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Abstract
Resource assignment and scheduling models provides an automatic and fast decision
support system for wildfire suppression logistics. However, this process generates
challenging optimization problems in many real-world cases, and the computational
time becomes a critical issue, especially in realistic-size instances. Thus, to overcome
that limitation, this work studies and applies a set of decomposition techniques such as
augmented Lagrangian, branch and price, and Benders decomposition’s to a wildfire
suppression model. Moreover, a reformulation strategy, inspired by Benders’ decom-
position, is also introduced and demonstrated. Finally, a numerical study comparing
the behavior of the proposals using different problem sizes is conducted.
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1 Introduction

Many critical problems in disaster management and logistics can be formulated and
solvedusing theOperationsResearch (OR) framework (Caunhye et al. 2012).Wildfires
are a type of catastrophe with a high impact on the current world, in humanitarian,
economic, and above all, ecological terms (European Commission 2020). As their
frequency and magnitude are growing at an alarming rate, it is necessary to develop
efficientmethods to improve the prevention, detection, and planning in logistics related
to wildfire suppression.

In Galicia (Northwest of Spain), forest fires are a severe problem to be faced every
year, caused by deforestation, arsonists, or the removal of local flora and fauna. With
just a surface area of 29,574 km2, this region had more than 3550 fires per year from
2011 and 2015, being 42,392.17 hectares burned in 2011 alone. Typically, the wild-
fires in Galicia are active between 1 and 7 days, requiring more than 70 brigades,
50 engines, and 20 aircraft on the largest fires. The Regional Government of Galicia
has to periodically manage (especially in summer) a large amount of wildfire fighting
resources (Xunta de Galicia 2017). For instance, they had 7000 people, 360 motor
pumps, and 30 aerial resources (25 were helicopters) in the 2017 campaign. Conse-
quently, finding a good resource assignation and scheduling avoids its over-allocation,
which is very important since they are limited.

Formulating the problem above as a scheduling optimizationmodelwill help reduce
the impact of wildfires through optimal resource planning. Although several research
topics in the optimization of forest fire management have been proposed in recent
years (Minas et al. 2012; Miller and Ager 2013; Martell 2015), analyzing the wildfire
extinction from the perspective of cost minimization is a well-studied topic throughout
history, already introduced in works such as Headley (1916) and Sparhawk (1925).
An overall theoretical framework that pursues management of resources based on
minimizing costs was C+NVC (Cost plus Net Value Change), proposed in Gorte and
Gorte (1979). Thismodel combines the goal ofminimizing the cost of resources and the
costs generated by burned land, loss of materials or regeneration tasks. More recently,
Donovan andRideout (2003) complemented the C+NVC scheme using a deterministic
programming model, which can establish the optimal planning regarding the number
and type of resources needed to extinguish a forest fire from its initial detection.

Inspired by the work above and motivated by the peculiarities of the Galician fire
extinguishing system, Rodríguez-Veiga et al. (2018) proposed aMixed-Integer Linear
Programming (MILP) model to plan resources involved in a single wildfire extinction.
The proposed model was thought to solve problems in the near future, where the
uncertainty of the wildfire evolution is lower, for example, in a timeline of 8 h. Thus,
this novel model included new features to manage resources such as rest policies or
initial conditions, and it could easily be applied to other similar scheduling problems.

On the other hand, in the real world, the resource planning associated with wildfire
suppression is managed by a resource coordinator who oversees the schedules of all
logistic operations. Mathematical optimization models help to perform these tasks.
They provide high-quality solutions to minimize the impacts caused by a wildfire. It
implies that time is a critical issue. Conducting optimization that takes hours to reach
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optimality does not make sense when a wildfire is occurring. The resource coordinator
must react quickly and cannot afford to wait a long time.

In this way, mathematical decomposition methods (Conejo et al. 2006) can offer
a good alternative to simplify the models and reduce the computational time. These
techniques split a problem into more manageable subproblems based on their compli-
cating variables or constraints (nondecomposable elements). However, solving these
subproblems is not an easy task, and it is necessary to design tailor-made algorithms.

Therefore, this manuscript studies several reformulations, based on decomposition
techniques in most cases, to improve the MILP model presented in Rodríguez-Veiga
et al. (2018). In addition, we compare our proposals with the solving MILP problem
above in terms of solution optimality and computation time. Concerning our contri-
bution, we improve solving problems without adding untractable complexity to the
mathematical model or optimization process. Besides, our reformulation procedures
can easily export to other optimization models related to optimal resource planning.

The organization of this document is as follows. Section 1.1 covers the related work
while Sect. 1.2 presents a brief revision of the optimization model to be addressed:
a logistic scheduling model for wildfire suppression. Section 2 describes different
ways to apply decomposition strategies to the previous model, and Sect. 3 proposes a
customized method based on the Benders decomposition. In Sect. 4, the performance
of our proposals is evaluated using simulated data of the wildfire model and solving
instances of different sizes. Finally, Sect. 5 summarizes the main conclusions of our
study.

1.1 Related work

Good planning in extinction resources generally reduces the costs and damages asso-
ciated with forest fires. Accordingly, one of the most often topics in wildfire literature
is the scheduling problem. Such is the case presented in Wei et al. (2011), where a
mixed-integer optimization model considers multiple fires, in addition to spatial and
time data. Likewise, Ntaimo et al. (2012) proposed a stochastic integer programming
(IP) model to the initial attack in as many fires as possible. In this manner, the authors
figure out the best resource allocation in each firefight base to contain as quickly as
possible several forest fires.

However, in our particular case, Rodríguez-Veiga et al. (2018) proposed a different
approach to fire extinction. Our model considers all scheduling management (breaks,
use policies) for all the resources involved just in a large-scale wildfire via a deter-
ministic mixed-integer model. In this way, it is in charge of assigning the resources
throughout the fire.

As stated above, applying decomposition techniques can improve the solving of
optimization problems (Conejo et al. 2006). There are many examples of these tech-
niques used in scheduling problems that contemplate recurring elements in the context
of a wildfire.

Works asCordeau et al. (2001) or Papadakos (2009) have combinedBenders decom-
position and column generation methods to deal with optimal scheduling in air traffic.
Although this work is interesting due to similarities with our model (fleet assign-
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ment assignations over time), their authors considered non-existing features under our
perspective regarding maintenance routing and crew pairing.

Rios and Ross (2010) presented a decomposition scheme based Dantzig-Wolfe
method to ease huge traffic flow scheduling problems. It involves both planning and
routing decisions, contrary to our model where we just considered optimal resource
scheduling. Thus, this strategy obtained one flight per subproblem, being particularly
suitable for parallel computing, and solving instances in a planning time of up to 3 h.
In comparison, our proposal needs to handle instances with a higher time threshold,
though with fewer resources to allocate.

In addition, Romanski and Hentenryck (2016) considered prescriptive evacuation
planning and route design for a region threatened by a natural disaster, such as a flood,
forest fire, or a hurricane. They proposed a Benders decomposition that generalizes the
two-step approach proposed in previousworks for converging evacuation plans. On the
contrary to our model, they need to deal with flow scheduling problems. Nevertheless,
this work is a good example of applying a decomposition strategy to improve a model
related to disaster management.

As far as we know, there is no work dedicated to implementing mathematical
decomposition techniques in optimization models in the context of resource planning
in wildfires. We hope to contribute to simplifying the application of these effective
strategies in different forestry optimization problems.

1.2 Problem statement: a wildfire suppressionmodel

We begin from the wildfire extinguishment model presented in Rodríguez-Veiga et al.
(2018) In the same way as Donovan and Rideout (2003), we made the following
assumptions:

• Some characteristics of firefighting resources are predefined. Such is the case of
the fireline production rate, arrival time, or operating costs.

• A resource will start a rest when it reaches the maximum working time. Also,
resources can leave a specific wildfire just once time.

• The extinction time was discretized in 10 min periods, considered enough time for
a resource to perform a task. This time is the maximum common divisor between
the rest periods (40 min), activity periods (120 min) and estimated time to travel
to a rest point (10 min) according to the Spanish regulation.

• The model is designed to work over a single wildfire with a maximum planning
horizon of 10 h, where predictions of its growth use smaller time intervals (e.g.,
10 min). Currently, simulation tools, such as FARSITE (Finney 1998) or Xeocode2
(Xunta de Galicia 2017), can create a predictive 10 h model through GIS infor-
mation about the wildfire evolution. Thus, an advantage in our model is that it
can easily rerun and adapt to changes in the forecast, following a rolling horizon
approach (Sethi and Sorger 1991).

