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Abstract

The asymptotic Samuel function generalizes to arbitrary rings the usual order function
of a regular local ring. In this paper, we use this function to introduce the notion of
the Samuel slope of a Noetherian local ring, and we study some of its properties. In
particular, we focus on the case of a local ring at singular point of a variety, and,
among other results, we prove that the Samuel slope of these rings is related to some
invariants used in algorithmic resolution of singularities.
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1 Introduction

Let X be an equidimensional algebraic variety of dimension d defined over a perfect
field k. If X is not regular, then the set of points of maximum multiplicity, Max multy,
is a closed proper set in X. We will denote by max multy the maximum value of the
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multiplicity at points of X. A simplification of the multiplicity of X is a finite sequence
of blow ups,

Ty 2 TL—1

X = Xp X1 Xr-1

X (1.1)
with
max multy, = maxmulty, = --- = maxmulty, , > maxmulty,,

where 7; : X; — X;_1 is the blow up at a regular center contained in Max multy, ;.

Simplifications of the multiplicity exist if the characteristic of k is zero (see [37]),
and resolution of singularities follows from there. Recall that Hironaka’s line of
approach to resolution makes use of the Hilbert—Samuel function instead of the mul-
tiplicity [20, 21]. The centers in the sequence (1.1) are determined by resolution
functions. These are upper semi-continuous functions

fX,’ :Xi - (F, 2)
¢ fx, (&)

and their maximum value, max fy;, achieved in a closed regular subset Max fx, C
Max multy;, selects the center to blow up. Hence, a simplification of the multiplicity
of X, X « X, is defined as a sequence of blow ups at regular centers.

X=Xy« X| < -« X|. (1.2)
so that
max fx, > max fx, > --- > max fx,,
where max fy; denotes the maximum value of fx, fori =0,1,..., L.

Usually, fx is defined at each point as a sequence of rational numbers. The first
coordinate of fy is the multiplicity, and the second is what we refer to as Hironaka’s

order function in dimension d, ord@, where d is the dimension of X. The function

ordgf) is a positive rational number. At a given singular point ¢ € X, fx(¢) would
look as follows:

fx(©) = (mult, (Ox ), 0rd (©),...) e Nx Q, (1.3)

where multy, (Ox ) denotes the multiplicity of the local ring Oy  at the maximal

ideal m;. The remaining coordinates of fx (¢) can be shown to depend on ordgf)(g“ )
(see [16, Theorem 7.6 and §7.11]), thus, we usually say that this is the main invariant
in constructive resolution. Therefore, the last set of coordinates can be though as a
refinement of the function ordgf). As we will see, the function ordg?) can always be
defined if k a perfect field.
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The asymptotic Samuel function and invariants of...

Example 1.1 Let k be a perfect field, let S be a smooth k-algebra of dimension d and
define R = S[x] as the polynomial ring in one variable with coefficients in S. Suppose
X is a hypersurface in Spec(R) of maximum multiplicity m > 1 given by an equation
of the form

@) =x"+ax" '+ +a, e Skl

Set B : Spec(R) — Spec(S) and let { € X be a point of multiplicity m. Then one can
define a Rees algebra, R, on S, which we refer to as elimination algebra, that collects
information on the coefficients a; € S,i = 1, ..., m. Hironaka’s order function at the
point ¢, ordgf) (¢), is defined using R (see Section 6). If the characteristic of the field
k does not divide m, then, after a translation on the variable x, we can assume that the
equation is on Tschirnhausen form:

"+ ady(xY" 2 4 4 d), € S[x].

And, in such case, it can be shown that:

Ve (@) } (14)

2,00y 1

where vg(;) denotes the usual order at the regular local ring S, . As it turns out,
with the information provided by the elimination algebra R, which is generated by
weighted functions on the coefficients of f(x), one has all the information needed to
find a simplification of the multiplicity, at least in the characteristic zero case.

However, if the characteristic of the field is p, and if p divides m, then, in general, the
equality (1.4) does not hold (even if, by chance, the polynomial were in Tschirnhausen
form). Philosophically speaking, the elimination algebra R collects information about
the coefficients of f(x), but somehow falls short in collecting the sufficient amount
of information when the characteristic is positive. This problem motivated in part
the papers [5, 6]. There, the function H-ordgf) was introduced by the first author in
collaboration with O. Villamayor. In [4], this function played a role in the proof of
desingularization of two dimensional varieties.

To give some insight on how H-ordg?) is defined, suppose, for simplicity, that
m = p* for some £ € Zs1, f(x) = xP' +al)c"’e_l +---+a, € S[x],andlet { bea
point of multiplicity p*. Then it can be proved that

v a;
ord gy < Oy e
i
But there are examples where
V() (@pe) d
—Zp < ordg()(g'),
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and the inequality remains even after considering translations of the form x’ = x + s,
s € Sq, where ¢ = mg(). This pathology is part of the reasons why the resolution strat-
egy (that works in characteristic zero) cannot be extended to the positive characteristic
case.

The previous discussion motivates the definition of the slope of f(x) at ¢ as:

Va(o)(@pe)
p€

SI(f(x))(¢) = min { : ordﬁé”(;)} :

Changes of variables of the form x = x’ + s with s € Sy produce changes on the
coefficients of the equation:

FO =0 a4 (1.5)

which may lead to a different value of the slope. However, it is possible to construct
an invariant from these numbers by setting:

H-ord (¢) := sup{SI(f(x +)(©)}.

s€Sq

Moreover this supremum is a maximum since there is a change of variables as in (1.5)
for which

Vp(©) (@)
H-ordy (¢) = min {T” ordy’ () 1

H—ordgg) can be defined for any hypersurface with maximum multiplicity m, even
when m is not a p-th power (see Sect. 7). Observe that the previous discussion takes
care of the case in which X is locally a hypersurface at a singular point ¢, since,
after considering a suitable étale neighborhood of X at ¢, it can be assumed that the
equation defining X can be written as a polynomial in one variable with coefficients
in some regular ring S.

When X is an arbitrary algebraic d-dimensional variety defined over a perfect
field, H-ordg?) can also be defined (in étale topology) using [5, 6] and Villamayor’s
presentations of the multiplicity in [37]. In the latter paper it is proven that, locally,
in an étale neighborhood of a closed point £ of maximum multiplicity m > 0, one
can find a smooth k-algebra S of dimension d and polynomials in different variables
x; with coefficients in S, f;(x;) € S[x;], of degrees my, ..., m,, with the following
property: If we consider

J1(x1), ..., fe(xe) € R = S[xy1, ..., Xc], (1.6)

then each f;(x;) defines a hypersurface of maximum multiplicity m;, H; = {f; = 0},
so that, X C Spec(R) and

Max multy = N;Max mult . 1.7
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In fact, the link between X and the hypersurfaces H; is stronger as we will see in
Sect. 4.

As in the hypersurface case, Hironaka’s order function, ordgf), is defined by con-
structing an elimination algebra, R on S, again using certain weighted functions on
the coefficients of the polynomials f;(x;) (see Sect. 6). And, in the same way, we have
that

H-ord (¢) = min H-ord' (¢).
i 1

This approach will allow us to work in a situation very similar to the hypersurface
case. Details and definitions will be given in Sects. 7 and 8. The precise statement of
Villamayor’s result is given in Theorem 8.1, because it will be used in the proof of our
results.

Results
From our previous discussion, the value H—ordgf) (¢) codifies information from the
coefficients of the polynomials in (1.6) that only depends on the inclusion S C R.
Observe that the definition of the function H-ordﬁ?) requires the use of local (étale)
embeddings, the selection of a sufficiently general finite projection to some smooth
scheme, and the construction of a local presentation of the multiplicity as in (1.7).
Neither of these choices is unique. As a consequence, some work has to be done to
show that the values of the function do not depend on any of these different choices.
In this paper we show that the value H-ordgf) (¢) can be read from the arc space of X
combined with the use of information provided by the asymptotic Samuel function at
the maximal ideal of the local ring at ¢. In particular, no étale extensions and no local
embeddings into smooth schemes are needed: the information is already present in the
cotangent space at ¢, m; /m?, and the space of arcs in X with center at ¢, £(X, ¢).

More precisely, on the one hand, the value ordg?) (¢) can be read studying the Nash
multiplicity sequences of arcs in X with center ¢ (this was studied in [9] by the last
two authors in collaboration with B. Pascual-Escudero).

On the other hand, studying the properties of the asymptotic Samuel function, we
came up with the notion of the Samuel slope of a local ring Ox r, S-SI(Ox ) (see
Definition 3.3). For a singular point, $-S1(Ox ) > 1, and we will make a distinc-
tion depending on whether S-S1(Ox ;) = 1 (non-extremal case) or S-SI(Ox ) > 1
(extremal case). Actually, the previous distinction can be made after analyzing prop-
erties of the cotangent space m, /m?. A combination of these pieces of information

gives us enough input to compute H-ordg?). Our results say that
H-ord{(¢) = min{S-SI(Ox ), ord{ (2)},

but more precisely, we can say more:

Theorem 8.12. Let X be an equidimensional variety of dimension d defined over a
perfect field k. Let ¢ € X be a point of multiplicity m > 1. Then:
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o If S-SI(Ox ;) =1, then
1 = 8-SI(Ox ) = H-ord (2) < ord? (2).

In addition, if ¢ is a closed point then also ordg?) ) =1
o If S-SI(Ox,¢) > 1, then

H-ord(¢) = min{S-SI(Ox¢), ord¥ (2)}.

We give an idea of the meaning of this result in the following lines. When the
characteristic is zero, the description of the maximum multiplicity locus of X in (1.7)
goes far beyond that equality. In fact, it can be proven that to lower the maximum
multiplicity of X it suffices to work with the elimination algebra ‘R (which is defined on
a smooth scheme of dimension d). In other words, a simplification of the multiplicity
of the d-dimension variety X becomes a problem about finding a resolution of a
Rees algebra defined on a smooth d-dimensional scheme (see Sects. 4 and 6). If
ordgf)(g) = 1, then this indicates that, either the multiplicity of X can be lowered
with a single blow up at a regular center, or else, a simplification of the multiplicity
of X is a problem that can be solved using certain Rees algebra definedina (d — 1)-
dimensional smooth scheme (see Sect. 5.1 for details). Thus, our original problem is,
in principle, simpler to solve. And the theorem says that the condition ordgf) ) =1
is already encrypted in m; /m?.

