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Abstract: Broken rotor bar (BRB) is one of the most common failures in induction motors (IMs) these
days; however, its identification is complicated since the frequencies associated with the fault condition
appear near the fundamental frequency component (FFC). This situation gets worse when the IM
slip or the operation frequency is low. In these circumstances, the common techniques for condition
monitoring may experience troubles in the identification of a faulty condition. By suppressing the
FFC, the fault detection is enhanced, allowing the identification of BRB even at low slip conditions.
The main contribution of this work consists of the development of a preprocessing technique that
estimates the FFC from an optimization point of view. This way, it is possible to remove a single
frequency component instead of removing a complete frequency band from the current signals of
an IM. Experimentation is performed on an IM operating at two different frequencies and at three
different load levels. The proposed methodology is compared with two different approaches and the
results show that the use of the proposed methodology allows to enhance the performance delivered
by the common methodologies for the detection of BRB in steady state.

Keywords: condition monitoring; current measurement; fault diagnosis; induction motor;
signal analysis

1. Introduction

Among all the electric machines used in industrial facilities, induction motors (IMs) are the most
widely spread since their ability to transform electrical energy into mechanical energy make them
essential for many industrial processes [1]. Additionally, their reliability and robustness results in a
low cost and effort related with their maintenance [2,3]. The IM robustness can be both: a strength and
a weakness. It is a strength because the motor is able of continue operating even when it presents a
fault condition at the cost of reducing its efficiency [4]; notwithstanding, it can be harmful because a
motor working in fault conditions directly affects the power quality and reliability of the entire power
system [5], resulting in economic losses and malfunctioning of equipment connected to the same grid.
Hence, resulting condition monitoring techniques are helpful for preventing unexpected stops in
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production processes that may result in losses [6]. In this sense, there are several methodologies that
use different physical variables such as current, vibrations, and stray flux to determine the condition of
the IM.

A well-studied faulty condition is the broken rotor bar (BRB); this condition represents around
15% of the faults presented in the IM [7]. When the BRB condition is presented in the IM, two
spectral components appear in the neighborhoods of the fundamental frequency component (FFC) [8].
However, identifying these components is challenging because the energy of the FFC is high compared
with the rest of spectral components. The identification is even harder when the IM is powered
through a variable frequency drive (VFD) at a low frequency, because the lower the operation frequency
is, the closer the failure harmonics get [9]. A similar situation is presented when the IM operates
with low load where the sideband harmonics are very close to the FFC, making their detection more
difficult [10]. Several techniques have been developed for the BRB detection in IMs, with the motor
current signature analysis (MCSA) being the most common one [11–13]. The MCSA technique uses
the fast Fourier transform (FFT) to obtain the spectra from the motor current signals and obtain the
amplitude of the fault harmonics. Even though this technique has been used for many years, there
are some issues related with their performance, for instance, large amounts of data are required to
obtain a proper resolution and, if the FFC is not an integer multiple of the resolution, the resulting
leakage can hide the sideband frequencies associated with the BRB condition. In order to deal with
these issues, some works have proposed the use of different signal processing techniques like wavelet
transform [14,15], non-uniform time resampling [16], multiple signal classification (MUSIC) [7,17],
among others. Moreover, some other authors propose the analysis of variables different from the
current such as sound [18] or vibration [19]. Even though the aforementioned methodologies deal with
some of the issues related with the standard MCSA, they present some disadvantages, for instance,
wavelet transform suffers from mode mixing and its analysis requires the experience of an expert;
MUSIC demands a high computational effort and does not deliver accurate information regarding the
fault severity. Additionally, these techniques are commonly used for the analysis of IM operating at a
high load, and the case of motors operating at low load is ignored.

As aforementioned, when the motor operates at low frequency and the slip detection of a fault
condition becomes harder, the failure harmonics become closer to the FFC and the spectral leakage hides
them. To deal with this situation, there are works that propose the use of sliding windows to overcome
the problems related with the spectral leakage that introduces the Fourier transform [20]. This work
considers that the amplitude of the FFC fluctuates due to the existence of sidebands frequencies, and
with the use of different windows, it is possible to appreciate these variations and relate them to the
fault conditions. Notwithstanding, the results are highly dependent on the selected window, therefore,
certain experience is required in the response of different windows. Moreover, the math behind the
implementation is more complex than the one proposed by other methodologies. Another well-studied
alternative is the use of the magnetic flux instead of the current signals [21–23]. These works consider
that when a fault appears in the IM, a magnetic unbalance can be appreciated, and a portion of the
magnetic flux is radiated outside the frame of the machine. However, the measured signal is very weak
and can be affected by the surrounding noise in an easy way, compromising the accuracy of the results.
On the other hand, the Hilbert transform is an effective tool that allows computing the instantaneous
frequency of the current signal [24,25]. Notwithstanding, since the major problem in the detection of
BRB is that the energy of the FFC is so high compared with the rest of spectral components, a more
common solution is the use of techniques for suppressing the FFC from the current signals. Herein,
the most explored technique is the use of notch filters (NFs) for attenuating a very reduced frequency
bandwidth [26–29]. These works use the NF as a pre-processing stage in order to enhance the results
delivered by the common methodologies. The problem with the use of NFs is that they suppress a
complete frequency band instead of only removing a single frequency; therefore, if the frequency
band is not narrow enough, the failure harmonics may be attenuated too. In this sense, developing
a technique that is able to suppress a single frequency instead of a frequency band may improve