• There is no direct interaction between fire perimeter and fireline construction. This
assumption is valid due to being considered a pessimistic approach for the wildfire
contention.
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Table 1 Sets and parameters of the problem

Sets Definition

i , I Index and set of resources

g, G Index and set of different resources groups

t , T Index and set of time periods with wildfire behaviour
information {1, . . . ,m}, wherem represents the num-
ber of periods

i , Ig Index and set of resources associated with group g

t , T t2
t1

Index and set of time periods between the natural
numbers t1 and t2, {max{1, t1}, . . . ,min{m, t2}}. If
the sub-index or super-index is omitted, it means that
t1 = 1 and t2 = m, respectively. When t1 is greater
than t2, we will consider it an empty set

Parameters Definition

Ci Cost per usage period of resource i ∈ I
Pi Fixed cost for resource i ∈ I selection

NVCt Increase in the costs of the wildfire in period t ∈ T
PERt Increment of the wildfire perimeter in period t ∈ T
PRit Performance of resource i ∈ I in period t ∈ T
I TWi Value 1 indicates resource i ∈ I is currently working

in this wildfire (0 otherwise)

I OWi Value 1 indicates resource i ∈ I is currently working
in other wildfire (0 otherwise)

CW Pi Number of periods used since the last final rest of
i ∈ I

CRPi Number of rest periods used by resource i ∈ I
CU Pi Number of usage periods in the day of resource i ∈ I
Ai Number of periods needed by i ∈ I to arrive to the

wildfire

WPi Maximum allowed number of periods without breaks
for i ∈ I

T RPi Number of periods needed by resource i ∈ I to go
from the resting point to the fire

RPi Number of rest periods that resource i ∈ I must do
on a break before starting to work again

U Pi Maximum number of allowed usage periods in a day
for i ∈ I

nMingt Minimum number of resources of group g ∈ G work-
ing on the wildfire in the same period t ∈ T

nMaxgt Maximumnumber of resources of group g ∈ G work-
ing on the wildfire in the same period t ∈ T

M ′ Positive constant that penalizes the breach of themin-
imum number of resources in each period

M Positive sufficiently large constant to establish
wildfire containment. A suitable value is M :=∑

t∈T PERt
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Table 2 Variables of the problem

Variables Definition

si t ∈ {0, 1} It takes the value 1 if resource i ∈ I is starting to be used in period t ∈ T
t r i t ∈ {0, 1} It takes the value 1 if resource i ∈ I is travelling in period t ∈ T
r i t ∈ {0, 1} It takes the value 1 if resource i ∈ I is resting in period t ∈ T
er i t ∈ {0, 1} It takes the value 1 if resource i ∈ I is ending a break in period t ∈ T
ei t ∈ {0, 1} It takes the value 1 if resource i ∈ I is ending its work in period t ∈ T
yt ∈ {0, 1} It takes the value 1 if the fire is not contained in period t ∈ {0} ∪ T
μgt ∈ N It indicates the number of missing resources of group g ∈ G to reach the corresponding

minimum in period t ∈ T

Aux Vars Definition

ui t Resource i ∈ I has a task assigned in period t ∈ T
ui t := ∑

t ′∈T t si t ′ − ∑
t ′∈T t−1 ei t ′

wi t Resource i ∈ I works fighting the wildfire in period t ∈ T
wi t := ui t − r i t − t r i t

zi Resource i ∈ I is selected to fight the wildfire

zi := ∑
t∈T ei t

cr i Number of periods since the last ending break period of resource i ∈ I in period t ∈ T

cr i t :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

t ′∈T t

(t + 1 − t ′) · si t ′

−
∑

t ′∈T t

(t − t ′) · ei t ′ −
∑

t ′∈T t

r i t ′

−
∑

t ′∈T t

W Pi · er i t ′

if I TWi = 0
and I OWi = 0

(t + CW Pi − CRPi ) · si1
+

∑

t ′∈T t
2

(t + 1 − t ′ + WPi ) · si t ′

−
∑

t ′∈T t

(t − t ′) · ei t ′ −
∑

t ′∈T t

r i t ′

−
∑

t ′∈T t

W Pi · er i t ′

in the other case

A short description of this model is shown in the following paragraphs. Table 1
shows a definition of the different sets and parameters used in the model, and Table 2
describes the decision and auxiliary variables. The objective function and the con-
straints of the model are formulated as follows:

minimize
∑

i∈I,t∈T
Ci · ui t +

∑

i∈I
Pi · zi +

∑

t∈T
NVCt · yt−1 +

∑

g∈G,t∈T
M ′ ·μgt (1)
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subject to

∑

t∈T
PERt · yt−1 ≤

∑

i∈I,t∈T
PRit · wi t , (2)

M · yt ≥
∑

t ′∈T t

P E Rt ′ · yt−1 −
∑

i∈I,t ′∈T t

P Rit ′ · wi t ′ ∀t ∈ T , (3)

Ai · wi t ≤
∑

t ′∈T t

t r i t ′ , ∀i ∈ I, t ∈ T , (4)

si1 +
∑

t∈T2
(m + 1) · si t ≤ m · zi , ∀i ∈ I : I TWi = 1, (5)

∑

t∈T
si t ≤ zi , ∀i ∈ I : I TWi = 0, (6)

∑

t ′∈T t
t−T RPi+1

t r i t ′ ≥ T RPi · ei t , ∀i ∈ I, t ∈ T , (7)

0 ≤ cr i t ≤ WPi , ∀i ∈ I, t ∈ T , (8)

r i t ≤
∑

t ′∈T t+RPi−1
t

er i t ′ , ∀i ∈ I, t ∈ T , (9)

∑

t ′∈T t
t−RPi+1

r i t ′ ≥ RPi · er i t , ∀i ∈ I, t ∈ TRPi , (10)

CRPi · si1 +
∑

t ′∈T t

r i t ′ ≥ RPi · er i t , ∀i ∈ I, t ∈ T RPi−1, (11)

∑

t ′∈T t+T RPi
t−T RPi

(r i t ′ + t r i t ′) ≥
∑

t ′∈T t+T RPi
t−T RPi

r i t , ∀i ∈ I, t ∈ T , (12)

∑

t∈T
ui t ≤ U Pi − CU Pi , ∀i ∈ I, (13)

∑

i∈Ig

wi t ≥ nMingt · yt−1 − μgt , ∀g ∈ G, t ∈ T , (14)

∑

i∈Ig

wi t ≤ nMaxgt · yt−1, ∀g ∈ G, t ∈ T , (15)

∑

t∈T
t · ei t ≥

∑

t∈T
t · si t , ∀i ∈ I, (16)

∑

t∈T
ei t ≤ 1, ∀i ∈ I, (17)

r i t + t r i t ≤ ui t , ∀i ∈ I, t ∈ T , (18)
∑

t∈T
wi t ≥ zi , ∀i ∈ I. (19)
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The objective function (1) minimizes the sum of the costs involved in the wildfire
contention: the first term represents the variable costs for the use of the selected
resources, the second term represents their selection costs, the third term represents
the costs associated with the hectares of affected land, and the last term is included to
penalize the breach of the minimum number of group resources in each period.

Regarding the constraints, (2) imposes that the total perimeter covered by the
resources must be greater than the wildfire perimeter in the contained period, (3)
establishes the conditions under which the wildfire can be contained or not in each
period, (4)–(6) are related to the coherent beginning of resource activities, and (7)
indicates when a resource ends its job with enough time to return to its operational
base. Moreover, (8)–(13) correspond to making task assignation feasible according to
legal regulations, and (14)–(15) determine the minimum and the maximum number of
resources in the wildfire while the fire is not contained, respectively. Finally, (16)–(19)
determine logical conditions that the variables must satisfy.

2 Applying decompositionmethods to the problem

The following subsections explain in detail how to apply three popular decomposition
techniques to the wildfire suppression model described above, hereinafter called the
Original Problem.

2.1 Augmented Lagrangian decomposition

The Augmented Lagrangian (AL) is a framework of penalty methods extensively
studied in recent decades (Hamdi and Mishra 2011). It consists of seeking to simplify
the Original Problem, moving the complicating constraints to the objective function,
and multiplying them by Lagrange multipliers and penalty constants. Furthermore,
the iterative calibration of these penalties allows good-quality feasible solutions to be
reached.

An AL problem can be decomposed for given values of these Lagrange multipliers,
and this procedure is known as Augmented Lagrangian decomposition (ALD). We
adjusted this procedure, creating a set of different subproblems. In this way, each
subproblem maps a particular resource (aircraft, brigade, or machine) and considers
the other resources’ values as constants. Consequently, there is the same number of
subproblems as different resources in the model. The details of the implementation
can be seen in “Appendix A”.
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2.2 Branch and price decomposition

Branch and price (BPD) (Barnhart et al. 1998; Vanderbeck andWolsey 1996; Vander-
beck and Savelsbergh 2006) is a method specifically conceived to handle large-scale
integer programming problems. It is based on the well-known branch and bound algo-
rithm: it explores feasible solutions, solving in each node a linear programming (LP)
relaxation of the problem and branching according to this result. In the case of branch
and price, only a subset of columns, usually related to basic variables, remain in the
LP relaxation. The other columns are omitted because they are too many and typically
have an associated decision variable equal to zero in the optimal solution. Thus, when
this method is used in conjunction with Dantzig-Wolfe Decomposition (DWD), we
can refer to it as a whole as Branch and Price Decomposition (BPD), being a good
alternative to decrease the complexity of large-scale MILP problems.