The second part of the theorem says that the relevant information from the coef-
ficients of the polynomials in (1.6), which, in general, only exists in a suitable étale
neighborhood of the point, can already be read through the Samuel slope of the orig-
inal local ring at the singular point and the sequences of Nash multiplicities of arcs
with center the given point.

Organization of the paper

Facts on the asymptotic Samuel function are given in Sect. 2, and in addition, we
study the behavior of this function when consider certain finite extension of rings
(Proposition 2.10). In Sect. 3 we define the notion of the Samuel slope of a local ring,
and we study his behavior under étale extensions (Propositions 3.10 and 3.11). Rees
algebras and their use in resolution of singularities are studied in Sects. 4, 5, and 6.
The function H-ordgf) is treated in Sect. 7. The proof of the main result is addressed
in Sect. 8, here our results from Sect. 3 are needed.

2 The asymptotic Samuel function

The asymptotic Samuel function was first introduced by Samuel in [30] and studied
afterwards by D. Rees in a series of papers [26-29]. Thorough expositions on this
topic can be found in [24, 32], see also [8] for a generalization to arbitrary filtrations.
We will use A to denote a commutative ring with 1.
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Definition 2.1 A function w : A — R U {c0} is an order function if

(i) w(f +¢) = minfw(f), w(g)}, forall f, g € A,
(i) w(f - g) = w(f) +w(g), forall f, g € A,
(iii) w(0) = oo and w(1) = 0.

Remark 2.2 [24, Remark 0.3] If w is an order function then w(x) = w(—x) and if
w(x) # w(y) then w(x + y) = min{w(x), w(y)}.

Example 2.3 Let I C A be a proper ideal. Then the function v; : A — R U {oo}
defined by

vi(f) :=sup{m e N| f € I"}

is an order function. If (A, m) is a local regular ring, then vy, is just the usual order
function.

In general, for n € N. 1, the inequality v;(f") > nv;(f) can be strict. This can
be seen for instance by considering the following example. Let k be a field, and let
A = k[x,y]/(x? — y3). Set m = (X,7). Then vy (¥) = 1, but vy (x?) = 3. The
asymptotic Samuel function is a normalized version of the previous order that gets
around this problem:

Definition 2.4 Let I C A be a proper ideal. The asymptotic Samuel function at I,
vr ¢ A — R U {o0}, is defined as:

B(f) = lim A @.1)

00 n

It can be shown that the limit (2.1) exists in R> U {oo} for any ideal I C A (see
[24, Lemma 0.11]). Again, if (A, m) is a local regular ring, then vy, is just the usual
order function. As indicated before, this is an order function with nice properties:

Proposition 2.5 [24, Corollary 0.16, Proposition 0.19] The function vy is an order

Sfunction. Furthermore, it satisfies the following properties for each f € A and each
reN:

@ v (f") = rlﬁl(f);
(i) v (f) = ;171(f)-
The asymptotic Samuel function on Noetherian rings

When A is Noetherian, the number v;(f) measures how deep the element f lies in
the integral closure of powers of /. In fact, the following results hold:

Proposition 2.6 [32, Corollary 6.9.1] Suppose A is Noetherian. Then for a proper
ideal I C A and everya € N,

19 ={f € R|v/(f) = a}.
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Corollary 2.7 Let A be a Noetherian ring and I C A a proper ideal. If f € A then
_ a b 5o
)z = frels

The previous characterization of v; leads to the following result that give a valuative
version of the function.

Theorem 2.8 Let A be a Noetherianring, andlet I C A be a proper ideal not contained
in a minimal prime of A. Let vy, ..., vs be a set of Rees valuations of the ideal 1. If
f € A then

El(f)zmin{ lt((];)) —1,...,s}.

Proof See [32, Lemma 10.1.5, Theorem 10.2.2] and [31, Proposition 2.2]. |

Remark 2.9 Let A be a Noetherian reduced ring, and let / C A be a proper ideal not
contained in any minimal prime of A. Set X = Spec(A) and let X be the normalized
blow up of X at the ideal /. Then, the sheaf of ideals / O is invertible and, since X is
normal, there is a finite number of reduced and irreducible hypersurfaces Hy, ..., Hy
in X, and there exists an open set U C X, such that X\U has codimension at least 2
such that:

10y = I(H)" -+ I(H)"|u

for some integers ci, ..., ¢g € Z=1. Denote by v; the valuation associated to Oy hp
where h; is the generic point of H;. Then note that a subset of {vy, ..., v¢} has to be
a Rees valuation set of 1. Therefore, if f € A then

DI(f)zmin{ ((];))| _1,...,5}.

See [32, Theorem 10.2.2] and [31, Theorem 2.1, Proposition 2.2].

As an application of Remark 2.9 we can prove the following result about the
behavior of the v function on products of elements. This will be used in the proof
of Theorem 8.12.

Proposition 2.10 Let A — C be ring homomorphism of Noetherian rings, where A

is regular and C is reduced. Let q € Spec(C) and n = q N A. Assume that nC is a
reduction of q C C, and that A/wis regular. If a € A and f € C then:

vg(a) = vn(a), and vg(af) = vq(a)+ vg(f).
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Proof Set X = Spec(C) and Z = Spec(A). Let X be the normalized blow up of X at
the ideal q and let Z be the blow up of Z at n. Then there is a commutative diagram

N <—X
N|-e><|

(see [3, Lemma 4.2]). The exceptional divisor £ of the blow up Z — Z defines only a
valuation vg in A. The exceptional divisor of X — X defines valuations vy, .. ., v; as
in Remark 2.9. Note that every valuation v; is an extension of vy to C. Then ifa € A:

vo(a) _ vi(a) _
vo(m)  vi(n)

vn(a) = vg(a) foralli=1,..., ¢

On the other hand, for eachi € {1, ..., ¢},

viaf)  vi@ | ulf) v (f)
= = vq(a) + .
vi(@) v i) vi (q)
And, again, by Remark 2.9 be have the required equality. O

2.11 Notation

Along this paper we will interested in computing the function order v at points ¢ in a
variety X over a field k. We will be distinguishing between v, and vy, where p, is the
prime defining ¢ in an affine open set of X. In the first case, for an element f € Ox ¢,
V¢ (f) is computed using the function v for the local ring Ox  at the maximal ideal
m; = p;Ox ;. In the second case, for an element f € B, where Spec(B) C X is an
affine open containing ¢, vy, is computed using the function v for the ring B at the
prime ideal p;. Note that v (f) > vy, (f). If the local ring Oy ¢ is regular then we
will use the standard notation v, for the usual order function, and then v, = V.

3 The Samuel slope of a local ring

Let (A, m) be alocal Noetherian ring. We will focus on some elements in the associated
graded ring Gr, (A) which are nilpotent. They will be used to define the Samuel slope
of the local ring.

3.1 Degree one nilpotents in Gr,, (A) [24, §0.7, §0.21 and §0.22]
For a local ring (A, m), consider
mED = (g e A|bm(g) =1}, and mEVi={geA|in(g) > 1}
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Note that m=D and m™D are ideals in A. There is a natural morphism of k(m)-vector
spaces,

Am i m/m? — mED/mED
f+m? 5 An(f+m?) = f+mED,

whose kernel is the subspace generated by the degree one nilpotents of Gry, (A).

Remark 3.2 If A is a local regular ring, then vy, = vy, is the usual order function
and Ay is an isomorphism. If A is not regular, then we have that dimy(y,) m/m? =
d + t, with t > 0 being the excess of the embedding dimension of (A, m). Note that
d = dim(A) = dim(Gry(A)) = dim(Gry (A))red. Therefore, if x1, ..., x44: € M
is a minimal set of generators, then there are at least d elements x;,, ..., x;,, such
that their classes in Grm(A) are not nilpotent. This means that Viy (x;;) = 1, for
j=1...,d.

Assume that Vi (x1) = --+ = V(xg) = 1. The minimum of Vi (xg41), ...,

Vm(x4+:) defines a slope with respect to the chosen generators. The Samuel slope is
the supremum of all these possible coordinate dependent slopes.

Definition 3.3 Let (A, m) is a Noetherian local ring of dimension d and embedding
dimension d + ¢, with r > 0. Let x = {x1,...,x44/} C m be a minimal set of
generators of m. We define the slope with respect to X as

SIx(A) := min{Tm (Xg1); - - -, Vin (K0}

The Samuel slope of the local ring A is
S-SI(A) := sup Slx(A) = sup {min {Vm (Xa+1), - - ., Vm (Xa41)}}
X X

where the supremum is taken over all possible minimal set of generators x of m.
Example 3.4 Let R = k[x1, x2, X3)(x, x0,15)» Set A = R/(x3 + xJ, x + x]), and let
m C A be the maximal ideal. Then Vi (x1) = 1, Vi (x2) = 5/2 and Vi (x3) = 7/2. It
can be checked that S-S1(A) = 5/2.

Remark 3.5 Let I' be the set of all possible minimal ordered sets of generators x of m.
Forx = {x1,...,xqg4+} € [ let a(x) := #{i | Vm(x;) > 1}. Note that

ro i= dimgm) ker(Am) = max {a(x) | x € I'}.

Since, by Remark 3.2, in any set of minimal generators there are at least d elements
with vy, (x;) = 1, we have that

0< dimk(m) ker(Am) <'t.
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Definition 3.6 Let (A, m) be a Noetherian local ring. Suppose that the embedding
dimension of (A, m) is d + t with + > 0. We say that (A, m) is in the extremal
case if dim ker(Ay,) = t. Otherwise we say that (A, m) is in the non-extremal case.
If dimker(Ay) = ¢, then we say that a sequence of elements yj,...,y; € mis
a Am-sequence if their classes y; € m/ m?2 form a basis of ker(Aw). In other words,
Y1, ..., ¥r € misaipy-sequence if their classes in Gry, (A) are nilpotentand 1, . . ., ¥
are part of a minimal set of generators of m.