Appl. Sci. 2020, 10, 4160 3 of 17

the results in the detection of faulty conditions in the IM as BRB. Therefore, in [30], the use of the
Teager–Kaiser energy operator is proposed for eliminating the FFC and obtaining the fault harmonics
right at their characteristic frequencies, instead of bands around the FFC. However, the case when the
IM operates at 50 and 60 Hz is only studied, and it is necessary to show what happens when the motor
works at lower frequencies. Finally, it is important to mention that artificial intelligence techniques have
been recently used as tools for condition monitoring of IM, with genetic algorithms (GAs), artificial
neural networks (ANNs), and fuzzy logic being some of the reported techniques [3,31–33]. The use of
artificial intelligence techniques allows to perform an automatic detection of any fault condition in the
IM; however, they require a training process and large amounts of data to properly work. The amount
of data and the training process could be reduced if a GA is used as a pre-processing stage that works,
along with the conventional MCSA technique. A study like this is presented in [34], where a GA
is used for suppressing the FFC in order to improve the detection of the broken bar condition in
induction motors. However, the reported results consider only one operation frequency for the IM and
no comparison with other methodologies is performed. In order to demonstrate that the results are
reliable and that a significant improvement against other techniques is reached, it is necessary to carry
out tests under different conditions and perform a fair comparison with other methodologies.

This work proposes a technique that allows the estimation of a single frequency, amplitude, and
phase to define the FFC. The novelty of this work consists on the development of a preprocessing
technique that estimates the parameters of the FFC as an optimization problem. Therefore, a GA is used
for this task, allowing to deal with some of the issues related with other methodologies. For instance,
the proposed methodology suppresses a single frequency component instead of removing a whole
frequency band as the NF does. The proposed methodology is intended to work along with the MCSA
for the detection of the BRB condition in the IM operating at steady state. A comparison is performed
with the conventional MCSA without removing the FFC, and with a methodology that uses a NF to
suppress the FFC before analyzing the current signature. The study is performed in an IM powered
by a variable frequency drive (VFD) at 31 and 20 Hz. For every one of these two frequencies, three
different levels of slip are used for testing the proposed methodology. Results prove that the use of this
technique improves the results in comparison with the conventional MCSA or with the use of a NF,
allowing to perform a better identification of the BRB condition in an IM when it operates at steady
state. Finally, results show that the values reported by the MCSA technique concerning the amplitude
of the side harmonics may be erroneous, generating behaviors different from those that describe the
fault severity.

2. Theoretical Background

2.1. BRB Detection

When a rotor bar is broken or partially cracked, it cannot carry any current; hence, BRB is a condition
that produces a geometric and magnetic unbalance on the IM [9]. Therefore, current components are
induced in the stator and they appear as sidebands of the FFC in the current spectrum [25]. Depending
on which side of the FFC they appear, these harmonics are called the left side harmonic (LSH), and the
right side harmonic (RSH), and they can be calculated using (1) and (2) respectively:

fLSH = (1− 2s) fFC, (1)

fRSH = (1 + 2s) fFC, (2)

where fLSH is the frequency of the LSH, fRSH is the frequency of the RSH, s is the IM slip, and fFC is the
frequency of the fundamental component.
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2.2. Genetic Algorithm

Many artificial intelligence techniques try to imitate the behavior of a biological system. These types
of techniques are known as bio-inspired techniques and the GA falls into this classification since
it tries to emulate the principles of natural evolution [35]. Figure 1 presents the flow chart for the
computation of the GA. The first step consists of randomly generating the initial population. In this
step, it is necessary to define proper boundaries to ensure that the individuals of the population remain
within an acceptable range. Next, a fitness evaluation is performed. At this point, the performance
of every individual has to be assessed. This task is carried out using a maximum value of a fitness
function, maxF(x), whose value depends on the evaluation of several performance criteria considered
in an objective function, J(x). The integral of the absolute error (IAE) is one of the most common
performance criteria applied on the GA and is based on a signal error, ε(t), as specified by (3) and (4):

maxF(x) = 1/J(x), (3)

IAE =

∫
∞

0

∣∣∣ε(t)∣∣∣ = J(x). (4)

Figure 1. Flow diagram of the Genetic algorithm (GA).