The DWD is a column generation procedure for continuous problems that instead
of considering all the variables of the problem at once, in each step, it solves a master
problem containing only some active columns. Furthermore, some subproblems are
solved iteratively to determine the columns that must be added to the master problem
to improve the objective function.

The BPD is suitable when the problem presents some complicating con-
straints that prevent a distributed solution into several subproblems defining more
tractable combinatorial structure, specially designed to handle integer programming.
In this way, the BPD algorithm applies the DWDprocedure for each node in the branch
and bound tree.

In our case, we want to decompose the Original Problem into several subproblems
depending only on resource i ∈ I, so the resulting subproblemswill bemore tractable.
It is easy to identify that the complicating constraints avoiding this decomposable
structure are the following: (2), (3), (14) and (15). Therefore, these constraints must
be relaxed and appear penalized in the objective function of the subproblems.
BPD Master Problem
Suppose that we know p solutions of the problem that we denote as SOLk , for all
k = 1, . . . , p. Then,

SOLs = (sk11, . . . , s
k
nm, t rk11, . . . , t r

k
nm, rk11, . . . , r

k
nm, erk11, . . . , er

k
nm,

ek11, . . . , e
k
nm, yk1, . . . , y

k
m,μk

11, . . . ,μ
k
gm).

The BPD master problem can be formulated as follows:

minimize
p∑

k=1

f (k) · αk

subject to

p∑

k=1

h(k)(2) · αk ≤ 0, (20)
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p∑

k=1

h(k)(3)
t · αk ≤ 0, ∀t ∈ T , (21)

p∑

k=1

h(k)(14)
gt · αk ≤ 0, ∀t ∈ T , ∀g ∈ G, (22)

p∑

k=1

h(k)(15)
gt · αk ≤ 0, ∀t ∈ T , ∀g ∈ G, (23)

p∑

k=1

αk = 1, (24)

αk ∈ {0, 1}, ∀k ∈ {1, . . . , p}, (25)

where f (k) is the value of the objective function (1) associated with SOLk ,

f (k) =
∑

i∈I,t∈T
Ci · uki t +

∑

i∈I
Pi · zki +

∑

t∈T
NVCt · ykt−1 +

∑

g∈G,t∈T
M ′ · μk

gt ,

αk is the binary variable determiningwhether solution k is selected, and h(k)(2), h(k)(3)
t ,

h(k)(14)
gt and h(k)(15)

gt are the values of the complicating constraints (2), (3), (14) and
(15), associated with solution SOLs , respectively,

h(k)(2) =
∑

t∈T
PERt · ykt−1 −

∑

i∈I,t∈T
PRit · wk

i t ,

h(k)(3)
t =

∑

t ′∈T t

P E Rt ′ · ykt−1 −
∑

i∈I,t ′∈T t

P Rit ′ · wk
i t ′ − M · ykt ,

h(k)(14)
gt = nMingt · ykt−1 − μk

gt −
∑

i∈Ig

wk
i t ,

h(k)(15)
gt =

∑

i∈Ig

wk
i t − nMaxgt · ykt−1.

BPD Subproblem
Suppose that we solve the LP relaxation of the BPD master problem,1 and let us

denote λ(2), λ
(3)
t , λ

(14)
gt , λ

(15)
gt and σ as the dual solution values associated with

constraints (20), (21), (22), (23) and (24), respectively.

1 It corresponds to relaxing the integrality conditions over the αk variables.
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Then, the formulation of the (aggregated) BPD subproblem can be expressed as:

minimize
∑

i∈I,t∈T
Ci · ui t +

∑

i∈I
Pi · zi +

∑

t∈T
NVCt · yt−1 +

∑

g∈G,t∈T
M ′ · μgt

− λ(2)(
∑

t∈T
PERt · yt−1 −

∑

i∈I,t∈T
PRit · wi t ) −

∑

t∈T
− λ

(3)
t (

∑

t ′∈T t

P E Rt ′ · yt−1 −
∑

i∈I,t ′∈T t

P Rit ′ · wi t ′ − M · yt )

−
∑

g∈G

∑

t∈T
λ

(14)
gt (nMingt · yt−1 − μgt −

∑

i∈Ig

wi t )

−
∑

g∈G

∑

t∈T
λ

(15)
gt (

∑

i∈Ig

wi t − nMaxgt · yt−1) − σ

subject to
(4)−(13), (16)−(19).

First, it is important to note that this BPD subproblem is decomposable by resource
i ∈ I, obtaining |I| subproblems that can be solved independently. Once the sub-
problem is solved, depending on the value of the objective function associated with
this new solution, one can determine whether to include this tentative basic new solu-
tion (associated with the variable α that represents the weight given to each solution
added to the master problem) to the BPD master problem. If the solution improves
the objective function, then this new solution is added to the BPDmaster problem and
solved again, giving new dual value solutions to update the BPD subproblem. Thus,
this procedure is repeated until no more columns can be added. Note that the scheme
we have just describedmust be applied at every node of a branch and bound procedure.

2.3 Benders decomposition

Contrary to the previous methods, Benders decomposition (BD) (Benders 1962;
Rahmaniani et al. 2017) aims to divide the optimization problem based on their com-
plicating variables: those variables which, when they are fixed, the remaining problem
will be relatively easy to optimize.

Applying BD to our wildfire suppression model, we split the problem into a master
problem and a subproblem. On the one hand, the master problem selects the resources
which are able to contain the wildfire (complicating variables). On the other hand, the
subproblem obtains the best feasible solutions according to wildfire rest policies and
the resource’s state at every moment.

In this way, we have adapted the BD method by adding a set of transformations to
the Original Problem based on the following premise: if we know when a resource
starts to work in the wildfire, we can determine its future states over time horizon. That
is, we can recalculate when this resource is flying towards the fire, in which periods it
will work in the fire-front, or during which periods it will need to be resting according
to break policies. Consequently, to take advantage of this idea, it is necessary tomodify
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the Original Problem to facilitate separability. This new reformulation will consider
how resources must perform rest and travel periods from the start period until the last
period (period m). Furthermore, this information is kept in mind to establish when
resources must rest, travel, and work while they are in use, that is, until variable eit
takes the value 1.
Reformulated Problem
The transformations performed in the Original Problem can be classified into two
groups. First, three new kind of variables have been added associatedwith the traveling
times of the resources. Thus, when a resource travels, it could bemoving to the wildfire
front, going to rest in the base, or moving due to the end of work (see Table 3). Second,
as stated before, suppose we know when a resource starts to work in the wildfire, we
can determine how it should act over the timeline. To ease the handle of these periods
to be calculated, we have introduced a new group of variables, denoted by a hat over
them: traveling associatedwith rest periods ( ˆt rri t ), resting (r̂ i t ), ending break (êr i t ) and
ending (êi t ). Auxiliary variables ûi t , ŵi t and ĉr i t are also defined using the expression
of the Original Problem but replacing t r i t , r i t , er i t and ei t with ˆt rri t , r̂ i t , êr i t and êi t ,
respectively.