Remark 3.7 Let (A, m) be a Noetherian local ring. Suppose that the embedding dimen-
sion of (A, m) is d + ¢ with r > 0. We can express the Samuel slope in terms of
Am-sequences as follows:

o If dimker(Ayn) < t (non-extremal case), then S-S1(A) = 1;
e If dimker(Ay,) = ¢ (extremal case), then

S-SI(A) = sup {min (v (y1), ... Vm (¥},

Am-sequence
where the supremum is taken over all the A, -sequences in the local ring (A, m).

Remark 3.8 Suppose that X is an equidimensional variety of dimension d defined over
a perfect field k, and { € X a (non-necessarily closed) point of multiplicity m > 1.
Setd; = dim(Ox ;) and d; + t; = dimy ) (mg /m?) be the embedding dimension at
¢, where k(¢) denotes the residue field of Ox ;. The Samuel slope of X at ¢ is the
Samuel slope of the local ring Oy ¢, and a A;-sequence will be a Am, -sequence.

The Samuel slope and étale extensions

To prove Theorem 8.12 we will have to work in an étale neighborhood of a given
point. To be able to use étale extensions in our arguments, we will first prove that the
dimension of ker(A; ) is an invariant under such extensions. From here, it follows that
if X’ — X is an étale morphism mapping ¢’ € X' to { € X then S-SI(Ox¢) <
S-SI(Ox- ¢). We do not know if the equality holds in general. However we can prove
it for some special cases, which will be enough for our purposes.

Lemma3.9 Let ¢ : (A, m) — (A’,w) be an étale homomorphism of Noetherian
local rings. Then

rm = dimygm) ker(Am) = roy = dimg ) ker(Ay).
Proof Let N (resp. N') be the nilradical of Gry, (A) (resp. of Gry(A’)). Note that

Gry (A" = k(m') ® Gry, (A) is an étale extension of Gry, (A). Therefore we have that
N’ = N Grpy (A’). The lemma follows since ker(Ay) = (N 4+ m?)/m?. O

Proposition 3.10 Lerp : (A, m) — (A, w') be an étale homomorphism of Noetherian
local rings. If k(m) = k(w), then

S-SI(A) = S-SI(A)).
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Proof Let d be the Krull dimension of A. Suppose that dimy () m/m? = d + ¢, with
t > 0. By Lemma 3.9, the result is immediate if dim ker(Ay,) < ¢, and in fact, in this
case, the hypothesis k(m) = k(m’) is not needed.

Suppose now that dim ker (A,) = 7. Since k(m) = k(m), it follows that Gryy, (A) =
Gry(A'). Observe that if 8’ € m’ then, for each n € N, there exists some p, € m such
that &’ — p,, € (m/)". This means that there is some n > 0 such that vy, (0,) = Vi (07).

From here we can conclude that given a A/-sequence 6}, ..., 6/ € m’ we can always
find 61, ..., 6; € m such that :
e 01,...,0;is a Ly-sequence of (A, m) and

o Im(0;) = b (0) fori =1,...,1.

The result now follows by the definition of the Samuel slope and Remark 3.7. O

The following result will allow us to compare the Samuel slope of a local ring, at a
non closed point of a variety, before and after an étale extension (at least under some
special assumptions). This will be used in the proof of Theorem 8.12.

Proposition 3.11 Let (A, m) be a formally d-equidimensional local Noetherian ring.
Let p C A be a prime ideal such that the quotient ring A/p is a (d — r)-dimensional
regular ring, with r > 0, and mult, (A) = mult,gAp (Ap) = m > 1. Suppose that:

o The excess of embedding dimension of (A, m) is t and coincides with the excess
of embedding dimension of (Ap, pAp);
e Both (A, m) and (Ay, pAyp) are in the extremal case.

Let ¢ : (A, m) — (A’, ') be an étale homomorphism of local rings, and p’ C A’ be
a prime ideal such that p' N A = p. Assume that:

o k(m) = k(m');
o There is Ayy-sequence at A', y|, ..., y/, that is also a )‘p’A;/ -sequence.

Then there is a )»pAp -sequence at A, y1, ..., ¥, such that:
min{Vp ()} = min{vy ()}, and  min{vpa, (7)) = min(vy oy ().
In particular S-S1(Ap) > min; {Vy, 4, )}
p

Proof We divide the proof in three steps:

Step 1 We claim that there are elements yi, ..., yr, Yr+1, ..., ya € A’ such that
m' = (yi,....va. v and P = (v, oLy vl ).
To prove the claim observe first that A’ := A’/p’ is a regular local ring of dimen-
sion (d — r). Therefore, we have that M := w'/p’ = (J,,,...,¥,) for some

Vrtls -2 Yd € A’. Thus
w =p" + (Vits . Ya)s
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where y,41,...,yq € A’ are liftings of ¥, 4, ..., y,. Notice that Vyy(y;) = 1 for
i =r+1,...,d (because this is so at A’). Since y/ € p and vy (y/) > 1, we should
be able to find r elements, yq, ..., y, inp’, with D (y;) = 1 and so that,

w =y, va) YD)

Now we have that,

/

(ylv"'vyr)+<yl/v""yt/>Cp'

To see that the last containment is an equality it suffices to prove that q :=
(1 oy Yr) +(¥{, ..., ¥/) is prime and that it defines a (d — r)-dimensional closed
subscheme at Spec(B’). But this is immediate since

d —r =dim(A'/p’) < dim(A'/q) <d —,

where that last inequality follows because m’/q is generated by classes of y, 11, ..., y4.
Step 2 Consider the surjective morphism of graded k(m’)-algebras:

D= @ p" W T Tyl — ¢ =@ m"/m" ——o.
n>0 n>0
where the T; are variables mapping to the class of y; in m//m’z, fori=r+1,...,d.
We claim that
Nil(®") = ([y{lo’, - [¥/12), (3.1

where [y/]o’ denotes the class of y/ in p’/p'm’ fori =1,...,, and that
Nil(€') = ([y{ler. - .- V1) (3.2)

where [y/]¢’ denotes the class of y/ in w /m' fori=1,...,1.
To prove the claim, consider the ring of polynomials in d variables over k(m’)

localized at the origin, T := k(m')[x1, ..., Xql(x,....x,)» and the morphism of k(m’)-
algebras,
T =km)xt, ..., Xalxy,ng) ———= A’ (3.3)
X; t Yi,
(here we are using the notation from step 1). Setting n := (x1,...,x4) C T, the

previous morphism induces another morphism of k(m’)-algebras between the graded
rings, Gry (T') and Gryy (A7),

T = Groy(T) — & Groy(A) = € (3.4)

[xi]nt lyvili,
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where [x;]1 (resp. [y;]1) denotes the class of x; at n/n2 (resp. m//m’z) fori=1,...,d.
Via this morphism, Gr,/(A’) is a finite extension of Gr, (T') (here we use the fact that
the y/ define nilpotents at Gry, (A")).

Now setb := (x1, ..., x;) C T.Then we have the following commutative diagram
of graded rings:
D = (&) p/n/p/nm/[Tr+1, RN Td] v ¢ = ® m/n/m/i’l+1 —
n=0 n>0
! -
= @ b /b"n[Ton, .. Ty —— > T = @ n"/u"t — 0,
n>0 n>0

By [25, §5, Theorem 5], ker(+/) is nilpotent. Observe that ¢ is an isomorphism and
that ®©’ is a finite extension of § (here we use the fact that each [yl./ ] is nilpotent at
¢’ and that ker (1) is nilpotent: hence each [y/]o- is nilpotent at ®"). Thus

(rilor, -, [y/1o) CNIl(®") and ([y{le, ..., [¥/1er) C Nil(€).
To check that the containments are equalities it suffices to observe that
D' Nyilors - o) =F and C/ylor,.... [¥]o) =~ F.

Step 3. Consider the commutative diagram,

D= @ g W T @ = @ w0
n>0 220

9 = @pn/pnm[Tr_H,...,Td]w%_@:: @m"/m"+1*>07

nz0 n>0

paying attention to the sequence for the n-th degree part from ©’ and D:

'l

T~

n n 6" n n n” n
(D' = o p" ' — " [ "

| j

(D], = p"/p'm — 2 m" /p"m — > m" /m" 0

m/n+1 20

[Vl
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Now, foreachi € {1, ..., t},choose [k; 1]1 € m/pmsothatm([«; 1]1) = [)/i/]gf €

m/m? = m'/m’%. Then if [¥/11 denotes the class of y/ in m’/p'm’, we have that
[¥/11 — u(lki,1]1) € ker(w]) = € (ker(y)). Notice that from Step 2 and [25, §5,
Theorem 5], it follows that ker(zr’) C ([y{]l, N7 IOR

Thus, selecting ;1 € A as some lifting of [«; 1]; we have that

Vi — ki1 € (V- V) Fain

for some «; » € p'm’. Notice that it follows from here that k; | € p.
Since ;5 € p'm’ C m’2 we now choose [ki2]o € m?/p*m so that

(ki 212) = [ai 2le € m/m® = m'/m”.
Then
[einla — ©([ki2l2) € ker(mry) = € (ker ¥3).
And, selecting some lifting «; » € A of [«; 2]2, we have that
@i —Ki2 € (Vs V) + i3

with ;3 € p/ 2. From here it follows that ki 2 € p. Iterating this procedure, we find
that

vl — (kin+ kit ...+ kin) €Y. V) Fin
with a; , € p""m’, and «; j € p. Taking n > 0, and setting
Vi =Ki1l+...+tKin

we have that y; e pfori =1, ..., ¢, that:

..........

yenns =l,.,0 L~ p ¥ =1,

and that

..........

In particular, VpA, (yi) > land vy (y3) > 1 fori =1, ..., t. By construction,
vile = [ki1le = [¥/]e
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from where it follows that yq, . .., ¥, € mformboth a A, -sequence and A,/-sequence.
We also have that

m/= (YI,-H,)’d)‘i‘(Vl,-uth), and that ()71,~-~7)’r)+<3/1,~--73/t) Cp/

To show that the last inclusion is an equality we can argue as in Step 1, to check that

A//(<)’1»-~-sYr> + <y19"'17/t>)

is a (d — r)-dimensional regular local ring. Thus {y1, ..., ¥, 1, ..., ¥} form a min-

imal set of generators for p’A;, C A;J,, hence y1, ...,y € p forma i, 4 -sequence
p

and therefore a A, A, -Sequence. O

4 Rees algebras and their use in resolution

The stratum defined by the maximum value of the multiplicity function of a variety can
be described using equations and weights [37]; and the same occurs with the Hilbert-
Samuel function [22]. As we will see, Rees algebras happen to be a a suitable tool to
work in this setting, opening the possibility to using different algebraic techniques.
We refer to [17, 36] for further details.