After evaluating every individual, a criterion that allows performing a hierarchical selection
must be set. The purpose of the selection consists of classifying the individuals by function of their
fitness value to select those individuals with the best attributes. GA is an iterative process, thus, it
is necessary to define a stop condition that determines when the process must be finished. If the
stop condition is not reached, a new population is generated through the crossover and mutation
operations, and the process is repeated from the fitness evaluation. The best individual of the old
population goes directly to the new population; the rest of the individuals are obtained by applying the
crossover and the mutation operations between the best individual and the other individuals of the old
population. Finally, the mutation operation consists of a random replacement of certain individuals in
the population according to a mutation probability, Pm.

3. Methodology

In this section, the GA-based methodology for suppressing the FFC from the current signals of the
IM is described. The proposed methodology can estimate the amplitude, frequency, and phase shift
that describe the FFC in order to suppress it, or at least highly reduce it. By attenuating the energy of
the FFC, it is possible to better appreciate the failure harmonics because they are not overshadowed
nor hidden by spectral leakage. In Figure 2, a diagram of the proposed methodology is observed.
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The methodology was performed through three steps: signal acquisition, suppression of the FFC, and
residual signal (RS) spectrum. In the first step, the current signals of the IM operating at steady state
were acquired using a proprietary data acquisition system (DAS). The current signals for the three
phases, Ia, Ib, and Ic, of the IM were simultaneously acquired; however, they were processed one at a
time. In the second step, the current signal i(t) was sent to the GA in order to estimate the amplitude
(Am), frequency (f), and phase (Φ) that better described the FFC. Since the methodology was designed
for working with the motor signals at steady state, the first seconds of the current signal containing the
transient were not taken into account. Thus, in order to perform the parameter estimation, a population
of 30 individuals was considered in the implementation of the GA. Every individual was composed by
the union of three different genes: the first represented the amplitude (Am), the second the frequency
(f), and the third one the phase (Φ). To ensure that the individuals fell within an acceptable range, the
next boundaries were set for the genes: 0 to 3 for the amplitude considering that peak current in steady
state always remain in this range; 19 to 32 for the frequency since the two operating frequencies used
in this work (20 and 31 Hz) were between these two values; and -π to π for the phase. The objective
function is a pure sinusoidal wave; therefore, each individual was assessed using (5):

f c(t) = Am× sin(2π f t + Φ). (5)

Figure 2. Block diagram of the proposed methodology.

After assessing the individuals, it was necessary to organize them by applying (3) and (4).
This sorting was performed with the aim of obtaining the best member of the current population
(G1), which is the one with the highest fitness value. This individual must be conserved in the next
generation. The missing individuals in the new population needed to be generated using the crossover
operation. To simplify the calculation of this operation, in this particular work, the crossover was
reduced to an average value as shown in (6):

Gn(i) = (G1 + Gc(i))/2, (6)

where i = 2, . . . , 30; Gc(i) is the i-th individual of the current population; and Gn(i) is the i-th individual
of the next population. To add diversity in the population and to avoid local maxima stagnation,
a mutation probability Pm = 0.2 was introduced in order to randomly exchange some individuals.
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These operations were performed a total of 300 times because it was experimentally demonstrated
that this number of iterations was enough to ensure the convergence of the GA every time. The genes
Am, f, and Φ from the best individual in the last iteration were considered as the parameters of the
FFC. These parameters were substituted in (5) and the resulting signal f c(t) was considered as the FFC.
The f c(t) signal was subtracted from the current signal i(t) and the result was called the RS. This signal
contained all the harmonics and interharmonics from the original signal. It must be mentioned that the
methodology cannot completely remove the FFC, a small amount of its energy may be preserved in
the RS. Notwithstanding, the remaining energy was much lower than in the original signal because it
had been attenuated by the GA-suppression technique. This situation achieves that the energy of the
FFC no longer obstructed the visibility of other spectral components. In the last step, the FFT of the RS
was computed to perform its analysis. Since the FFC no longer obstructed the failure harmonics, it was
possible to carry out a more reliable analysis of the amplitude of the LSH and the RSH. A total of 30
different tests were performed: fifteen with IM operating at 31 Hz, and another fifteen for an operating
frequency of 20 Hz. These tests were carried out considering three different load levels that resulted in
three different slips: 2% (low load), 4% (medium load), and 6% (high load).

It is important to recall that the methodology described in this section was designed to work
with steady state signals. However, there exist some industry applications where the IM operates at
a variable speed and load rate. To deal with those scenarios, the proposed methodology should be
modified to perform an adaptive estimation of the FFC parameters. Although this modification may
be simple, the transient analysis is a topic that may provide material for a complete work in itself;
therefore, such analysis is left for further development.