Table 3 Definition of travel variables

Variables Definition

t r s i t ∈ {0, 1} It takes the value 1 if resource i ∈ I is travelling to go to the wildfire in period t ∈ T
(travelling associated with start period)

t r r i t ∈ {0, 1} It takes the value 1 if resource i ∈ I is travelling to perform a rest period or to return
to the wildfire in period t ∈ T (travelling associated with breaks)

t rei t ∈ {0, 1} It takes the value 1 if resource i ∈ I is travelling to leave the wildfire in period t ∈ T
(travelling associated with end period)

As a result of applying these transformations, the reformulated problem can be
expressed as:

minimize (1)
subject to

(2), (3), (5), (6), (13), (14), (15), (16), (17), (18), (19),

Ai · wi t ≤
∑

t ′∈T t

t r s i t ′ , ∀i ∈ I, t ∈ T , (r4)

∑

t ′∈T t
t−T RPi+1

t rei t ′ ≥ T RPi · ei t , ∀i ∈ I, t ∈ T , (r7)

0 ≤ ĉr i t ≤ WPi , ∀i ∈ I, t ∈ T , (r8)

r̂ i t ≤
∑

t ′∈T t+RPi−1
t

êr i t ′ , ∀i ∈ I, t ∈ T , (r9)
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∑

t ′∈T t
t−RPi+1

r̂ i t ′ ≥ RPi · êr i t , ∀i ∈ I, t ∈ TRPi , (r10)

CRPi · si1 +
∑

t ′∈T t

r̂ i t ′ ≥ RPi · êr i t , ∀i ∈ I, t ∈ T RPi−1, (r11)

∑

t ′∈T t+T RPi
t−T RPi

(r̂ i t ′ + ˆt rri t ′) ≥
∑

t ′∈T t+T RPi
t−T RPi

r̂ i t , ∀i ∈ I, t ∈ T , (r12)

r̂ i t + ˆt rri t ≤ ûi t , ∀i ∈ I, t ∈ T . (r18)

Moreover, the following constraints are introduced to establish a relation between the
original variables and the new variables:

ui t ≤ ûi t , ∀i ∈ I, t ∈ T , (26)

r i t = ui t · r̂ i t , ∀i ∈ I, t ∈ T , (27)

er i t = ui t · êr i t , ∀i ∈ I, t ∈ T , (28)

wi t = ui t · ŵi t · (1 − max{t r s i t , t rei t }), ∀i ∈ I, t ∈ T , (29)

t r r i t = ui t · ˆt rri t , ∀i ∈ I, t ∈ T , (30)

t r i t = max{t r s i t , t rei t , t r r i t }, ∀i ∈ I, t ∈ T . (31)

In order to explain the reformulated problem, we illustrate the performed transforma-
tions with an example.

Example 1 Let us consider a problem instance with a single aerial resource (I = {1})
and a time horizon of 9 periods (T = {1, . . . , 9}). Suppose that the resource starts
without initial conditions (CW P1 = CRP1 = CU P1 = I TW1 = I OW1 = 0) and it
requires 1 period to reach the wildfire from its starting location (A1 = 1). The resource
performance will be 1 for all periods (PR1t = 1 for all t ∈ T ). In addiction, the
maximum number of allowed periods without breaks is 4 (WP1 = 4), the duration of
the break is limited to 1 (RP1 = 1), and the resource needs 1 travel period (T RP1 = 1)
to move between fire-front and the rest location.

In this context, suppose that the wildfire has an initial perimeter of 2 km and it
grows 0.1 km per period (PER1 = 2 and PERt = 0.1 for all t ∈ {2, . . . , 9}).

Figure 1 shows the solution (active variables for each period) of the given instance
to represent the main idea of the reformulated problem. The figure illustrates how the
new variables split the model into two parts to satisfy the rest policy.

• The new variables (those over the edges) denoted with the hat represent how the
resource must perform the rest periods. Furthermore, it also considers travel due
to rest periods.
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• The original variables (those below the edges) represent how the resource works
in the wildfire to contain it, ensuring that the travel and rest periods established by
the new variables must be performed.

Fig. 1 Illustration of the relation between original variables and the new ones

Figure 1 shows how the resource starts to be used in the wildfire in the first period.
At this moment, although variable ŵ indicates that the resource could work, con-
straints (r4) and (29) force the resource to perform a starting flight before beginning to
work. In periods 2, 3, and 7, the resource works in the wildfire, being variable ŵ = 1.
We ensure that the resource cannot fly during this time through constraint (29). During
periods 4 and 6, the resource is moved to take a break due to constraint (30). Some-
thing similar happens in period 5 with constraints (27) and (28). Finally, the resource
contains the wildfire in period 7 and performs the ending flight in the next period
(allowed for the same reasons as the starting flight).

It is important to note that the starting period is the same for both cases since the
definitions of the auxiliary variables û are defined using s.

Table 4 represents the evolution of the wildfire and the performance of the resource
over the periods. Note that the resource contains the wildfire in period 7, so from this
period, the wildfire perimeter will be 0. In period 8, the resource could keep working
since it would satisfy the rest policy (ŵ = 1), but the wildfire is contained, so the
resource must leave it (t re = 1). To simplify the notation, in Table 4, we denote
FirePert as the perimeter of the wildfire and ResoPert as the perimeter performed
by the resources in each period, i.e., for all t ∈ T ,

FirePert :=
∑

t ′∈T t

P E Rt ′ · yt−1,

ResoPert :=
∑

i∈I,t ′∈T t

P Rit ′ · wi t ′ .

As shown, the reformulated problem is more complicated to solve than the Original
Problem since it combines integer variables and nonlinear constraints. However, the
purpose is not to solve this problem but to improve its decomposability. The refor-
mulated problem is transformed so that when Benders decomposition is applied, the
nonlinear constraints (27)–(30) are linearized by fixing the variables of the Original
Problem.

Table 4 Evolution of the
wildfire perimeter and the
contention of the resources

1 2 3 4 5 6 7 8 9

FirePert 2.0 2.1 2.2 2.3 2.4 2.5 2.6 0.0 0.0

ResoPert 0.0 1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0
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Similar to the notation of a solution in Sect. 2.2, we define a solution for theOriginal
Problem as:

SOL∗ = (s∗11, . . . , s∗nm, t r∗
11, . . . , t r

∗
nm, r∗

11, . . . , r
∗
nm, er∗

11, . . . , er
∗
nm,

e∗
11, . . . , e

∗
nm, y∗

1, . . . , y
∗
m,μ∗

11, . . . ,μ
∗
gm).

In the case of the reformulated problem, a solution is defined similarly by adding
values of the new variables at the end of the original solution vector:

ˆSOL
∗= (s∗11, . . . , s∗nm, t r∗

11, . . . , t r
∗
nm, r∗

11, . . . , r
∗
nm, er∗

11, . . . , er
∗
nm,

e∗
11, . . . , e

∗
nm, y∗

1, . . . , y
∗
m,μ∗

11, . . . ,μ
∗
gm, t rs∗11, . . . , t rs∗nm,

t re∗11, . . . , t re∗nm, t rr∗11, . . . , t rr∗nm, ˆt rr∗11, . . . , ˆt rr∗nm,

r̂∗
11, . . . , r̂

∗
nm, êr∗

11, . . . , êr
∗
nm, ê∗

11, . . . , ê
∗
nm)

= (SOL∗, SOL∗
R).

To show the equivalence of the Original Problem and the reformulated problem, the
following remark is introduced.

Remark 2.1 The auxiliary variables wi t are nonnegative for all i ∈ I and t ∈ T .

Proof This remark can be demonstrated by contradiction. First, from constraint (r18),
we know that

r̂ i t + ˆt rri t ≤ ûi t ⇒ ui t · r̂ i t + ui t · ˆt rri t ≤ ui t · ûi t ⇒
r i t + t rri t ≤ ui t (by definition of wi t ) ⇒ r i t + t rri t ≤ wi t + r i t + t r i t ⇒

wi t ≥ t rri t − t r i t .

Now, for the sake of contradiction, let us suppose that wi t < 0. Then,

t rri t − t r i t < 0 ⇒ t r i t = 1 and t rri t = 0 ⇒
t rsi t = 1 or t rei t = 1 (by equation (29)) ⇒
wi t = uit · ŵi t · 0 = 0 ≮ 0.


�
The following proposition proves the equivalence between both problems, theOriginal
Problem and the reformulated problem.

Proposition 2.2 Let SOL∗ be a feasible solution of the Original Problem; then,
there exists an associated feasible solution of the reformulated problem, ˆSOL

∗ =
(SOL∗, SOL∗

R). Furthermore, let ˆSOL
∗ = (SOL∗, SOL∗

R) be a feasible solution
of the reformulated problem; then, is a feasible solution of the Original Problem.

Proof Given a feasible solution of the Original Problem, SOL∗, it is trivial to prove
that it has an associated feasible solution in the reformulated problem by considering
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each i ∈ I, t ∈ T , t rsi t = t rei t = t rri t = ˆt rri t = t r∗
i t , r̂ i t = r∗

i t , êr i t = er∗
i t and

êi t = e∗
i t .

In addition, we will prove that a feasible solution of the reformulated problem has
an associated feasible solution in the Original Problem. Let us start by proving that
constraint (r4) is equivalent to constraint (4). Due to constraint (31), for each i ∈ I
and for each t ∈ T ,

Ai · wi t ≤
∑

t ′∈T t

t r s i t ′ ≤
∑

t ′∈T t

t r i t ′ .

The equivalence between constraints (r7) and (7) is also trivial.
In order to prove the equivalence between constraint (r8) and constraint (8), let us

consider the case where I TWi = 0 and I OWi = 0 (the other case is analogous).
Then, for each i ∈ I and for each t ∈ T , we have

cr i t :=
∑

t ′∈T t

(t + 1 − t ′) · si t ′ −
∑

t ′∈T t

(t − t ′) · ei t ′ −
∑

t ′∈T t

r i t ′ −
∑

t ′∈T t

W Pi · er i t ′ .