Definition 4.1 Let A be a Noetherian ring. A Rees algebra G over A is a finitely
generated graded A-algebra, G = @leN I wl c A[W], for some ideals I; € A,
I € Nsuch that Ip = A and ;I; C Iy}, forall [, j € N. Here, W is just a
variable to keep track of the degree of the ideals /;. Since G is finitely generated, there
exist some fi,..., fr € A and positive integers (weights) ny, ..., n, € N such that
g =A[fAW™, ..., fW"]. The previous definition extends to Noetherian schemes
in the obvious manner.

In the following lines, we assume that G = @;>01; W! is a Rees algebra defined on
a scheme V that is smooth over a perfect field k (whenever the conditions on V are
relaxed it will be explicitly indicated). If we assume V to be affine, then we will write
V = Spec(R).

The singular locus of G, Sing(G), is the closed set given by all the points { € V
such that v (/;) > [, VI € N, where v, (/) denotes the order of the ideal / in the
regular local ring Oy . If, locally, G = R[ /iAW", ..., f,W"], then Sing(G) =
{¢ € Spec(R) | v (fi) = ni, i =1,...,r} CV (see [17, Proposition 1.4]).

Example 4.2 Suppose that X C Spec(R) = V is a hypersurface with I(X) = (f).
Letm > 1 be the maximum multiplicity at the points of X. Then the singular locus of
G = R[fW™]is the set of points of X having maximum multiplicity m. This idea can
be generalized as follows. Suppose X is ad-dimensional variety over a perfect field, and
let max multy be the maximum value of the multiplicity at points of X, Multy. Then
as, explained in the Introduction, using the polynomials in (1.6) we have that if G :=
Ov[fiW™, ..., feW™], then Sing(G) = Max multy, = ﬂ;zlwmultmzo}.
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The precise statement of this result will be given in Sect. 8, since it will play a central
role in the proof of Theorem 8.12.

In the previous example, the link between the closed set of points of worst singu-
larities of X and the singular loci of the corresponding Rees algebras is much stronger
than just an equality of closed sets Sing(G) = Max multy. In particular, by defining
a suitable law of transformations of Rees algebras after a blow up, we can establish
the same link between the closed set of points of worst singularities of the strict trans-
form of X, and the singular locus of the transform of the corresponding Rees algebra
(at least if the singularities of X have not improved). This motivates the following
definitions.

Definition 4.3 Let G be a Rees algebra on a smooth scheme V. A G-permissible blow

up, V < V), is the blow up of V at a smooth closed subset ¥ C V contained in
Sing(G) (a permissible center for G). We use G| to denote the (weighted) transform
of G by 7, which is defined as G; := @,y 11,1 W!, where I; | = 1Oy, - I(E)~!, for

[ € N and E the exceptional divisor of the blow up V Zv.

Definition 4.4 Let G be a Rees algebra over a smooth scheme V. A resolution of G is
a finite sequence of blow ups

] 2 L

V=V Vi Vi 4.1
Gg=20o Gi gL

at permissible centers ¥; C Sing(G;), i = 0,..., L — 1, such that Sing(G;) = 9,
and such that the exceptional divisor of the composition Vy <— Vi is a union of
hypersurfaces with normal crossings.

Remark 4.5 The Rees algebras of Example 4.2 are defined so that a resolution of
the corresponding Rees algebra, G (4.1), induces a sequence of blow ups on X, that
ultimately leads to a simplification of the multiplicity of X as in (1.1). Notice that for
these sequences Sing(G;) = Max multy,, fori =0,1,..., L.

Resolution of Rees algebras is known to exists when V' is a smooth scheme defined
over a field of characteristic zero [20-22]. In [7, 33] different algorithms of resolution
of Rees algebras are presented (see also [15, 16]). More details will be given in the
next section.

4.6 On the representation of the multiplicity by Rees algebras

In addition to permissible blow ups, there are other morphisms that play a role in
resolution. These are involved in the arguments of Hironaka’s trick, and they are
used to justify that the resolution invariants are well defined [10, §21]. Some of these
invariants will be treated in the following sections. Apart from permissible blow ups,
these morphisms are multiplications by an affine line or restrictions to open subsets.
A concatenation of any of these three kinds of morphisms is what we call a local
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sequence. Therefore, for a given Rees algebra G defined on a smooth scheme V, a
G-local sequence over V is a sequence of transformations over V,

Tl TL—1

(V =V0.G = Go) <—2— (V1,G1) (Vi.Gr), (42

where each 7; is either a permissible blow up for G; C Oy, [W] (and G;11 is the
transform of G; in the sense of Definition 4.3), or a multiplication by a line or a
restriction to some open subset of V; (and then G, is the pull-back of G; in V;1). If
we assume that sequence (4.1) is a G-local sequence over V (instead of just a sequence
of permissible blow ups), with G as in Example 4.5, then the equality Max multy, =
Sing(G;) still holds for eachi = 1, ..., L — 1. Because of this fact we say that the
pair (V, G) represents the closed set Max multy, since there is such a strong link
between the two closed sets Sing(G;) and Max multy, along the sequence. The same
can be said about the representation of the Hilbert-Samuel function in [22]. See [14]
for precise definitions and results on local presentations.

4.7 Uniqueness of the representations of the multiplicity

The Rees algebra of Example 4.2 is not the unique representing Max multy. To see
this, we consider two operations:

(i) Rees algebras and integral closure Two Rees algebras over a (not necessar-
ily regular) Noetherian ring R are integrally equivalent if their integral closure in
Quot(R)[W] coincide. We use G for the integral closure of G, which can be shown to
also be aRees algebra over R [11, §1.1]. It is worth noticing that for a given Rees alge-
bra G = @; ;W' there is always some integer N such that G is finite over R[/y wN]
(see [17, Remark 1.3]).

(ii) Rees algebras and saturation by differential operators Let 8 : V — V' be
a smooth morphism of smooth schemes defined over a perfect field k with dim V >
dim V’. Then, for any integer s, the sheaf of relative differential operators of order

at most s, Diffsv/v,, is locally free over V [18, (4) § 16.11]. We will say that a sheaf

of Oy-Rees algebras G = @[, W' is a B-differential Rees algebra if there is an
affine covering {U;} of V, such that for every homogeneous element f W" € G and
every A € Diffsv/v,(U,-) with s < N, we have that A(f)WY~* e G (in particular,
Iiy1 C I; since Diff(‘), v C Diff %, /V,). Given an arbitrary Rees algebra G over V
there is a natural way to construct a S-relative differential algebra with the property
of being the smallest containing G, and we will denote it by Diffy,y/(G) (see [35,
Theorem 2.7]). Relative differential Rees algebras will play a role in the definition of
the so called elimination algebras, see Sect. 6.

We say that G is differentially closed if it is closed by the action of the sheaf
of (absolute) differential operators Diffy ;. We use Diff (G) to denote the smallest
differential Rees algebra containing G (its differential closure). See [35, Theorem 3.4]
for the existence and construction.

It can be shown that Sing(G) = Sing(G) = Sing(Diff(G)), (see [36, Proposition
4.4 (1), 3)]). In addition, it can be checked that if G represents Max multy as in
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Example 4.2, then the integral closure of Diff(G) is the largest algebra in V with
this property. The previous discussion motivates the following definition: two Rees
algebras on V, G and H, are said to be weakly equivalent if: (i) they share the same
singular locus; (ii) any G-local sequence is an H-local sequence, and vice versa, and
they share the same singular locus after any G-(respectively H-)local sequence. It
can be proven that two Rees algebras G and H are weakly equivalent if and only
if Diff (G) = Diff(H) (see [11, 23]), and, in particular, a resolution of one of them
induces a resolution of the other and vice versa.

5 Algorithmic resolution and resolution invariants

In characteristic zero, an algorithmic resolution of Rees algebras requires the definition
of resolution invariants. These are used to assign a string of numbers to each point { €
Max multy = Sing(G). In this way one can define an upper semi-continuous function
g : Sing(G) — (I, =), where I is some well ordered set, and whose maximum value
determines the first center to blow up. This function is constructed so that its maximum
value drops after each blow up. As a consequence, a resolution of G is achieved after
a finite number of steps.

The most important resolution invariant is Hironaka’s order function at a point
¢ € Sing(G) which we also refer as the order of the Rees algebra G at ¢, and it is
defined as ord; (G) := infi=o {v.(IN/1}. If G = R[AW™, ..., W™ ] and ¢ €
Sing(G) then by [17, Proposition 6.4.1]), ord; (G) = min;—i,.., {ve(f;)/m;}. Any
other invariant involved in the algorithmic resolution of a Rees algebra G derives from
Hironaka’s order function. Finally, it can be proved that for any point ¢ € Sing(G)
we have ord; (G) = ord, (?) = ord, (Diff (G)) (see [17, Remark 3.5, Proposition 6.4
@)D.

It can be shown that two Rees algebras that are weakly equivalent share the same
resolution invariants and therefore a resolution of one induces a resolution of the other.
In particular, this is the case for G, G and Diff (G) [17, Proposition 3.4, Theorem 4.1,
Theorem 7.18], [38].

5.1 The role of Hironaka’s order in resolution and the use of induction in the
dimension

Suppose G is defined on a smooth scheme V of dimension n, and assume that
ordg (G) = 1 for some closed point § € Sing(G). Then, there are two possibilities:

(i) Either the point & is contained in some codimension-one component Y of Sing(G);
in such case it can be proven that Y is smooth, and the blow up at Y induces a
resolution of G, locally at & [12, Lemma 13.2];

(i) Otherwise, it can be shown that, locally, in an étale neighborhood of &, there is a
smooth projection from V to some smooth (n — 1)-dimensional scheme Z, together
with a new Rees algebra R on Z such that a resolution of R induces a resolution
of G and vice versa, at least if the characteristic is zero. This is what we call an
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elimination algebra of G and details on its construction will be given in the next
section.