4. Experimental Setup

The experiments developed to test the proposed methodology were carried out with a 0.75 kW
IM from Siemens. To vary the load conditions, a 1.1 kW electromagnetic break was used. Additionally,
the motor was not directly connected to the power supply, and it was fed through a VFD CFW 11 from
WEG instead.

To perform the data acquisition and collection, a proprietary FPGA-based DAS was used.
This device was set to acquire the data from the three current signals of the IM simultaneously. The data
acquisition process was made considering a sampling frequency of 8 kHz with a 16-bit resolution.
All the data were stored using 128 GB standard micro SD card. Finally, to measure the currents in the
IM, the YHDC SCT-013-010 current clamps were used. These current clamps can measure currents up
to 10 A with a 100 mV per ampere resolution.

5. Results and Discussion

5.1. Results for the IM Operating at 31 Hz

First, the results for the motor operating at 31 Hz are introduced. To demonstrate the advantages
of the proposed methodology against other methodologies, a comparison is performed first with the
conventional MCSA without removing the FFC, using a total of 160,000 samples (20 s) of the signal to
obtain a 0.05 Hz resolution. Then, the comparison is performed with a NF-MCSA methodology that
uses a NF for removing the FFC before applying the MCSA technique. The designed NF considers
a notch frequency of 31 Hz and a 0.8 Hz bandwidth. Finally, the analysis is performed with the
proposed methodology (GA-MCSA) which uses a GA for suppressing the FFC before applying the
MCSA. To show the advantages of the GA-MCSA methodology, only 80,000 samples (10 s) of the signal
are used to compute the signal spectrum at a resolution of 0.1 Hz. The IM under test is operated at
three different load levels: high load (s = 6%), medium load (s = 4%), and low load (s = 2%). Figure 3
summarizes the results of applying the three methodologies at the three load levels in one of the
current signals.
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Figure 3. Spectrum for the motor current operating at 31 Hz using (a) Motor current signature analysis
(MCSA) at high load, (b) MCSA at medium load, (c) MCSA at low load, (d) Notch filter (NF) and
MCSA (NF-MCSA) at high load, (e) NF-MCSA at medium load, (f) NF-MCSA at low load, (g) Genetic
algorithm (GA) and MCSA (GA-MCSA) at high load, (h) GA-MCSA at medium load, and (i) GA-MCSA
at low.

It is observed that when the IM operates at high load, the MCSA is able to detect the failure
harmonics by itself (see Figure 3a). At these operating conditions, the LSH appears at 27.4 Hz and
the RSH at 34.6 Hz. However, it is noticed that the energy of the FFC is so high that it goes outside
the graphic. When the NF-MCSA methodology is applied, the LSH and the RSH are also visible in
the spectrum (Figure 3d). Additionally, it can be seen that the remaining energy of the FFC is now
visible at 31 Hz with an amplitude of around 0.1 A. This situation proves that the NF is effective in the
attenuation of the FFC. Notwithstanding, it can be seen that the leakage effect is present in the range
between 28 and the 34 Hz. This problem does not seem to affect the identification because the failure
harmonics are located beyond this range. When the GA-MCSA technology is used, it is appreciated
that the attenuation of the FFC is higher than that presented by the previous technique (Figure 3g), and
the failure harmonics are clearly visible at 27.4 and 34.6 Hz respectively. The fact that the attenuation is
higher seems to be an advantage because the leakage effect around the FFC is also reduced, falling to
the range between 30 and the 32 Hz.

A similar analysis is carried out, but now for the IM operating at medium load. Here, the LSH
is expected to appear at 28.5 Hz and the RSH at 33.5 Hz. The MCSA still can identify the failure
harmonics (see Figure 3b) but their appearance is not as clear as in the previous case. The amplitude of
the RSH is high, facilitating its observation; however, the amplitude of the LSH is not as high and it
appears as a small peak in the spectrum of Figure 3b. By applying the NF, the results improve and
it is easier to identify both failure harmonics (see Figure 3e). Although the identification improves,
it is observed that the leakage around the FFC still appears between the 32 and the 34 Hz. Since the
failure harmonics are now between this range, they appear mounted on the spectral leakage; therefore,
the amplitudes regarding the failure harmonics are not reliable. When the GA-MCSA technique is
used, the attenuation of the FFC is even better than in the high load case and the failure harmonics are
easy to identify (see Figure 3h). Moreover, the spectral leakage around the FFC is reduced to the range
between 30.5 and the 31.5 Hz; thus, the amplitudes of the failure harmonics remain unaltered.
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Finally, the three techniques are used for the current signal when the motor operates at low load.
In this case, it is expected that the failure harmonics appear at 29.6 and 32.4 Hz. From Figure 3c, it is
clear the existence of the LSH; however, the presence of the RSH is not clear since its energy is low
and the spectral leakage around the FFC hides it. In this case, when the NF is used for attenuating
the FFC, the result gets even worse (see Figure 3f). It is observed that the spectral leakage associated
with the FFC is so severe that the energies of the RSH and the LSH are completely covered; therefore,
the presence of the failure harmonics cannot be properly observed. On the other hand, by looking
at Figure 3i, it is clear that the FFC has been highly attenuated and it is almost imperceptible in the
spectrum. This situation generates that the leakage around the FFC disappears and the LSH and the
RSH are easy to observe at their respective frequencies. At this point, it is important to mention that,
when the IM operates at high load and medium load, the MCSA is able to perform the identification by
its own. However, the MCSA technique presents some problems when the IM operates at low load and
the NF (which is probably the most common solution for the issues related with the MCSA technique)
cannot solve these problems. In fact, the NF aggravates the situation. In this sense, the GA-MCSA
proves to be the best of the three solutions for the analysis of the IM, even when it operates at low load,
allowing the identification of the LSH and the RSH in an easy way. To prove the consistency of the
results, five tests are carried out for each load level, resulting in a total of 15 tests. The obtained results
are used to obtain the boxplots showed in Figure 4.