Now, if period t∗ ∈ T where ei t∗ = 1 is considered, for all t ≤ t∗,

cr i t =
∑

t ′∈T t

(t + 1 − t ′) · si t ′ −
∑

t ′∈T t

r i t ′ −
∑

t ′∈T t

W Pi · er i t ′

=
∑

t ′∈T t

(t + 1 − t ′) · si t ′ −
∑

t ′∈T t

ui t ′ r̂ i t ′ −
∑

t ′∈T t

W Pi · ui t ′ êr i t ′

=
∑

t ′∈T t

(t + 1 − t ′) · si t ′ −
∑

t ′∈T t

r̂ i t ′ −
∑

t ′∈T t

W Pi · êr i t ′
= ĉr i t ,

where the second equation is because of constraints (27) and (28). The third equality
is due to the following:

• If r̂ i t = 1, by definition of ŵi t and Remark 2.1, it is clear that the variable ûi t = 1.
Otherwise, if r̂ i t = 0, the equality is trivial.

• If êr i t = 1, then by constraint (r10) (if t ≥ RPi ) or by constraint (r11) (if t < RPi ),
it can be deduced that r̂i t = 1. Then, applying the previous item, we know that
ûi t = 1. Otherwise, if êr i t = 0, the equality is trivial.

In the cases where ûi t = 1, considering the definitions of the auxiliary variables ui t
and ûi t , we have that

ûi t =
∑

t ′∈T t

si t ′ −
∑

t ′∈T t−1

êi t ′ = 1 ⇒
∑

t ′∈T t

si t ′ = 1,

and therefore2

ui t =
∑

t ′∈T t

si t ′ −
∑

t ′∈T t−1

ei t ′ = 1 −
∑

t ′∈T t−1

ei t ′ = 1,

2 Note that
∑

t ′∈T t−1 ei t ′=0 for all t ≤ t∗ since ei t∗ = 1 by assumption.
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proving that if r̂ i t = 1 or êr i t = 1, then ui t = 1 for all t ≤ t∗.
Hence, we have proved that constraint (8) holds for all t ≤ t∗,

0 ≤ cr i t = ĉr i t ≤ WPi .

Otherwise, if t > t∗, the proof is similar since the expression of cr i t ′ takes the same
value for periods t ′ > t∗. This is because uit ′ = 0 for all t ′ > t∗,

cr i t =
∑

t ′∈T t

(t + 1 − t ′) · si t ′ −
∑

t ′∈T t

(t − t ′) · ei t ′ −
∑

t ′∈T t

r i t ′ −
∑

t ′∈T t

W Pi · er i t ′

=
∑

t ′∈T t

(t + 1 − t ′) · si t ′ − (t − t∗) −
∑

t ′∈T t

ui t ′ · r̂ i t ′ −
∑

t ′∈T t

W Pi · ui t ′ êr i t ′

=
∑

t ′∈T t

(t + 1 − t ′) · si t ′ − (t − t∗) −
∑

t ′∈T t

r̂ i t ′ −
∑

t ′∈T t

W Pi · êr i t ′

=
∑

t ′∈T t

(t + 1 − t ′) · si t ′ − (
∑

t ′∈T t

si t ′) · (t − t∗) −
∑

t ′∈T t

r̂ i t ′ −
∑

t ′∈T t

W Pi · êr i t ′

=
∑

t ′∈T t∗
(t∗ + 1 − t ′) · si t ′ −

∑

t ′∈T t∗
r̂ i t ′ −

∑

t ′∈T t∗
WPi · êr i t ′

= ĉr i t∗ .

In the second equality, we use that eit ′ = 0 for all t ′ �= t∗ and constraints (27) and
(28). The third equality can be proven using a procedure similar to that used for the
case t ≤ t∗. The fourth equality is because of the definition of ui t and the fact that
ûi t ≥ 0 by constraint (18), which implies that

∑
t ′∈T t si t ′ = 1. Finally, the fifth

equation results from the fact that r̂ i t = 0 and êr i t = 0 for all t > t∗.
Hence, we have proven that constraint (8) also holds for all t > t∗,

0 ≤ cr i t = ĉr i t∗ ≤ WPi .

The proof of equivalence related to constraints (r9)–(r12), is similar to those already
proved, but the following considerations are important:

1. The equivalence between constraint (r9) and (9) can be proven by analyzing three
different situations: t ∈ (−∞, t∗ − RPi + 1], t ∈ (t∗ − RPi + 1, t∗] and t ∈
(t∗,∞). For the proof related to constraints (r10) and (r11) one must distinguish
two cases: t ∈ (−∞, t∗] and t ∈ (t∗,∞). Finally, for constraint (r12), the proof
must be done differentiating between the following cases: t ∈ (−∞, t∗ − T RPi ],
t ∈ (t∗ − T RPi , t∗ + T RPi ] and t ∈ (t∗ + T RPi t,∞).

2. Furthermore, for constraints (r9) and (r12) it is necessary to consider the optimality
of the solution to demonstrate the cases in which t ≤ t∗ and t ≤ t∗ + T RPi ,
respectively.

Finally, the equivalence between constraints (r18) and (18) is trivial using Remark 2.1:

0 ≤ wi t = ui t − r i t − t r i t ⇒ ui t ≥ r i t + t r i t . 
�
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Once the equivalence between the Original Problem and its reformulation has been
demonstrated, we proceed to apply the BD approach to the reformulated problem.
Benders Master Problem
The master problem seeks the containment of the forest fire without acknowledging
the rest periods of the resources:

minimize (1)
subject to

(2), (3), (r4), (5), (6), (r7), (13), (14), (15), (16), (17),
(18), (19), (31)

m · si t +
∑

t ′∈W−
i t

wi t ′ ≤ m, ∀(i, t) ∈ S∗, (32)

m · si t +
∑

t ′∈T R−
i t

t r r i t ′ ≤ m, ∀(i, t) ∈ S∗, (33)

m · si t +
∑

t ′∈R−
i t

r i t ′ ≤ m, ∀(i, t) ∈ S∗. (34)

The variables of the Benders master Problem are the original variables: si t , r i t , er i t ,
wi t , t r s i t , t r r i t and t rei t . Moreover, S∗ is the set of all the tuples that represent the
resources and periods, (i, t) ∈ I × T , where resource i starts in period t at some
iteration of the algorithm, i.e.,

S∗ :=
⋃

ν∈N
S(ν),

being

S(ν) := {(i, t) ∈ I × T : sit (ν) = 1}.

Using the definition of S∗, cuts (32), (33) and (34) impose where a given (i, t) ∈ S∗ (i
is a resource and t is a starting period) cannot work, rest and travel due to rest periods,
respectively. This can be accomplished using the definition of the following sets:

W−
i t :={t ′ ∈ T : ŵi t ′(t) = 0},

T R−
i t :={t ′ ∈ T : ˆtrri t ′(t) = 0},

R−
i t :={t ′ ∈ T : r̂i t ′(t) = 0},

where ŵi t ′(t), ˆtrri t ′(t) and r̂i t ′(t) are the values of working, travel due to rest, and rest
variables if resource i starts in period t , respectively.

It is important to note that the needed information to build cuts (32), (33) and (34)
is obtained by solving the Benders subproblem defined below.
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Benders Subproblem
The subproblem seeks to establish a correct policy of breaks considering when
resources begin to work. As previously stated, knowing the beginning of the resources
allows computing the break periods easily. Thus, the problem is greatly simplified:

maximize
∑

i∈I,t∈T
ŵi t

subject to
(r8), (r9), (r10), (r11), (r12), (r18), (26), (27), (28), (29), (30).

In the subproblem we employ the previous definition of the variables êi t , r̂ i t , ˆt rri t
and êr i t , and the expressions defining ûi t , ŵi t and ĉr i t . Additionally, the variables
associated with the master problem (complicating variables) are fixed: si t = s∗

i t ,
r i t = r∗

i t , er i t = er∗
i t , wi t = w∗

i t , t r
s
i t = tr s∗i t , t r r i t = trr∗i t and t rei t = tr e∗i t .

Therefore, as these variables are fixed, constraints (27)–(30) become linear.

Remark 2.3 Since the subproblem only accounts for the feasibility of the solution
given by the master problem regarding rest policies, we assume that every resource
will work in the wildfire containment the maximum periods allowed. This is necessary
for the proper performance of the resources in the subproblem.