Case (ii) indicates that resolution of Rees algebras can be addressed by induction
on the dimension when the characteristic is zero.

It is worthwhile mentioning that if the maximum order at the points of Sing(G)
is larger than one, then one can attach a new Rees algebra H to the closed points of
maximum order, Max ord(G), so that Sing(H) = Max ord(G), and so that the equality
is preserved by H-local sequences. Thus H is unique up to weak equivalence. This
new Rees algebra H is constructed so that its maximum order equal to one, and the
arguments in (i) and (ii) can be applied to it.

6 Elimination algebras

Along this and the following sections, V) denotes an n-dimensional smooth scheme
over a perfect field k, and G™ = @;I; W' a Rees algebra over V™. Our purpose is to
search for smooth morphisms from V™ to some (n — e)-dimensional smooth scheme,
for some e > 1, so that Sing(G (”)) is homeomorphic to its image via 3, and so that this
condition is preserved by permissible blow ups in some sense that will be specified
below. One way to find such smooth morphisms is by considering morphisms from
V™ which are somehow transversal to G . Transversality is expressed in terms of
the tangent cone of G™ at a given point of its singular locus (see Definition 6.4 below).

Let & € Sing(g(”)) be a closed point, and let Grms (OV(”),S) =Y, .., Y
be the graded ring of Oy g, where k' is the residue field at &. Observe that
Spec(Grm, ((’)V(n)’s)) = Ty ¢, the tangent space of v atg.

Definition 6.1 Suppose & € Sing(G™) is a closed point with ords (G™) = 1. The
initial ideal or tangent ideal of G gr &, Ingg(”), is the homogeneous ideal of

Grum, (Oya ¢) generated by Ing (1)) := (I} + mé“)/ml;l, for all [ > 1. The tan-
gent cone of G at &, Cga ¢, is the closed subset of Ty ) ; defined by the initial ideal
of GM at E.

Definition 6.2 [35, 4.2] The t-invariant of G™ at the closed point & is the minimum
number of variables in Gryy, (Oy ¢) needed to generate Ing (G™). This in turn is the
codimension of the largest linear subspace L), £ C Cgonf such thatu +v € Cg(mf

forall u € Cg(n)yg and v € Eg(m)g. The t-invariant of G at £ is denoted by TG &

Definition 6.3 Let & € Sing(G™) be a closed point with 7gw ; > e > 1. A local

smooth projection to a (n — e)-dimensional (smooth) scheme y (e, B : ym
V=9 is GMW-transversal at & if ker(dg ) N Cgm ¢ = {0} C Tyw ¢, where dgf8
denotes the differential of 8 at the point &.

Definition 6.4 Let £ € Sing G™ be a closed point with Tgmg = € = 1. A local
smooth projection to an (n — ¢)-dimensional (smooth) scheme V=€ g : v —
V=9 is G _admissible locally at £ if the following conditions hold:
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(1) The point & is not contained in any codimension-e-component of Sing G™;
(2) The Rees algebra G™ is a B-relative differential algebra (see Sect. 4.7 (ii));
(3) The morphism S is G™-transversal at £.

Regarding condition (1), if £ is contained in a codimension-e-component of
Sing G then this component is a permissible center, see Sect. 5.1. Under the previous
conditions, it is always possible to construct a G -admissible morphism in an (étale)
neighborhood of & (see [35] and also [12, §8.3]).

Definition 6.5 [12, 35] Let 8 : v 5 yn=e) pe g G _admissible projection in an
(étale) neighborhood of the closed point £. Then the Oy u—)-Rees algebra G~ :=
G™ N Oyw-o[W], and any other with the same integral closure in Oy u-o [W], is an
elimination algebra of G™ in V=€) (see [35, Theorem 4.11]).

Example 6.6 Let S be a smooth d-dimensional k-algebra of finite type, with d > 0.

Let V@+D = Spec(S[x]). Then the natural inclusion S i) S[x], induces a smooth

projection V @+ i) V@ = Spec(S). Let f(x) € S[x] be a polynomial of degree
m > 1, defining a hypersurface X in V™. Set X = Spec(S[x])/(f(x)). Suppose that
& € X is a point of multiplicity m. Then,

G = Diff(SxILf W™D C SIxIIW]
represents the multiplicity function on X locally at &. If the characteristic is zero

and if we assume that f has the form of Tschirnhausen (there is always a change of
coordinates that leads us to this form):

F) =x"+ax™ 2+ . amix +...+am € S[x], (6.1)
where a; € S fori =0, ..., m — 2, then it can be shown that, up to integral closure,
G = Diff(S[xllaaW?, ..., aw—i W" ™", ... anW™]),

is an elimination algebra of GYtD If the characteristic is positive, the elimination
algebra is also defined. In either case, it can be shown that it is generated by a finite set
of some symmetric (weighted homogeneous) functions evaluated on the coefficients of
f(x) (cf. [34], [35, §1, Definition 4.10]). It is worthwhile noticing that the elimination
algebra G is invariant under changes of the form x’ = x + «a with @ € S [35, §1.5].
Finally, we will see that, to understand elimination algebras in a more general setting,
it suffices to treat the hypersurface case, at least for the purposes of this paper (see
Sect. 8.7, specially (8.6) and (8.7)).

6.7 Properties of elimination algebras

Let B : VW — V=9 be a G -admissible projection in an (étale) neighborhood
of a closed & € Sing(G™), and let G""~¢ C Oy - [W] be an elimination algebra.
Then Sing(G"™)) maps injectively into Sing(G"~¢)), in particular 8(Sing(G™)) C
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Sing(g("’e)) with equality if the characteristic is zero, or if G™ is a differential
Rees algebra (see [12, §8.4]). Moreover, If G™ is a differential Rees algebra, then
s0 is G~ (see [35, Corollary 4.14]). And if G™  G'™ is a finite extension, then
G=¢) < G~ is a finite extension (see [35, Theorem 4.11]). Finally, for a point
¢ € Sing(G™), the order of G"~¢ at B(¢) does not depend on the choice of the
projection B (see [35, Theorem 5.5] and [12, Theorem 10.1]).

6.8 Hironaka’s order of an algebraic variety

Let X be an equidimensional variety of dimension d over a perfect field k£ and let
¢ € X be a point of maximum multiplicity m > 1. We can assume that X = Spec(B)
is affine. Let £ € {¢} be a closed of multiplicity m. Then, as indicated in Example 4.2,
there is an étale neighborhood of Spec(B), X’ = Spec(B’), an embedding in some
smooth (d + e)-dimensional scheme V @+ and a differential Rees algebra G@+¢)
representing the top multiplicity locus of X’. In Sect. 8.7 we will see that under
these assumptions, 7g ¢ > e, and there is a G@+e)_admissible projection to some
d-dimensional smooth scheme where an elimination algebra G @) can be defined. Let
¢’ € X’ be a point mapping to ¢. Then by Sect. 6.7,
ord () = ord{y)., (£).

does not depend on the selection of the étale neighborhood, nor on the choice of Rees
algebra representing the top multiplicity locus, nor on the admissible projection. We
refer to this rational number as Hironaka’s order function of X at ¢ in dimension d.

7 The function H-ord

When facing an algorithmic resolution of the variety X in characteristic zero, the
number ordg?) (¢) is the most important invariant at the point ¢ (after the multiplicity),
and there is a strong link between the resolutions of G+ and G¥: in particular,
a resolution of the first induces a resolution of the second and vice versa. When the
characteristic is positive, this link between G @d+e) and G is weaker, as illustrated in
the following example.

Example 7.1 Let X = Spec (Fa[z, y1/(z*> — y3)). Set V) = Spec (F2[z, y]), define
the F[z, y]-Rees algebra G@ := Diff (F[z, yI[(z> — y*)W?]) = Falz, ylly*W,
2 - y3)W2], and let & be the singular point of X. The inclusion Fy[y] C F>[z, y]
induces a G®-transversal projection g : V® — V) = Spec(FF,[y]). The elimina-
tion algebra is GV = F5[y][y?>W], and B(Sing(G?®) = Sing(G'"). However, after
the blow up at £, Sing(G\> = ¢ but Sing(G\") # 0.

Thus, when the characteristic is positive, what we consider the first relevant invariant
in characteristic zero, ordfqd(z 1o (£) = ordg(p) G@  needs to be refined. This leads us

to talk about the function H-ordgf), introduced and studied in [5, 6]. We will start with
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the definition for hypersurfaces, and then we will see that the general case reduces to
that of hypersurfaces.

7.2 The hypersurface setting

Let V@+D be (d + 1)-dimensional smooth scheme over a perfect field &, let
X C V@D be a hypersurface of dimension d, and let & € X be a closed point
of maximum multiplicity m > 1. Choose a local generator f € Oyw+n ¢ defining
X in an open affine neighborhood U < V@*D of &, which we denote by V@+D
for simplicity. Define the Rees algebra g+ — Diff (Oya+n[fW™]), see Exam-
ple 4.2. After applying Weierstrass Preparation Theorem, we can assume that in an
étale neighborhood of & € V @+ which we again denote by V @+ we have the fol-
lowing situation. There is an affine smooth scheme of dimension d, vy = Spec(S),
such that V@+D = Spec(S[z]), where is z is a variable, and X is defined by

f="4+a" "+ damztam, a@eS i=12...,m (1.1)

It can be checked that the morphism g : V@t — v@ jg G@+D_transversal at
& (Definition 6.3). We say that f is written in Weierstrass form with respect to the
projection B.

Remark 7.3 [6, §2.15] With the same notation as in §7.2, it can be proved that, in a
neighborhood of &, G @+D) hag the same integral closure as

SEILFW™, AX (W™ N1 <aem—1 © GO, (7.2)

where G@ is an elimination algebra of G/*1, the Al are the Taylor differential
operators, and we use "®” to denote the smallest Rees algebra containing the two
that are involved in the expression. Recall that {AQ, ..., AT} is a basis of the free
module of S-differential operators of S[z] of order r (see [5, Proposition 2.12]; see
also Example 6.6). We will say that (7.2) is a simplified presentation of GY¥+1 at £.
The presentation depends on the choice of the smooth morphism g, the variable z
and the monic generator fW". We will use P(B, z, f W™) to denote this simplified
presentation.