Figure 4. Boxplots for the amplitude results of the left side harmonic (LSH) at 31 Hz for the (a) common
MCSA technique, (b) NF-MCSA technique, and (c) GA-MCSA technique.

Since the results are similar for both failure harmonics, only the results for the LSH are presented.
Here, it is important to mention that the amplitude of the failure harmonic is directly proportional to
the IM slip. Thus, it is expected that when the slip is high, the amplitude of the failure harmonic is high
too, and when the slip decreases, the amplitude of the failure harmonic decreases too. This situation is
not present in Figure 4a. When the conventional MCSA is applied, a same amplitude value for the
LSH appears when the IM operates at high load and also when it operates at medium load, i.e., there
exists an overlap between these two operative conditions. By observing Figure 4a, it can be noticed
that the region comprised between the 0.042 and the 0.057 A appears in both: the high load and the
medium load condition. The only condition that does not share amplitudes is the low load operation
that appears in the range between the 0.012 and the 0.035 A. All these results correspond to the use of
the conventional MCSA.
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When the amplitude of the LSH is analyzed after applying the NF-MCSA methodology
(see Figure 4b), it is shown that for the case of the IM operating with s = 6%, the amplitudes
fluctuate from 0.032 to 0.065 A; for the case of the IM working at medium load, the amplitudes lay
between the 0.032 and the 0.048 A; and finally, for the case of low load operation, the amplitudes
appear between the 0.011 and the 0.022 A. Thus, it is observed that all the amplitudes associated
with the medium load case could also be related to the high load operation. Just as in the previous
case, an overlap between the amplitude values of these two conditions is presented. This situation
represents a problem, because, if the amplitude value is intended to be used as an indicator of the fault
severity, with this overlap, it is not possible to correctly distinguish the correct result. These errors in
the amplitude are related to the existence of spectral leakage in the neighborhood of the FFC. Since the
failure harmonics are mounted on the leakage, their amplitudes are affected and they are not reliable.

Finally, when the proposed GA-MCSA methodology is applied, the amplitude ranges appreciated
in Figure 4c are: from 0.045 to 0.06 A for the high load operation; from 0.032 to 0.04 A for the medium
load case; and from 0.018 to 0.025 A. This means that none of the values from one operative condition
appear in more than one case. In this sense, results provided by the GA-MCSA methodology are more
reliable than those presented for the other two methodologies. This situation can be explained by
the fact that, when the proposed methodology is applied, the leakage surrounding the FFC is greatly
mitigated, therefore, the amplitude of the failure harmonic is not affected by the leakage, allowing the
proper measurement of the failure severity.

The amplitude measurements could be used as an indicator of the failure severity. However, the
implementation of a methodology for determining the severity based on the amplitude results would
require a few extra steps. For instance, it is necessary to carry out a considerable number of tests of the
motor operating at healthy conditions. With these tests, the amplitude of the frequencies related to
the failure harmonics at a specific operative frequency must be measured. The mean value of these
amplitudes could be considered as the expected value for the healthy conditions and the maximum
value could be use as the threshold limit for this condition. If the definition of thresholds for different
failure severities is required, it would be necessary to perform tests with the failure conditions and
obtain the mean values to define the boundaries of every threshold. If there exist overlaps in the
amplitude values for different fault severities, this boundary definition cannot be correctly performed,
because there is no certainty in the thresholds. Then, periodical samples of the IM must be acquired and
the amplitudes of the failure harmonics have to be compared with the established ranges to determine
the existence of a failure. The use of periodical samples also allows to visualize the time evolution of a
failure. However, such methodology goes beyond the scope of this work and is left for future research.