Remark 2.4 As the structure of the subproblem shows, it is easy to check that the
subproblem can be decomposed trivially by resources. We can do this because the
constraints and objective functions donot share information onmore than one resource.
Thus, instead of solving the Benders subproblem, we can solve for each selected
resource i (given from a solution of the Benders master problem). In addition, in
order to obtain information on the resolution of these subproblems, we can remove
constraints (27)–(30) to obtain information about the configuration of the rest periods.
By doing so, the subproblem associated with resource i , which we will name Benders
subproblem i , determines the maximum performance of resource i considering when
it starts and the restrictions on rest period legislation.
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Benders Algorithm
The pseudocode presented in Algorithm 1 defines the steps in the Benders algorithm
in the context of our decomposition of the problem.

Algorithm 1 Adaptation of the Benders Algorithm
1: ν ← 0
2: while no new cuts do
3: ν ← ν + 1
4: Solve Benders Master Problem
5: Get S(ν)

6: for (i, t) in S(ν) do
7: if (i, t) not in S∗ then
8: Solve Benders Subproblem i
9: Update S∗, W−

i t , T R−
i t and R−

i t
10: Add the associated cuts given by constraints (32), (33) and (34)

It is important to note that three new types of cuts, (32), (33) and (34), are created
to improve the convergence of the algorithm. The following remark will discuss the
validity of the proposed cuts.

Remark 2.5 Constraints (32)–(34) are valid Benders cuts that allow us to give to the
Benders master problem information of how a resource must act knowing its start
period.

For a given i ∈ I and t s ∈ T where sits = 1, Benders subproblem i gives the
configuration of work, travel associated with rest, and rest periods of resource i from
its start period (t s) until the last period (m). The configuration of work, travel and rest
periods guarantees the feasibility of the Benders subproblem i (and consequently, the
feasibility of the Benders subproblem).

Examining Benders master problem, constraint (32) fixes the working periods to 0
according to the solution of Benders subproblem i with si t s = 1. In a similar way, we
can impose periods of no travel due to rest and periods of no rest using constraints (33)
and (34), respectively.

If a solution proposed by the Benders master problem is infeasible for the reformu-
lated problem, then the cuts generated in the next iteration will remove the solution
as each Benders subproblem i will compute a feasible configuration for the resource
i to construct the new cuts. Otherwise, if the solution is feasible for the reformulated
problem, then it will be feasible for each Benders subproblem i and the associated
cuts will admit it.

3 Fixed activity benders problem

Inspired by the idea of BD about pre-computing the periods in which resources must
rest, we propose a new formulation of the problem that guarantees convergence to the
global optimum.

Suppose the period inwhich a resource begins towork in thewildfire and their initial
conditions are known. In that case, it is possible to calculate the work and rest periods
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according to the pertinent legislation. Therefore, we can simplify the BD method,
computing in advance this information without solving the Benders subproblems.

As described above in the proposed BDmethod, the Benders subproblems share the
primal solutions obtained with the Benders master problem with the aim of defining
iteratively new cuts (32)–(34) removing solutions that do not verify the policy of
breaks.

In thisway,we propose a newproblem formulation equivalent to theBendersmaster
problem where all the feasibility cuts are defined a priori without the need of solving
any subproblem. In order to pre-compute these feasibility cuts efficiently, a tailor-made
algorithm (see Algorithm 2) has been designed that takes advantage of the specific
features of the problem. Note that this new formulation requires to introduce all the
feasibility cuts at once, so the size of the resulting problem is bigger than the ones
arising in the decomposition procedures. Although this could derive in a significant
computationally burden when solving the problem, the computational results that will
be presented later shows a good behaviour of this method in practice, outperforming
the other decomposition approaches.

The new problem formulation can be stated as follows:
Fixed Activity Benders Problem

minimize (1)
subject to

(2), (3), (r4), (5), (6), (r7), (13), (14), (15), (16), (17),
(18), (19), (31)

m · si t +
∑

t ′∈W−
i t

wi t ′ ≤ m, ∀i ∈ I, t ∈ T , (r32)

m · si t +
∑

t ′∈T R−
i t

t r r i t ′ ≤ m, ∀i ∈ I, t ∈ T , (r33)

m · si t +
∑

t ′∈R−
i t

r i t ′ ≤ m, ∀i ∈ I, t ∈ T . (r34)

Therefore, before creating the Fixed Activity Benders Problem, we need to compute
setsW−

i t , T R−
i t and R−

i t (see Algorithm 2 for more details) to create constraints (r32)–
(r34), respectively.
Algorithm 2 initializes a counter for the work periods (WorkCounter ) for a given
resource and start period. Suppose the resource was previously working in anywildfire
(I TWi = 1or I OWi = 1). This implies that two situationsmight occur: if the resource
starts to work in the first period, the counter is updated with its initial information; and
if the resource is resting, it cannot be selected during the wildfire’s extinguishing.

Once all variables have been initialized, the counter is iteratively increased. Thus,
when it reaches WPi − T RPi working periods, the resource will perform the needed
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Algorithm 2 Compute work, travel and rest periods of a resource knowing its start
period
Input: i∗ ∈ I (selected resource), t∗ ∈ T (start period)
1: WorkCounter ← 1
2: if I TWi = 1 or I OWi = 1 then
3: if t∗ = 1 then
4: WorkCounter ← CW Pi − CRPi + 1
5: else if RPi �= 0 then
6: WorkCounter ← WPi + 1
7: t∗ ← m + 1 (avoid starting working, t∗ ≥ m)

8: Workit , Traveli t , Resti t ← 0, for all i ∈ I, t ∈ T
9: TravelCounter ← 0
10: for t in Tt∗ do
11: if t ≥ m − T RPi∗ + 1 then
12: WorkCounter ← WorkCounter + 1
13: TravelCounter ← TravelCounter + 1
14: Traveli t ← 1
15: continue
16: else if WorkCounter ≤ WPi − T RPi then
17: WorkCounter ← WorkCounter + 1
18: Workit ← 1
19: else if WorkCounter ≤ WPi then
20: WorkCounter ← WorkCounter + 1
21: TravelCounter ← TravelCounter + 1
22: Traveli t ← 1
23: else if WorkCounter ≤ WPi + RPi then
24: WorkCounter ← WorkCounter + 1
25: Resti t ← 1
26: else if WorkCounter ≤ WPi + RPi + T RPi then
27: WorkCounter ← WorkCounter + 1
28: TravelCounter ← TravelCounter + 1
29: Traveli t ← 1
30: else
31: WorkCounter ← 1 + T RPi
32: TravelCounter ← TravelCounter + 1
33: Traveli t ← 1

return Work, Travel, Rest

periods to rest. In this case, when the resting phase is finished, the counter is reset,
and the procedure described above is repeated until the last period.

In addition, it is important to note that this new method allows incorporating on-
demand rest policies, facilitating their adaptation to more complex contexts.

4 Computational results

This section studies the impact of the decomposition techniques explained above, using
a representative set of simulated instances of the original wildfire extinction model.
To simplify the understanding of this work, we use the following nomenclature:

• OP: Original Problem (Sect. 1.2).
• AL: A strategy based on Augmented Lagrangian decomposition (Sect. 2.1).
• BP: Branch and Price decomposition provided by SCIP (Sect. 2.2).
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• BD: Benders Decomposition (Sect. 2.3).
• FA: Fixed Activity Benders problem (Sect. 3).

The experiments were conducted using the Finisterrae II supercomputer, provided by
Galicia Supercomputing Centre (CESGA), which consists of 306 nodes powered with
two deca-core Intel Haswell 2680v3CPUswith 128GBofRAMconnected through an
Infiniband FDR network. The implementations were programmed in Python version
3.6.8. All the MILP models were solved using Gurobi (version 8.1.0, Gurobi Opti-
mization (2020)), except in the case of BP, where we employed SCIP (version 6.0.1,
Gleixner et al. (2018)) framework.

In order to compare the algorithms, we generated two sets of instances (see
“Appendix B” for details about the instance generator). The first, used in Sect. 4.1,
corresponds to small instances where all the algorithms can provide solutions for most
cases. The second, used in Sect. 4.2, contains larger instances based on realistic case
studies. More details about the sizes, composition and periods in instances are in the
tables of “Appendix C”.

Regarding the experimental settings, all optimization runs used a stopping criterion
based on a predefined computational time of 10 min. The goal is to compare the
solutions obtained, in terms of the objective function, using the different techniques at
the same threshold time.We selected this time considering the requirements of wildfire
contention services in real situations. About configuration settings of the methods, just
to comment that AL sets the parameters β and λ to 0.3 and 1000, respectively.

Due to the high number of experiments conducted, we have decided to summa-
rize the results over classes of instances with the same problem size. In detail, we
present boxplot graphs for the relative objective functions and the relative computa-
tional times. Namely, for each instance, let x ′ be the best solution found, the relative
objective function associated to a solution x is calculated as the quotient f (x)/ f (x ′)
(analogously for the computational time). Thus, values closer to 1 represent better
performance.

