed in the literature, as most publications using

FoI data to infer spatiotemporal patterns of infectious disease incidence tend to use the central

FoI estimates alone to fit predictive models (i.e. using what we labelled here as the MedFoI

approach). We argue that neglecting to appreciate and propagate the uncertainty inherent in

their estimation [5–7] may therefore lead to significant over-confidence in predictions. This

issue, already highlighted in our previous LM work [8], is not mitigated by implementing ML

frameworks, and deserves careful consideration, not only from a methodological perspective,

but importantly, when the results are applied in policy-relevant contexts [35].

Indeed, quantifying and communicating uncertainty in FoI appropriately is critical when

the results of predictive models are used to inform stakeholders and public health programme

managers on the level of certitude associated with exposure risk or number of cases. Thus

areas/populations for which exposure has been certainly high or low can be differentiated

from those with exposure levels or number of cases that necessitate further investigation due

to highly uncertain estimation.

Even when the three methods showed good performance and generally good agreement at

the serosurvey level (Fig 4), the residuals remained correlated in time (Table 4). Thus, the

Table 3. Uncertainty across Chagas disease Force-of-Infection predictions for the three frameworks under comparison. The uncertainty was estimated using the

Median Absolute Deviation Coefficient of Variation (MAD-CV) of the predictions for Colombia in 1990, in (urban and rural) areas where at least one serosurvey had been

conducted (‘in catchment area’) and where no data were available or used in the analyses (‘out of catchment area’). The number of municipalities where MAD-CV is

greater than 2 (substantial uncertainty) or greater than 5 (extreme uncertainty) is also included.

MAD-CV values (range) Number of municipalities

MAD-CV> 2

Number of municipalities

MAD-CV> 5In catchment area Out of catchment area

Urban Rural Urban Rural Urban Rural Urban Rural

BRT 1.45 (0.31–7.16) 1.54 (0.39–5.40) 1.48 (0.31–7.41) 1.48 (0.17–6.32) 338 335 25 24

RF 1.47 (0.48–5.28) 1.45 (0.40–5.29) 1.48 (0.47–5.24) 1.49 (0.44–5.22) 145 198 10 8

LM 1.60 (0.70–2.73) 1.29 (0.44–2.76) 1.48 (0.32–8.19) 1.50 (0.24–11.00) 284 266 6 11

BRT: Boosted Regression Trees; RF: Random Forest; LM: Linear Model.

https://doi.org/10.1371/journal.pntd.0010594.t003

Table 4. Spatial and temporal correlation test statistics and statistical significance of the spatial correlation test

applied to the cross-validation residuals for the two Machine Learning (BRT, RF) and the Linear Model (LM)

methods under consideration.

BRT RF LM†

Spatial correlation test:

Moran’s I statistic 0.00 0.00 0.06�

Temporal correlation test:

DW statistic 0.06� 0.04� 0.00�

BRT: Boosted Regression Trees; RF: Random Forest; LM: Linear Model.

DW: Durbin-Watson statistic (see Eq 1).

†See methods for calculation of the LM residual correlation.

�p-values significant et 5%.

https://doi.org/10.1371/journal.pntd.0010594.t004
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correlation inherited from the FoI calculation was not fully accounted for in any of our meth-

ods, i.e. none of the predictors included was able to account for the full extent of this

correlation.

While the final ML models showed no evidence of residual spatial correlation (Table 4), the

spatial extrapolation shown (Fig 3) should be interpreted with caution, as the (ground-truth)

serosurveys available had only been conducted in a relatively small number of municipalities

and tended to be aggregated in the same area (S1 Fig). When using RF, the degree of uncer-

tainty inside and outside ‘catchment areas’ was consistent, suggesting reliable extrapolation.

This contrasted with the LM framework, which predicted large uncertainty in some

municipalities.

Most of the earliest serosurveys (up to early 2000) seemed to have targeted high-risk popu-

lations [36], presumably because the perceived risk of Chagas disease transmission in those

areas was higher and required improved situational awareness. However, using only such

information to make predictions across Colombia would have led to higher predicted FoI in

areas where no ground-truth data had been collected. By contrast, the most recent serosurveys

(2010–2014) seem to have been conducted on more representative samples of the population,

presumably motivated by providing a more realistic assessment of the epidemiological situa-

tion nationally and demonstrating progress in reducing vectorial transmission. We, therefore,

included the year when the serosurvey took place to account for this bias and, in fact, this vari-

able appeared to be one of the most influential in all three methods and particularly for BRT

and RF (Table 2). This demonstrates the crucial importance of understanding the motivation

behind the implementation of serosurveys in order to assess the sampling strategy and ulti-

mately quantify potential biases that may interfere with the representativeness of FoI

estimates.

Finally, and regarding computational aspects, the LM framework required substantial user-

input to prepare the data for model fitting (including data transformation; choice of predictors

included in each model; tests for spatial and temporal correlation, etc.). In contrast, ML frame-

works were faster (particularly RF) and required less pre-processing of the data and hard-drive

space (Table 5). These features render the ML models more flexible, more readily updatable,

and thus easier and simpler to be extended to other Chagas disease-endemic countries, and

potentially to other infectious diseases, including neglected tropical diseases, for which sero-

logical surveys are regularly conducted as surveillance tools to assess epidemiological situation,

incidence, and impact of control interventions across spatial and temporal scales [5,6,37,38].

Concluding remarks

ML methods are increasingly used to derive computationally efficient algorithms for data anal-

ysis that are agnostic to the distributional properties of such data. They represent an attractive

Table 5. Comparison of computational aspects for the Machine Learning (Boosted Regression Trees (BRT), Ran-

dom Forest (RF)) and Linear Model (LM) methods investigated. The methods under comparison used log-trans-

formed FoI values from the FullPostFoI approach.

BRT RF LM

Number of R packages needed 20 20 6

Time required for models to run (hr) 42.5 31.0 72.0

Hard-drive space requirements (MB) 149 114 2,048

BRT: Boosted Regression Trees; RF: Random Forest; LM: Linear Model.

hr: hours; MB: Megabytes.

https://doi.org/10.1371/journal.pntd.0010594.t005
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modelling tool for the generation of predictive maps of important infectious disease epidemio-

logical metrics, such as the FoI. Most published literature on the subject use measures of FoI

central tendency, neglecting to quantify, propagate and ultimately communicate the uncer-

tainty appropriately. We show that the uncertainty on the input variables cannot be neglected

whatever statistical method is used and furthermore that the choice of modelling framework

requires careful consideration according to the ultimate objectives of the modelling endeavour.

If the aim is, for instance, to use the predicted FoI patterns to provide numbers of cases and

estimates of the associated disease burden, ML framework (and particularly RF) would indeed

be an optimal choice, as capturing the median (central tendency behaviour) may be sufficient

and computationally efficient. However, if the objective is to identify areas where serological

surveillance surveys are scarce and should be conducted to improve the reliability of FoI esti-

mates and provide ground-truth data, we conclude that the LM framework, albeit more time-

consuming and computationally intensive, would provide a better indication of where uncer-

tainty is greatest. Although in this paper we focused on Chagas disease in Colombia as a case

study, the modelling frameworks compared here can be applied to other Chagas disease-

endemic countries and to infectious diseases (including neglected tropical diseases) for which

age-stratified serological data are regularly collected.
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for predictive modeling of spatial and spatio-temporal variables. PeerJ. 2018 Aug 29; 6:e5518. https://

doi.org/10.7717/peerj.5518 PMID: 30186691
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