5.2. Results for the IM Operating at 20 Hz

Another test is performed for the IM operating at 20 Hz. The same three methodologies of the
previous section are applied: the MCSA, the NF-MCSA, and the GA-MCSA. The conventional MCSA
and the GA-MCSA techniques are applied without any modification. However, in the case of the
NF-MCSA methodology, it is necessary to design a completely different NF. The filter used in the new
test considers a notch frequency and a 0.8 Hz bandwidth. The spectra for the three methodologies at
the three load levels are presented in Figure 5.
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Figure 5. Spectrum for the motor current operating at 20 Hz using (a) MCSA at high load, (b) MCSA
at medium load, (c) MCSA at low load, (d) NF-MCSA at high load, (e) NF-MCSA at medium load,
(f) NF-MCSA at low load, (g) GA-MCSA at high load, (h) GA-MCSA at medium load, and (i) GA-MCSA
at low load.

This time, the conventional MCSA presents difficulties for properly identifying the fault condition
even when the motor operates at high load. It is observed in Figure 5a that the RSH is high enough to
be detected at first sight; on the other hand, the LSH is merged on the spectral leakage and it cannot
be appreciated in the figure. In this particular case, the NF is able to solve the issues related to the
MCSA, allowing the proper identification of both failure harmonics (see Figure 5d). Notwithstanding,
it is observed the effect of the leakage in the neighborhood of the FFC in the range between 18 and
the 22 Hz. The GA methodology allows to perform a better attenuation of the FFC and provides the
smallest range of spectral leakage of the three methodologies, and the most important part is that
both failure harmonics can be easily appreciated in the spectrum of Figure 5g, even when a smallest
number of data points are used. For the case of the IM operating at medium load, the MCSA can
identify the LSH by itself, but the spectral leakage generates a detrimental effect, which causes the
RSH to appear as a gap instead of a peak (see Figure 5b). Here, the remaining two methodologies
(the NF and the GA) solve the problem, allowing the proper identification of both failure harmonics
(Figure 5e,h respectively). However, it is observed that the GA is able to perform a bigger attenuation
than the NF. The worst of all the presented cases occurs when the IM operates at 20 Hz and low
load. In this case, the MCSA cannot provide a reliable result because the amplitudes of the failure
harmonics are so low that they are completely covered by the spectral leakage that surrounds the FFC
(Figure 5c). This time, the NF is not effective for solving the problem, by looking at Figure 5f, it is clear
that the failure harmonics are not visible in the spectrum; therefore, it can be said that the NF-MCSA
methodology experiences problems when the operation frequency and the load are low. Meanwhile,
the GA-MCSA methodology can perform a correct suppression of the FFC, which allows observing the
failure harmonics as two small peaks at their respective frequencies (see Figure 5i). In this sense, it can
be said, that the only methodology that delivers reliable results, regardless of the operating conditions
of the IM, is the GA-MCSA.

It must be said that in this work, the proposed methodology is compared with the use of a static
NF. This technique is selected because it is very common, its implementation is simple, and it provides
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acceptable results in many cases. However, there are some other alternatives similar to NF that could
have also been used. For instance, a more robust approach consists in the use of adaptive NF. These
type of filters contain a preprocessing stage to estimate the required frequency for properly tuning
the NF [36]. The estimated value is selected as the central frequency and it is considered to be the
only frequency that can pass through the filter. Notwithstanding, this is the ideal behavior, but in real
conditions, a narrow frequency band is suppressed. Moreover, the filter time response can become
high due to the estimation process, leading to wrong results in signals with frequency variations.
Another different technique is the phase-locked loop (PLL), which also allows to determine a single
frequency and phase of any signal [37]. The problem with this technique is that it is prone to error
when it operates in unbalanced conditions; moreover, if the amplitude is required, a different technique
must be implemented for detecting it. Although these methodologies could be used to perform a FFC
suppression, the GA is the only methodology that can estimate the three parameters in a single run,
and it suppresses only one frequency component instead of a narrow frequency band and that is why
its use is preferred.

On the other hand, the GA is a heuristic and not a deterministic technique. In this sense, it can
be considered as a grey-box approach where the input–output relationship is modeled through the
objective function which turns out to be a pure sinusoidal wave. This type of approach provides some
benefits compared with other methodologies like ANNs which act as black-box models. The main
issue related to the use of the ANN relies in the fact that there is no model that relates the output with
the input, therefore, the delivered results may present a lack of physical meaning or context, leading
to a high uncertainty in the result interpretation [38]. Additionally, the ANN requires an exhaustive
training process, thus, a huge amount of data from all the conditions under test must be previously
acquired. In this sense, the GA is more suitable in this work because it does not require this training
process. Moreover, the ANN results are more helpful in applications where an automatic classification
is carried. This is a situation that goes beyond the scope of this work. In addition, it has to be said that
there are some other optimization techniques like the global–local optimization technique used in [38]
which can also perform the estimation of the FFC parameters. The global–local optimization technique
fuses the use of a GA algorithm for finding the global optimal with the Quasi-Newton method for
identifying local optimal solutions. One of the aims of this work consists of developing a simple
preprocessing technique. Moreover, for this particular case, only the global optimal is required, thus
the use of a different technique for finding local optimal would only introduce unnecessary complexity
and computational burden.