In addition,we showdifferent tableswith a summaryof statistical results (minimum,
mean, median, maximum, standard deviation and percentage of solved instances).
For readers more familiar with performance profile graphs (Dolan and Moré 2002),
we also provide them for the objective function and for the computational time in
“Appendix D”.

The code and instances required to reproduce the results are available at:

https://github.com/jorgerodriguezveiga/firedecomp

4.1 Performance analysis in small instances

In order to analyze the proposed solution techniques, we defined 16 different groups
of small instances by combining resource groups (brigades, aircraft and machines) in
different ways: using 2 or 4 members per group and setting the number of time periods
to 10 or 15. Furthermore, for each group, we randomly generated 100 instances, which
gave us a total of 1600 instances. The details of the size (numbers of variables and
constraints) of the different groups of instances are shown in Table 9.
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Fig. 2 Boxplot of the relative objective function for small instances

Table 5 Relative objective function statistics for small instances

min mean median max sd solved (%)

FA 1.0000 1.0000 1.0000 1.0000 0.0000 100.0000

BD 1.0000 1.0000 1.0000 1.0000 0.0000 100.0000

AL 1.0000 1.0007 1.0001 1.1001 0.0071 100.0000

BP 1.0000 1.0709 1.0002 1.8578 0.1257 91.6933

OP 1.0000 1.0000 1.0000 1.0000 0.0000 100.0000

As stated before, all the instances were solved with our techniques in a maximum
time of 10 min. Thus, for each run, we have collected the objective function obtained
during the optimization and the time required to reach this solution within the time
threshold.

Figure 2 is a boxplotwherewe compare ourmethods in different classes that include
various groups of instances. In this way, it shows on its x-axis the number of resources
and periods of the problem, separated by a vertical bar (|), and on its y-axis, the relative
objective function. The results reveal that BP exhibits the worst performance in terms
of the objective function.3 The other methodologies have a similar behaviour always
reaching the best optimal solution, except AL, which fails to do it in some specific
instances. These conclusions are also corroborated in Table 5, where interestingly,
it can be seen that all techniques are able to provide feasible solutions for all the
instances, except BP.

3 The performance profile for the objective function can be seen in 6.

123



Application of decomposition techniques in a wildfire…

Fig. 3 Boxplot of the relative computational time for small instances

Table 6 Relative computational time statistics for small instances

min mean median max sd solved (%)

FA 1.0000 1.0126 1.0000 4.3725 0.0946 100.0000

BD 3.0529 5.8480 5.3920 46.7558 2.7328 100.0000

AL 161.1682 862.1996 811.2871 1719.7460 329.8117 100.0000

BP 4.2376 732.4274 431.5065 3164.3300 695.1925 91.6933

OP 1.0000 1.7972 1.4329 8.5698 0.9883 100.0000

Figure 3 and Table 6 represent the results concerning the relative computational
time.4 We can see that FA, BD and OP, are the fastest ones with a big difference with
respect to AL and BP. Further, the zoom over the figure (and measures in Table 6)
shows how FA outperforms BD and OP. Additionally, the boxplot of the absolute
computational times for each group of instances can be seen in Fig. 10.

In conclusion, for small instances, the algorithm that performs the best is FA.
Although OP and BD exhibit a good behaviour in terms of optimal values, their
computational times are slightly higher. Further, the AL and BP algorithms have much
longer computational times, and BP does not converge in many cases.

4 The performance profile for the computational time can be seen in 7.
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4.2 Performance analysis in realistic-scale instances

In this case, we have defined 48 different groups of realistic-scale instances (see
Table 10 for details), generating 100 random instances for each group, which gives us
a total of 4800 instances.

Based on the results for the small instances, where OP and FA exhibit the best
performance, we only analyze the behaviour of these two methods over these larger
instances. In fact, as the time threshold is set again to 10 min, we have checked that the
other algorithms were not able to reach a feasible solution for most of these instances.

Figure 4 is analogous to the previous ones. In this case, we have split the instances
into 24 classes according to the number of resources and periods. The results obtained
in the relative objective function for both methods demonstrate that FA finds for all
instances the best optimum while OP only reaches it for the smaller ones, those with
less than 60 periods and 30 resources.5 The same conclusions can be clearly seen
looking at the summaries presented in Table 7.

Fig. 4 Boxplot of the relative objective function for realistic-scale instances

Table 7 Relative objective function statistics for realistic-scale instances

Min Mean Median Max SD Solved (%)

FA 1.0000 1.0000 1.0000 1.0000 0.0000 100.0000

OP 1.0000 1.0142 1.0000 8.9111 0.2098 97.3739

5 The performance profile for the objective function can be seen in Fig. 8.
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Fig. 5 Boxplot of the relative computational time for realistic-scale instances

Table 8 Relative computational time statistics for realistic-scale instances

Min Mean Median Max SD Solved (%)

FA 1.0000 1.2523 1.0000 91.3941 2.1800 100.0000

OP 1.0000 4.0239 2.4890 65.9690 4.0681 97.3739

Regarding the relative computational time of the algorithms, Fig. 5 shows that FA
exhibits again the best performance, being faster than OP.6 More in detail, in Table 8,
we can see that FA is at least 2.5 faster than OP in 50% of the instances (the median
of the OP is 2.4890). Additionally, the boxplot of the absolute computational times
for each group of instances can be seen in Fig. 11.

5 Conclusions

In this study,we have proposed different decomposition techniques to efficiently tackle
a wildfire suppression model to manage the operations of resources.

Implementing decomposition techniques is not usually a straightforward task since
it requires adapting the technique to the specific features of the problem. Thus, we
have proposed a modification of the augmented Lagrangian decomposition to achieve
convergence of our specific problem. Moreover, we have applied Benders and branch
and price decompositions to our problem. In the case of Benders, to improve conver-
gence to an optimal point, we have modified the decomposition and proposed new
cuts specific to this problem.

6 The performance profile for the computational time can be seen in Fig. 9.
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Furthermore, the analysis of decomposition methods has encouraged us to propose
the so-called Fixed Activity Benders Problem. It is a reformulation of the original
model, where some information about resources (such as rest, travel and working
time) can be precomputed.

An extensive computational study comparing the different proposed alternatives
using a set of randomly generated instances of the wildfire extinguishment model has
been conducted. In the results, we observe that the Fixed Activity Benders Problem
clearly outperforms the rest of the techniques in terms of optimality and computational
times.

As future work, it could be interesting to seek alternative decomposition of the
problem that allows us to apply the same or different decomposition techniques more
efficiently. Furthermore, itmight be promising to study how the FixedActivityBenders
Problem can be embedded in such a decomposition framework.
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A. Augmented Lagrangian implementations details

Given a resource i , the associated Augmented Lagrangian Subproblem i is formu-
lated as follows:

minimize
∑

t∈T
Ci · ui t + Pi · zi +

∑

t∈T
NVCt · ȳt−1 +

∑

g∈G,t∈T
M ′ · μgt

+ (λ̄1 · (penSet1 + v1) + 1

2
· β̄1 · (penSet1 + v1)

2)

+
∑

t∈T
(λ̄t+1 · (penSet2(t) + vt+1) + 1

2
· β̄t+1 · (penSet2(t) + vt+1)

2)

subject to

(4)−(19)

v j ≥ 0, ∀ j ∈ {1, . . . , t + 1},
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being

penSet1 =
∑

t∈T
PERt · ȳt−1 −

∑

t∈T
(PRit · wi t +

∑

i ′∈I,i ′ �=i

P Ri ′t · w̄i ′t ),

penSet2(t) = −M · ȳt +
∑

t ′∈T t

(PERt ′ · ȳt−1)

−
∑

t ′∈T t

(PRit ′ · wi t ′ +
∑

i ′∈I,i ′ �=i

P Ri ′t ′ · w̄i ′t ′),

where λ̄ corresponds to fixed Lagrange multipliers, β̄ is the fixed penalty parameters
large enough to ensure local convexity, and ȳ is the contained period of the wild-
fire. Since each subproblem needs to have coherence in variable y to guarantee the
separability, we have decided to fix the variable as a constant, and explore all the pos-
sibilities of y for each iteration of the ALD method. Moreover, expressions penSet1
and penSet2 represent inequality constraints (2) and (3), respectively, which are mod-
ified to appear penalized in the objective function. v is a set of auxiliary variables
to transform inequalities penSet1 and penSet2 into equality constraints. As can be
observed, the ALDmethod adds quadratic terms to penalties to confer good convexity
properties.

Regarding the formulation of penSet1 and penSet2, we highlight that wi t are
primary variables of subproblem i that represent the working time of resource i , and
w̄i ′t are constant values that correspond to the values ofw in other resources. Thus, the
value of each resource i ′ will be addressed in its respective subproblem, consequently
facilitating the decomposition of the Original Problem.