Definition 7.4 [6, §5.5] Let P(B,z, fW™) be a simplified presentation of G+
as in Remark 7.3, and f as in (7.1). The slope of P(8,z, fW™) at a point { €
Sing(GU¥+D) c v@+D s defined as:

SI(P)(¢) := min {vﬁ(f)(al), e vﬁ@}(aj), e vﬂ@r)n(am), ordﬁ(i)(g(d))}. (7.3)

Remark 7.5 The value SI(P)(¢) depends on the chosen data, that is, on the morphism
B, the generator f W™ and the global section z. Translations of the form z + s, with
s € Oy, give new simplified presentations P(B, z + s, f W) which may lead to
different values of the slope. The value
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sup {SI(P(B, 2, fW™)(©)] (7.4)

does not depend on the choice of the transversal morphism S, nor on the choice of the
order-one-element fW” e GU@+D (fW™ can be replaced by any other order-one-
element gW”' e G+ non necessarily defining the hypersurface X). Moreover,
the supremum in (7.4) is a maximum for a suitable selection of z’. See [5, §5.2 and
Theorem 7.2].

Definition 7.6 [6, §5, Definition 5.12] Let { € X be a point of a hypersurface X of
multiplicity m > 1, and consider an étale neighborhood X’ — X of a closed point of
multiplicity m, £ € {¢}, such that the setting of Sect. 7.2 holds, and let ' € X’ be a
point mapping to ¢. Then we define

Heordy (¢) = H-ord{{)(¢') := max [ SIP(B. 2/, s W) ()]

Remark 7.7 When the characteristic of the base field k is zero, then it can be shown
that for all ¢ € Sing(G“*D), H-ord\" (¢) = ordg()(G@) (see [6, §2.13] and Exam-
ple 6.6). Thus, this invariant provides new information only when the characteristic
of k is positive. For example, if X is as in Example 7.1, it can be checked that

H-ord${’ (§) = 3/2 < ordge) (G = 2.

7.8 p-Presentations

Suppose char(k) = p > 0. Continuing with the notation introduced in Sect. 7.2, since
G+ i a differential algebra, in order to compute the value 8- ord(£), it is always
possible to find an order-one-element of the form 2 W7 ‘ € GUY*D where h is a monic
polynomial of degree p’ for some £ € Z=, and in Weierstrass form with respect to
B. This can be done as follows. Assume that g(z)WN € GUY*D and that

¢@=zN+biN '+ +by_1z4+by, bieS, i=1,...,N.

1
Write N = N’ p® with p notdividing N’. Setr = (N'—1)p‘and h(z) = ﬁA; (g(2)).
Note that

W@ =2 bz’ by, (7.5)
. ¢ ~ Cj . ~ 1
where,forj =1,...,p"—1,b; = ﬁb-/ forsomemtegercj,andbpz = ﬁbl,z.Then

h(z) wr' e GYtD and P(B, z, h(z) WP Z) is a special type of simplified presentation
of G@+D Presentations of the form PG, z, thl) will be called p-presentations [5,
Definition 2.14]. Compared to general simplified presentations, p-presentations have
the advantage that the computation of the slope (7.3) becomes simpler.
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Theorem 7.9 [5, Theorem 4.4] Let P(B, z, thZ) be a p-presentation of GYD,
where

h@) =" +512” " 4t bz 4 by € Opalzl. (1.6)
Let ¢ € Sing(GYtD). Then

b
SI(P)(¢) = min vﬁ%(g"z) ord,g@)(g@)}.

Remark 7.10 Using the arguments as in the proof of [5, Theorem 4.4], it follows that
v (b))
HEEE 2 ordy) @), 17

whenever 1 < j < pe —1.

7.11 Cleaning process [5, §5.1, §5.2, and Proposition 5.3]

Here we sketch the main ideas to find a p-presentation that maximizes SI(P)(¢),
since we will be using them in Sect. 8. For a given p-presentation, and a point { €
Sing(G4t1), there are different possibilities:

(A) SI(P)() = orde) (GD);

b
(B) SI(P)(¢) = L7
gy (b
B1) P00 ¢ 7

va(e) (b ,0)
Y4

< ordﬂ(;)(g(d)), and then:

(B2)
not a p¢-th power at Grg(¢) (Oy @ );

€ Z-¢ and the initial part of I;pe at ¢, Ing (I;pe) € Grﬂ(;)(ov(d)’g) is

b -
(B3) %L(Z”Z) € Z-o and Ing (b,¢) is a p°-th power at Grﬂ(;)((’)vu),{).

It can be proven that changes of the form uz + s produce a new p-presentation
P’ with SI(P")(¢) > SL(P)(¢) only in case (B3). In such case, only changes of the
section of the form: 7’ := z 4+ s with s € OV(d),ﬂ({)’ and vg(; (s) > l)ﬁ(;)(];pl)/pe
lead to new p-presentations P’ with SI(P’)(¢) > SI(P)(¢). Moreover, if & € {¢}, and
¢ defines a regular closed subscheme at &, then to maximize the slope it suffices to

consider changes of the form 7’ := z+s withs € Oy £ see [5, proof of Propositions
5.7 and 5.8].

Definition 7.12 [5, Definition 5.4] A p-presentation P (8, z, hW”K) with £ as in (7.6)
is in normal form' at a point ¢ € Sing(g<d+1)), if condition (A), (B1) or (B2) holds
in Sect. 7.11.

! This is called well-adapted presentation in [5].
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Hence to maximize the value SI(P)(¢) for a given p-presentation P (S, z, hWP[),
one can work with presentations in normal form. For simplicity we restrict the notion
of normal form to p-presentations, but a similar concept can be defined for any pre-
sentation, see [6, §5.7].

Remark 7.13 Given a hypersurface X and GWtD a5 in §7.2, for a point ¢ €

Sing(g(d+1)), and a p-presentation P (B, z, th() in normal form at ¢, it can be
shown that

H-ord? (¢) = SI(P(B, 2. AWP'))(¢). (7.8)

See [5, Theorem 7.2, Corollary 7.3 and §5].

The general case

Given an equidimensional variety X of dimension d over a perfect field k, and a
singular point { € X, we would like to emulate the previous statements, which were
valid for a hypersurface. To this end, we will use the following result, which can be
understood as a generalization of Weierstrass preparation theorem.

Theorem 7.14 [6, Theorem 6.5] Let G™ be a Rees algebra on a smooth scheme V™
over k and let & € Sing(g(")) be a closed point with Tgmg = € = 1. Then, at a
suitable étale neighborhood of &, a G™ -transversal morphism, g : V" — v @=€),
can be defined so that the following conditions hold:

(i) There are global functions z1, . .., z, in Oyw such that {dzy, ..., dz.} forms a
basis of Q}g the module of B-relative differentials;
(ii) There are positive integers mi, ..., Me;
(iii) There are elements fyW™, ..., ffW"e € G M such that:

1) _mi— 1
A =" +aPZ" T 4al) € Opu-olzl,

: (7.9)
foz) =20 +a? T+t ay) € Opuolzel,
for some global functions al.(j ) e Oyn—o;
(iv) The Rees algebra G has the same integral closure as:
Oy LW, AL W™ T i<jizm—1 © B*G"™), (1.10)

i=l,....e

where G~ is an elimination algebra of G™ on V"9 and the set

{AZ }1 <ji=mi-1 consists of the relative differential operators described in by
1=1,.

the Taylor éﬁérators.

Remark 7.15 Observe that since 8 : V™ — V=9 is a smooth morphism of relative
dimension e, locally, Oy ) is étale over the polynomial ring Oy e [21, - . - , Z¢]. The

differential operators AJ are defined to be the Taylor differential operators.
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Definition 7.16 [6, Definition 6.6] With the setting and the notation of Theorem 7.14,
the data,

PB,z1s -2, IW™ oo, fe W) (7.11)

that fulfills conditions (i)-(iv) in Theorem 7.14 is a simplified presentation of G™.
Let X; be the hypersurface defined by fi(z;) € Oyu-olzi]. Then we can also
define

(n—e) ,__ . _ (n—e)
H—ordg(n) = l;rlnneH ordy .
Remark 7.17 Now we go back to Example 4.2, where we consider a representation of
the multiplicity of a variety X C V at a closed point £ € X, given by a Rees Algebra

G =0y[iWmM, ..., feW"]. We will see in §8.7 that Diff (G) satisfies conditions
(i)—(iv) in Theorem 7.14. This leads us to define

H-ord(¢) := H-ordg’i}f(g) = min{H-ord} (¢)},

where X; is the hypersurface defined by f;,i =1, ..., e, and { € Max multy.

8 Main results

In this section we will address the proof of Theorem8.12. For a given point { € X
of maximum multiplicity m > 0, we will want to compute the value H-ordgf)(g“ )
following the constructions given in Sect. 7. To this end, we will use Villamayor’s
presentations of the multiplicity in the étale topology, Theorem 8.1 below. Finally,
since we want to show that H—ordgf)(g) can actually be computed at Oy ,, without
the need of étale topology, and using the Samuel slope of the local ring, we will be
using our results from Sect. 3.