As in the case of the IM operating at 31 Hz, a total of 15 tests are performed to show the consistency
of the results. The results of the LSH are used for conforming the boxplots of Figure 6. This time, it is
observed that when the MCSA is used, the trend is contrary to what is expected because the highest
amplitudes are measured when the IM operates at low load (see Figure 6a). Additionally, when the IM
operates at medium load, the amplitudes of the LSH fall between 0.04 and 0.061 A, whereas for the
case of the IM operating at high load, the amplitudes appear between 0.017 and 0.041 A. Therefore, all
the amplitudes that describe the medium load fault condition are contained in the group for the high
load condition and it is not possible to discriminate from one group to another.

The NF-MCSA methodology improves the results a little, and the groups are compact, indicating
that the differences among the amplitude measurements are low. However, the highest amplitudes
are presented when the IM operates at medium load, which is not the expected behavior either
(see Figure 6b). In this case, it is observed that the three groups have values in the range comprised
between 0.021 and the 0.023 A, i.e., there exists overlap among the three operative conditions. As
explained before, this problem is originated by the spectral leakage that exists around the FFC.
The leakage affects the amplitude of the failure harmonics, causing the conventional MCSA technique
and the NF-MCSA to not properly identifying the failure severity.
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Figure 6. Boxplots for the amplitude results of the LSH at 20 Hz for the (a) common MCSA technique,
(b) NF-MCSA technique, and (c) GA-MCSA technique.

Finally, by looking at Figure 6c, it is clear that when the GA-MCSA technique is used, the measured
amplitudes behave as expected and, in addition, the amplitudes are smaller than those measured in
the original signal. Moreover, the boxplots do not overlap in the y-axis, and the amplitude of the fault
harmonic can be better measured. Again, it is necessary to mention that these results are achieved due
to the suppression of the FFC performed using the GA. This suppression considerably reduces the
spectral leakage around the FFC, allowing the correct measurement of the amplitude from the failure
harmonics. In this sense, it can be said that another of the important contributions of this work consists
of the development of a technique that reduces the detrimental effects of the spectral leakage in the
vicinity of the FFC.

In order to demonstrate that the proposed methodology also allows to obtain a better grouping in
the amplitudes of the LSH, the intra-cluster distance D(intra), and the inter-cluster distance D(inter) as
defined in [39] are used as features to measure the quality of the groping. The intra-cluster distance
measures the scatter within every group, and the inter-cluster distance measures the separation
between groups. Thus, the best grouping strategy consists of minimizing the intra-cluster distance and
maximizing the inter-cluster distance. These indexes are computed for the three slip levels and for the
two operation frequencies. Table 1 presents the results for the intra-cluster distance applied to groups
resulting from the three different methodologies. It is easy to observe that in all the cases, the lowest
value for the groups correspond to those reported by the proposed methodology. This is a strength
of the GA-MCSA methodology because it implies that the values reported from one measurement
to another are similar. It is also appreciated, that the highest scatter in the data occurs when the
conventional MCSA is applied. This is indicative that, by itself, the MCSA may lead to wrong results.
The NF-MCSA proves to be an intermediate point between the conventional MCSA and the proposed
methodology; it improves the results but it is still affected by the spectral leakage around the FFC.

Table 1. Intra-cluster distance for the amplitudes of the LSH.

Frequency D(intra) (MCSA) D(intra) (NF-MCSA) D(intra) (GA-MCSA)
s = 2% s = 4% s = 6% s = 2% s = 4% s = 6% s = 2% s = 4% s = 6%

31 Hz 3.8 × 10−3 5.0 × 10−3 4.7 × 10−4 2.0 × 10−3 1.1 × 10−3 3.2 × 10−3 2.5 × 10−4 2.9 × 10−4 8.0 × 10−4

20 Hz 1.8 × 10−3 3.0 × 10−3 1.2 × 10−2 3.6 × 10−3 2.4 × 10−3 1.7 × 10−4 1.7 × 10−3 1.6 × 10−3 2.4 × 10−4

The inter-cluster distances are also calculated for the results delivered by the three methodologies
and the obtained data are summarized in Table 2. The term D(inter)

24 represents the inter-cluster distance

between the case for a 2% slip and the case for a 4% slip. On the other hand, the term D(inter)
46 represents

the inter-cluster distance between the case for a 4% slip and the case for a 6% slip. The conventional
MCSA and the NF-MCSA present good separation between the 2% slip and the 4% slip and this situation
is appreciated in the results from Table 2. However, they present a high scatter and, therefore, the



Appl. Sci. 2020, 10, 4160 13 of 17

results for the distance between the 4% slip and the 6% slip are not as good as expected. The GA-MCSA
methodology presents good values for the inter-cluster distance and combined with the low scatter in
the data, it results in the best option for the proper detection of the fault severity.