Theoretically, although constraints (14) and (15) could also be penalized in the
objective function, we have empirically observed that it causes the convergence to
worsen, making it more complex to coordinate their penalties in the resulting sub-
problems.

As stated above, the ALD method is an iterative algorithm, that seeks to calibrate
their penalties to obtain reasonable feasible solutions. It requires an initial solution
that can be obtained, for example, using a constructive heuristic. Then, the algorithm
repeats the following steps until a stopping criterion is fulfilled. The algorithm decom-
poses the Original Problem, iterates over each period t ∈ T , fixes yt = 0 to consider
it as the possible contained period, and solve the corresponding subproblem with a
specific λ and β. These parameters are updated with the results provided by the sub-
problem in each iteration. This calibration process is conducted using a subgradient
method, which is a strategy widely used in the AL literature. Although using the
subgradient method causes the loss of the global optimality guarantee in MILP prob-
lems (Fisher 2004), the algorithm exhibited good performance in our experiments.
The following expressions represent an example of how to update these multipliers
and constants in the iteration k and for penalty PenSet1:

λ
(k+1)
1 = λ

(k)
1 + β

(k)
1 · PenSet (k)1 ,

β
(k+1)
1 = 1.2 · β

(k)
1 .

123



J. Rodríguez-Veiga et al.

PenSet2 also has an analogous procedure. Moreover, the method updates the fixed
resources’ value in the subproblems at the end of each iteration, but only when a
new feasible solution is reached. Finally, ALD will stop when it has converged or has
obtained an infeasible problem for each possible y.

B. Description of instances generator

We have implemented an instance generator intending to create a test set to analyze
the decomposition methods described throughout the work. The following paragraphs
describe the values and intervals of parameters to simulate instances in the wildfire
extinction model.

First, the wildfire extinguishing period considered in all instances has been 10
min, classified the resources into three groups: brigades, aircraft and machines. The
minimum resource number per group is between 1 and a quarter of that type’s number
of resources. And the maximum is between the number of resources of that type and
three-quarters of it.

Moreover, each sort of resource has unique characteristics, such as in the case
of performance, where brigades have values between 2–10 km/h, while aircraft and
machines are between 4–15 km/h. In terms of costs, all have a maximum fixed cost of
1000e. The variable costs depend on the type of resource: 200–500e/h for brigades;
1000–3000 e/h for aircraft; and 500–1000 e/h in the case of machines.

Likewise, parameters according to the maximum work and rest periods depend on
legislation. In these cases, we have taken into consideration Spanish law regulations.
It indicates that all resources have a maximum daily time of 480 min (8 h) and a time
between breaks of 10 min. Furthermore, there is a maximum working time without
breaks of 120 min in the aircraft case, with a rest time of 40 min.

All resources have a low probability of operating already in the wildfire, a medium
probability of working in another wildfire, and a high probability of being idle. If
they are not in the wildfire, they must travel there, being the arrival times 30–120
min for brigades, 10–40 min for aircraft, and 60–180 min in the case of machines.
Additionally, if a resource had been active in the same wildfire, its previous work time
must be considered. It implies that the generator will select a value between 0 and 470
min.

On the other hand, the wildfire increases its perimeter between 1–3 km every 10
min. As the cost depends on the fire’s spread, it is calculated by multiplying a factor
by the perimeter increment. This factor has been chosen within the interval of 300–
500. Further, to ensure the feasibility, the generator has considered the resource’s
performance to calculate the perimeter.

Last, the instance generator has always considered the efficiency of the resources
as one in all periods.

The characterization abovedescribes the general behaviour of the instance generator
function. To see details, we recommend examining the GitHub repository.
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C. Dimensions of the instances

See Tables 9, 10.

Table 9 Dimensions of the problems

Brigades Aircraft Machines Periods Variables Constraints Class

2 2 2 10 340 521 6 | 10
2 2 2 15 510 766 6 | 15
2 2 4 10 440 671 8 | 10
2 2 4 15 660 986 8 | 15
2 4 2 10 440 671 8 | 10
2 4 2 15 660 986 8 | 15
2 4 4 10 540 821 10 | 10
2 4 4 15 810 1206 10 | 15
4 2 2 10 440 671 8 | 10
4 2 2 15 660 986 8 | 15
4 2 4 10 540 821 10 | 10
4 2 4 15 810 1206 10 | 15
4 4 2 10 540 821 10 | 10
4 4 2 15 810 1206 10 | 15
4 4 4 10 640 971 12 | 10
4 4 4 15 960 1426 12 | 15

Table 10 Dimensions of the problems in realistic-scale cases

Brigades Aircraft Machines Periods Variables Constraints Class

5 5 5 10 790 1196 15 | 10
5 5 5 20 1580 2316 15 | 20
5 5 5 30 2370 3436 15 | 30
5 5 5 40 3160 4556 15 | 40
5 5 5 50 3950 5676 15 | 50
5 5 5 60 4740 6796 15 | 60
5 5 20 10 1540 2321 30 | 10
5 5 20 20 3080 4491 30 | 20
5 5 20 30 4620 6661 30 | 30
5 5 20 40 6160 8831 30 | 40
5 5 20 50 7700 11, 001 30 | 50
5 5 20 60 9240 13, 171 30 | 60
5 20 5 10 1540 2321 30 | 10
5 20 5 20 3080 4491 30 | 20
5 20 5 30 4620 6661 30 | 30
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Table 10 continued

Brigades Aircraft Machines Periods Variables Constraints Class

5 20 5 40 6160 8831 30 | 40
5 20 5 50 7700 11, 001 30 | 50
5 20 5 60 9240 13, 171 30 | 60
5 20 20 10 2290 3446 45 | 10
5 20 20 20 4580 6666 45 | 20
5 20 20 30 6870 9886 45 | 30
5 20 20 40 9160 13, 106 45 | 40
5 20 20 50 11, 450 16, 326 45 | 50
5 20 20 60 13, 740 19, 546 45 | 60
20 5 5 10 1540 2321 30 | 10
20 5 5 20 3080 4491 30 | 20
20 5 5 30 4620 6661 30 | 30
20 5 5 40 6160 8831 30 | 40
20 5 5 50 7700 11, 001 30 | 50
20 5 5 60 9240 13, 171 30 | 60
20 5 20 10 2290 3446 45 | 10
20 5 20 20 4580 6666 45 | 20
20 5 20 30 6870 9886 45 | 30
20 5 20 40 9160 13, 106 45 | 40
20 5 20 50 11, 450 16, 326 45 | 50
20 5 20 60 13, 740 19, 546 45 | 60
20 20 5 10 2290 3446 45 | 10
20 20 5 20 4580 6666 45 | 20
20 20 5 30 6870 9886 45 | 30
20 20 5 40 9160 13, 106 45 | 40
20 20 5 50 11, 450 16, 326 45 | 50
20 20 5 60 13, 740 19, 546 45 | 60
20 20 20 10 3040 4571 60 | 10
20 20 20 20 6080 8841 60 | 20
20 20 20 30 9120 13, 111 60 | 30
20 20 20 40 12, 160 17, 381 60 | 40
20 20 20 50 15, 200 21, 651 60 | 50
20 20 20 60 18, 240 25, 921 60 | 60
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D. Auxiliary figures

See Figs. 6, 7, 8, 9, 10 and 11.

Fig. 6 Performance profile of the objective function on the intervals [1, 1.8] (left) and [1, 1.01] (right) for
small instances

Fig. 7 Performance profile of the computational time on the intervals [1, 3000] (left) and [1, 20] (right) for
small instances
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Fig. 8 Performance profile of the objective function on the interval [1, 8] for realistic-scale instances

Fig. 9 Performance profile of the computational time on the intervals [1, 90] (left) and [1, 10] (right) for
realistically sized instances

Fig. 10 Boxplot of the computational time of the algorithm only considering the solved instances for small
cases. X axis represent the size of the instances, indicating the number of resources and periods separated
by “|”, respectively
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Fig. 11 Boxplot of the computational time of the algorithm only considering the solved instances for
realistic-scale cases. X axis represent the size of the instances, indicating the number of resources and
periods separated by “|”, respectively

References

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-and-price: column
generation for solving huge integer programs. Oper Res 46:316–329

Benders J (1962) Partitioning procedures for solving mixed-variables programming problems. NumerMath
4:238–252

Caunhye AM, Nie X, Pokharel S (2012) Optimization models in emergency logistics: a literature review.
Socioecon Plann Sci 46:4–13

Commission European (2020) Forest fires in Europe, Middle East and North Africa 2019. Technical report,
JRC technical reports

Conejo A, Castillo E, Mínguez R, García-Bertrand R (2006) Decomposition techniques in mathematical
programming: engineering and science applications. Springer
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