Theorem 8.1 [37, Lemma 5.2, §6, Theorem 6.8] (Presentations for the Multiplic-
ity function) Let X = Spec(B) be an affine equidimensional algebraic variety of
dimension d defined over a perfect field k, and let & € Max Multy be a closed
point of multiplicity m > 1. Then, there is an étale neighborhood B of B, mapping
&' € Spec(B') to &, so that there is a smooth k-algebra S together with a finite mor-
phism a : Spec(B’) — Spec(S) of generic rank m, i.e., if K(S) is the quotient field
of S, then [K(S) ®s B : K(S)] = m. Write B' = S[0, ...,0,]. Then:

) If fi(x;) € K(S)[x;] denotes the minimum polynomial of 6; over K(S) for
i=1,...,e then fi(x;) € S[x;] and there is a commutative diagram:

R=3S8[x1,...,xe] ——=S[x1, ..., x1/{fi(x1), ..., fe(xe)) ——= B’
ﬁ* a*
S
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(ii) Let V@*® = Spec(R), and let I(X') be the defining ideal of X' at V49 Then

(fi, oy fo) CT(XD;

(iii) Denoting by m; the maximum order of the hypersurface H; = {f; = 0} C
V@) the differential Rees algebra

Gt = Dff (RLfAL(x) W™, ..., fo(xe) W™]) (8.2)

represents the top multiplicity locus of X, Max Multy, at& in yd+e),

8.2 The setting and the notation for the proof of Theorem 8.12

Let £ € X be a closed point of multiplicity m > 1, and let (B, m, k(§)) the local
ring at the point. Applying Theorem 8.1 there is an étale extension (B, m, k(§)) —
(B’,w’, k") for which we can find a smooth k’-algebra S and a finite inclusion of
generic rank m,

S— B ' =S8[01,...,6].

Thus, statements (i), (ii) and (iii) of Theorem 8.1 hold for S C B’. In particular,
we have a commutative diagram like (8.1). With this notation, which we fix for the
rest of the section, we will be simultaneously using «(¢’) and B(¢’) to denote the
image in Spec(S) of a point ¢’ € Spec(B’). We will choose the first notation if we
want to use the properties of the finite projection from Spec(B’). The second notation
will be convenient to emphasize the fact that ¢’ is also a point in the smooth scheme
Spec(R). Sometimes we will use V (d+e) to refer to Spec(R). This will help us recall the
dimension of the smooth ambient space where Spec(B’) is embedded, and the space
where the Rees algebra G@*¢) is defined. And for similar reasons we occasionally will
write V@ for Spec(S), specially if the elimination algebra G© of G+ is involved
(see Sect. 6).

Theorem 8.1 provides three pieces of information that will be specially relevant in
our arguments:

(I) The existence of the étale neighborhood of B, B' together with the finite extension
S C B’. To be able to compare the Samuel slope of B and B’ (in the extremal
case) we will need to know that B” can be constructed having the same residue
field as B. This issue is addressed in Sect. 8.3.

(II) The Rees algebra GY9%® representing the top multiplicity locus of X' =
Spec(B’). We will see in Sect. 8.7 below how to use this Rees algebra to compute
the function H-ordgf,) using the results from Sect. 7.
(II) An algebraic presentation of B" as an algebra over S, S[0, . . ., 0,]. We will see
in Sect. 8.8 below how to find suitable presentations that will help us computing
the Samuel slope in the extremal case.

After addressing (I), (I), (IIT), and after establishing some technical results, we will
give the proof of Theorem 8.12.
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8.3 (I) On the étale extension of Theorem 8.1

We start by stating a giving an idea of the proof of Proposition 8.4 below. This result
was sketched in [37, §6.11] and a complete proof can be found in [14, Appendix Al].
Here we will focus on the three main steps of the argument that require considering
étale extensions. Remark 8.5 and Proposition 8.6 below will be relevant to treat the
proof of Theorem 8.12 in the extremal case.

Proposition 8.4 [37, §6.11], [14, Appendix A] Let X be an equidimensional variety
defined over a perfect field k and let & € X be a closed point of multiplicity m > 1.
Let (B, m, k(§)) be the local ring at the point. Then there is a local étale extension
(B, m, k(&)) — (B, W, k') such that:

(i) There is a smooth k'-algebra S and a finite morphism S — B’ of generic rank
equal to m;

(ii) If @ : Spec(B’) — Spec(S), then the morphism Grma@,)
injective, and if, in addition, B is in the extremal case, then

S) — Grms,(B/) is

ma(g/)/mé(s,) D ker(lg) = mg//mg,.

Sketch of the proof. Step 1: If k(£) is the residue field at &, then, after considering the
extension By = Ox ¢ ®j k(&) it can be assumed that the point of interest is rational.
Let m; be a maximal ideal of By dominating mg. Then if k1 := Bj/my, we have that
ki = k(§).

Step 2: After a finite extension of the base field k1, k2, considering the base change
By = B| ®x, ka, there is a maximal ideal my C B, dominating mj, such that mp
contains areduction generated by d elements, 1, . . ., k4. To achieve this step, a graded
version of Noether’s Normalization Lemma is used at the graded ring Gry,(B>).
Letting k» = B> /my we get a ko-morphism from a polynomial ring in d variables with
coefficients in k; to some localization of Bj:

Sy i=ko[Y1, ..., Yql —> (B2)¢ 8.3)
Yi = K fori:l,...,d. ’
To ease the notation set By := (B2) .
Step 3 Finally, after considering an étale extension S3 of S, (inside the henselization
of the local ring (52)(y,,....v,); the strict henselization is not needed in this step),

,,,,,

By ——— B3 := B> ®s, $3

T |

S ———— 53

it can be assumed that the extension S3 — Bj3 is finite of generic rank equal to m.
Let n3 C S3 be the maximal ideal dominating (Y7, ..., Yy4). Notice that the residue
field of S35 at n3 is again k. There is a maximal ideal m3 C B3 dominating m; and if
k3 = B3/mj3 then k3 = k. To conclude, set B’ = (B3); and § = S3.
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Regarding to (ii), it suffices to observe that that from the way the finite projection
S — B’ is constructed (see step 2), the morphism Grma@/)(S) — Grmg,(B/) is
injective. Note that the elements «1, .. ., k4 are analytically irreducible over k;. O

Remark 8.5 In the proof of Proposition 8.4 we have a sequence of étale local exten-
sions:

(Ox.e,m) = ((BDm;, m1) = ((B2)my, m2) = ((B3)my, m3) = (B, m),
leading to the (étale) extensions of graded rings:
Grm, (Ox ¢) = Grm, (B1) —> Grm, (B1) ®, k2 = Gri, (B2) = Gry (B). (8.4)

Proposition 8.6 below guarantees that the field extension in Step 2 of the proof is not
needed if (B, m) is in the extremal case. Under this assumption all the graded rings in
(8.4) are isomorphic.

Proposition 8.6 Ler X be an equidimensional algebraic variety of dimension d defined
over a perfect field k, and let £ € X be a closed point of multiplicity m > 1 with local
ring (Ox ¢, mg, k(£)). Assume that the embedding dimension at & is (d +t) for some
t > 1. If & is in the extremal case, then mg has a reduction a C mg generated by
d-elements.

Proof To prove the statement it is enough to show that there are d-elements
Kly-.. kg € Mg \mg2 such that if k7, ..., kg denote their images in mg/mg, then
Grm, (Ox £)/(k1, ..., kq) is a graded ring of dimension 0 (see [19, Theorem 10.14]).

Since dimy ) me /mg = d +t and by hypothesis dimy ) ker(A¢) = ¢, we can find
generators of mg,

KlyeoosKdyOlynnns O (8.5)
such that 8, ..., 8, form a basis of ker(A¢). Notice that the elements TR $ are
nilpotent in Grm, (Ox ¢)/(K7, - . ., kg) (see §3.1). Since the graded ring Gry, (Ox ¢)
is generated in degree one by {k7,...,%g, 481, ...,8;) it follows that the quotient
Grm, (Ox £)/(k1, ..., k) is a graded ring of dimension zero and hence (x1, ..., kq)
is a reduction of me. O

Observe that the previous proposition holds for any local Noetherian ring in the
extremal case.

8.7 (Il) p-presentations and the computation of H-ord)((‘,’)

Theorem 8.1 says that the Oy @+ -Rees algebra G (d+€) in (8.2) represents the max-
imum multiplicity locus of Spec(B’) in V@+e) (see Sect. 4.6). We can assume that
the order m; of each f;(x;) € S[x;] is greater than 1. Notice also that g,.("“) =
Diff (S[x; ][ fi (x;) W™ ]) represents the maximum multiplicity of the hypersurface
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defined by fi(x;) in Vl.(dH) = Spec(S[x;]), fori = 1, ..., e. By identifying Ql.(dH)
with its pull-back in V @+ we have that:

g(d+e) _ Diff(g%d—i_l)) 0...0 Diff(géd+l))- (8.6)

The natural inclusion S C R = S[xy, ..., x.] induces smooth projections, § :
yte) . v — Spec(S), and B; : Vi(dﬂ) = Spec(S[x;]) — V@ = Spec(S)
fori = 1,...,e. Also, observe that TG+ g1 = €. This follows from the fact that
the initial forms at &” of the polynomials f;(x;) € S[x;] depend on different variables
(see [9, §4.2] and [2, Chap. 7] for further details). Hence, B is Gld+e)_admissible, and
each g; is gl.(dH)—admissible. Thus G = G+ N S[W] is an elimination algebra

of G149 and, moreover, up to integral closure,
GD =6 o... 069 cswl, 8.7

where gl.(”’) is an elimination algebra of g}”’“) on V@ (see [9, §3.8]).
As indicated in Remark 7.17, G191 has the same integral closure as

RLF ) W™, AL CFi ) W™ I ] <oy —1 © BH(GD), (8.8)

which in turns is a simplified presentation of G(¢+¢) (see Theorem 7.14). We will
write:
m,-—l

fix) = 2" +afx]

1

+...+af), (8.9)

Witha;i)eS,forj:l,...,mi,andizl,...,e.

(A) The slope of a p-presentation at the closed point of Spec(B’).

Suppose that £’ € X’ = Spec(B’) maps to &, and let mg C B’ be the corresponding
maximal ideal. Since the generic rank of S — B’ equals the multiplicity at &, by
Zariski’s multiplicity formula for finite projections ( [39, Chapter 8, §10, Theorem
241]) we have that:

(i) The point &’ is the only one mapping to a(§') € Spec(S);
(ii) The residue fields k(¢') and k(x(&')) are equal,
(iii) The expansion of the maximal ideal of a(§'), My (g B’, is a reduction of mgs.