Table 2. Inter-cluster distance for the amplitudes of the LSH.

Frequency (MCSA) (NF-MCSA) (GA-MCSA)

D(inter)
24 D(inter)

46 D(inter)
24 D(inter)

46 D(inter)
24 D(inter)

46

31 Hz 3.3 × 10−2 5.0 × 10−3 2.4 × 10−2 1.1 × 10−2 1.4 × 10−2 1.6 × 10−2

20 Hz 7.1 × 10−2 4.6 × 10−3 3.0 × 10−3 3.9 × 10−3 1.1 × 10−2 9.6 × 10−3

As an additional analysis, Table 3 presents the computational cost and acquisition time related with
every methodology. All the methodologies are implemented in a personal computer with 8 GB RAM
memory and a microprocessor Intel (R) Core (TM) i7-5500U. It is observed that the fastest technique is
the MCSA. This is a remarkable situation because this technique is also the one that uses the highest
acquisition time. This acquisition time is required because, otherwise, the failure harmonics are not
visible in the spectrum. As a disadvantage of the proposed methodology, it can be mentioned that it is
the one that requires the highest computational burden even though it only works when 10 s of the
signal is in steady state. This is because the GA is an iterative technique, and in this case, a total of
300 iterations are required, i.e., the 10 s of the signal are analyzed a total of 300 times. The NF-MCSA
methodology also works with 10 s of the signal. The computational cost is a little higher than in the
case of the conventional MCSA and it is lower than the one presented by the proposed methodology.
However, the enhancement in the results worth the computational effort; moreover, since the length of
the signal under analysis is not very high, the computational time remains in a tolerable range.

Table 3. Computational cost and acquisition time comparison.

Technique Computational Cost (Seconds) Acquisition Time (Seconds)

MCSA 1.004 20
NF-MCSA 1.520 10
GA-MCSA 10.752 10

At this point, it must be said that the GA-MCSA methodology proved to be an effective tool for
enhancing the identification of BRB on IM operating at steady state. Notwithstanding, these results
cannot ensure that this methodology would lead to the same outcome in a transient analysis. To use the
proposed methodology with transient signals, it must be applied in a piecewise sense. The GA cannot
perform a parameter estimation with only one point, it requires a set of points in order to perform a
proper estimation. Thus, if the signal frequency changes at a rate higher than the one allowed by the
algorithm, the results would be erroneous. In this sense, it is possible that a different methodology is
required to perform a transient analysis and ensure the estimation of instantaneous parameters.

6. Conclusions

The high energy of the FFC can hide the existence of a failure by covering the frequency components
related to the failure. This situation becomes worse when the IM operates at low frequency and load.
The use of a NF can partially solve the problem because it fails when both: the operating frequency and
the load are low. The use of the GA for suppressing the FFC proved to be effective for the detection of
the failure harmonics even when the load and frequency are low. The GA performs a better attenuation
of the FFC, allowing the reduction of the spectral leakage around the FFC. In this sense, the proposed
methodology becomes a powerful tool to enhance the results provided by the methodologies that aim
to detect failure conditions in electric machines when they operate at steady state. In fact, the proposed
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methodology allows identifying interharmonics even in the vicinity of the FFC, which is essential for
accurate broken rotor bar detection in induction motors.
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Nomenclature

ε(t) Signal Error
Φ Phase
Am Amplitude
ANN Artificial Neural Networks
BRB Broken Rotor Bar
DAS Data Acquisition System
f Frequency
f c(t) Estimated Fundamental Component
fFC Frequency of the Fundamental Component
FFC Fundamental Frequency Component
FFT Fast Fourier Transform
fLSH Frequency of the Left Side Harmonic
FPGA Field Programmable Gate Array
fRSH Frequency of the Right Side Harmonic
G1 Best Member of the Current Population
GA Genetic Algorithms
Gc(i) i-th Individual of the Current Population
Gn(i) i-th Individual of the Next Population
i(t) Time Domain Current Signal
Ia Current from phase a
IAE Integral of the Absolute Error
Ib Current from phase b
Ic Current from phase c
IM Induction Motors
J(x) Objective Function
LSH Left Side Harmonic
maxF(x) Maximum value of a fitness function
MCSA Motor Current Signature Analysis
MUSIC Multiple Signal Classification
NF Notch Filters
PLL Phase-Locked Loop
Pm Mutation Probability
RS Residual Signal
RSH Right Side Harmonic
s Induction Motor Slip
VFD Variable Frequency Drive
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