From (i) it follows that, after a translation of the form 6; + s;, for some s; € S,

we can also assume that 6; € mg fori = 1,..., e, and that in addition, mgr =
ma(g/)B/+(91,...,96). -
Since 6; € mg/,wehavethatva(gr)(a;')) >1l,forj=1,...,mjandi =1,...,ein

(8.9). Moreover, since &’ € Sing(g(d”)), necessarily vy e/ (aﬁ.i)) = Vg (ay)) > J.
By Sect. 7.8 and Remark 7.17, after applying suitable Taylor operators to the ele-
ments f;(x;) € R, we get that G+ is weakly equivalent to:

RUAi ey WP AL (i ey WP 0] < <0, 1 © B*(GD), (8.10)
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where foreachi =1, ..., e, h;(x;) € S[x;] C R is a monic polynomial of order pei
for some ¢; > 1,

4 (i i (i
i) = xP" +alx? 1+...+a;’2i, 8.11)

with [1;-") e S, forj =1, ...,pzi. Observe that va(g/)(&ﬁ.i)) > jforj=1, ...,pe"
andi =1, ..., e. Expression (8.10) is a p-presentation P of Gld+e) at £ (see Sect. 7.8
and Remark 7.17). Notice that the differential operators in (8.10) are elements in

Diff y@+e) jy@-
With the previous notation, the slope of the p-presentation P at &’ (8.10) is

~(i)
’ : V& (apli) (d)
SI(P)(E = i:nlnne T, ordyn(G*) ¢ . (8.12)

From the expositionin Sect. 7.11, it follows that a p-presentation P’ with SI(P')(§') =
H—ordgf/) (&7) can be found starting from the presentation P after considering transla-
tions of the form Qi’ = 0; + 5; with s; € S, and so that for each translation
Vg, @00)

phi

(8.13)

vma(‘g/) (Si) Z

Finally, the restriction of G d+a o B, G p’, 1s finite over the expansion of G @ in B’ s
G@ B’ (see [35, Theorem 4.11], [3, Corollary 7.7], and [1]). Write Ggr = @, J, W"
and define

mg/(gy) = min {M S N}.
n

Then, by Proposition 2.10, and using the fact that my B’ is a reduction of m’, it can
be checked that

orde ) (GV) = ordg (Gp), (8.14)
(here it suffices to use arguments similar to those in the proof of [24, Proposition
0.20]).

(B) The slope of a p-presentation at non-closed points of Spec(B’).

With the same setting and notation as before, now let n € X be a non-closed point of
multiplicity m with & € {n}. Let n’ € Spec(B’) be a point mapping to 1, let p,y C B’
be the corresponding prime and set py () := p,y N S. Again, by Zariski’s multiplicity
formula for finite projections we have that:

(i’) The point i’ is the only one mapping to a(n’) € Spec(S);
(ii’) The residue fields k(n") and k(a(n’)) are equal,;
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(i) The expansion of the maximal ideal po(y)Sp,,,» Ma(y) Bp,, - is a reduction of
mn/ = pn/B/pn/,
From (i’) it follows that B’ ®g Sp o is local (thus B}, , = Sp o [61,...,6.]). By
o 7 o

(ii”), after translating 6; by elements of Sy, (> We can assume that §; € m,. The local-

"
ization at i’ of the p-presentation P at &’ (8.10) can be used to compute H—ordgf,) n").
Interpreting ' as a point in V@*¢)_ and using the fact that ' € Sing(G“*), i.e., 1’
is a point of multiplicity m in X', it follows that va(n/)(a;i) )y>jfori=1,...,e, and
j=1,...,m, (see [37, Propositions 5.4 and 5.7]).

(C) The slope of a p-presentation at non-closed points defining regular sub-
schemes of Spec(B’).

Now suppose that n’ is the generic point of a regular closed subscheme at £’. In such
case, it can be shown that p, ;) also defines a regular closed subscheme at o (§ "y (cf.
[37, Proposition 6.3]). In addition, after translating the elements 6; by elements in S,
it can be assumed that B’ = S[0y, ..., 0,] with §; € p,y» and that moreover, Py () B
is a reduction of p,/ (without localizing at p,/, see [3, Lemma 3.6]).

As we argued above, again, interpreting 7’ as a point in V¢ and using the
fact that ’ € Sing(G*®), i.e., 0’ is a point of multiplicity m in X', it follows that
va(ﬂ/)(a;l)) > jfori=1,...,e,andj =1,...,m,in(8.9) (see [37, Propositions 5.4
and 5.7]). But now, because p ;) determines a closed regular subscheme at c (§ ", its

ordinary powers and symbolic powers coincide on S. Therefore also vy, o) (aﬁi)) >j
fori =1,...,e,and j = 1,...,m,. Hence it follows that for the coefficients in
(8.11),

Vpoor, @5)) = (8.15)

for j = 1,...,p£i andi =1,...,e.
With the previous notation, the slope of the p-presentation P at n’ (8.10) equals
to:

/ . Va () (5;7!2’) (d)
SI(P)(n) = min § ————, ordy()(G'")
i=l1,..., e 2l
~(i)
vpo((V}/) (apZ'
— i i (d)
=, Dnin | 2 sordp, (G ¢ (8.16)

see [6, Definition 6.7]. Going back to the discussion in Sect. 7.11, recall that a p-

presentations P’ with SI(P')(n') = H-ordgf/)(n’ ) can be found after considering
translations of the form 01.’ = 6; + s; with s; € S and so that for each translation,

~(i)
Vpay) @ i)

, (8.17)
pli

vpm(,’/) (Si) >
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We emphasize here that there is no need to consider translations with s; € Sp”,.

To conclude, considering Gp as before, recall that, En/(gm

inf [i”/u") ‘ne N}. Then, on the one hand,

n

Orda(n/)(g(d)) = Ordpam/)(g(d))‘

On the other, since pg ) B’ is areduction of p,y»and GDB g p’ 1s a finite extension
of Rees algebras, by Proposition 2.10, and following similar arguments as in [24,
Proposition 0.20],

ordy,, (GD) = ordy,, (Gp).
For similar reasons,
0rde ) (GD) = ord, (Gp).
Thus it follows that,
ord, (Gp) = ordy) (G9) = ordy, (G

J— . vp /(Jn)
=ordpn/(Q3/)=m1n{"T :neN}. (8.18)

8.8 (lll) Finding suitable algebraic presentations for B’ (for the extremal case)

Closed points

Lemma8.9 Let B’ = S[0y,...,0.] be as in Sect. 8.2, suppose that the embedding
dimension of &' € X' is d + t, and that &' is in the extremal case. Write Mgy =
V1, ..., ¥d). Then, after reordering the elements 0; and after considering translations
of the form 91./ = 0; + s; with s; € S, it can be assumed that:

(i) B'=S[0y,...,0.] and

* Ve
() {y1,---s 4,07, ...,0/} is a minimal set of generators of mg witht < e.

Furthermore,

(iii) For a given a \g-sequence, {81, ..., 8;}, after translating again the elements
g-Seq
91.’ := 6; + s; for suitably chosen elements s; € S, we can assume that B’ =
Soy, ...,0., that

min{Vg/(0)) : i =1,...,¢,...,e} =min{ve/(6)) :i = 1,..., 1} > min{vg(§;) :
i=1,...,1},

and that {67, ...,0/} is a Agr-sequence.
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Proof Recall that by Sect. 8.7(A), maybe after translating the 6; by elements in S, it
can be assumed that mgr = (y1, ..., ya, 01, ..., 6.) (here we will identify y; with its
image at B’). Note that Ve (0;) > 1fori =1, ..., e. We can extract a minimal set of
generators for mg/ from the previous set, and we can always assume that such a minimal
setcontains {y, ..., yg} (see Proposition 8.4 (ii) and Remark 3.2). After reordering the
elements 6;, we can think that such a minimal setis of the form {yy, ..., yq, 61, ..., 6;}.
Thus conditions (i) and (ii) hold.

For condition (ii1), given a A¢/-sequence, 81, . . ., 8;, by Proposition 8.4 (ii), we have
that

mg/z (yl,...,yd,él,...,é,),
and since 6; € mg, fori =1, ..., ¢, we can write,
0 = piayi+...+ piayi +qi 181 + ...+ qi 16,

where p; j,qgix € B = S[01,...,6;,....0, ) fori =1...,¢t,j=1,...,d, and
k=1,...,t.Fori=1,...,t,and j = 1,...,d, we can write

il i
pi.j =sijo+ E Sisjoitenic 0] 0,

with s; j 0,8 j.i,..i.. € Sandiy +...+i, > 1. Fori =1,...,1¢,set
0] == 6; —s5i 1,01 — .. — Si.d,0Vd-
Note that B = S[67, ..., 6/, 641, ..., 0.]. In addition, since
6 = (pin = i1yt + -+ (pia = $i.d.0)Vd + i 181 + ...+ qi 11,

Ve ((piyj — 8i,j,0)yj) = 2 for_j =1,...,d,and vgs(§;) > 1for j =1,...,t, we
have that v,/(#/) > 1 and that 6] € ker(%,). Since

(yl,...,yd,el,...,et)z(yl,...,yd,Q{,...,Qt/)

it follows that 9_]’, cees G_t’ € mg/ /mg, form a basis of ker(A¢/). Moreover by construc-
tion,

Ver(0)) = min{l + Vg (01, ..., 1+ Vg (00), e (1), .., Ve (81)).
Iterating this process we can assume that
min{ve (6)) :i =1,...,6} > min{Vg(§) :i =1,..., 1}

Now suppose that there is some j > ¢ such that Ve/(6;) < Ug(@i’), fori=1,...,t.
After reordering again, we can assume that j = ¢ + 1.
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Repeating the previous argument,
Or41 = p1y1+ ...+ paya +q10] + ... + 0],

where p;,q; € B =S8[01,...,0,...,0,]fori =1...,d,and j = 1,...,t. Now
fori =1,...,d, write

Pi =i+ Z Siitic0 O
with s; 0, 8ii;,...i, € Sandi; + ... +i, > 1. Set
6/ 11 =041 —S1,0Y1 — ... — Sd,0Vd-
Then
Vg (0;,1) = min {Ugf ((p1 = 51,001 + -+ (Pad — 54,00¥d) - Ver (q16] + ...+ qzé,’)} .

Now, it can be checked that either

Ve (0, ,) = min{vg (0) +1:i=1,..., ¢},

or
vg/(et’ﬂ) > min{ig/(el’), el vg/(e,/)}.

Since B’ = S[6],...,6,, 91/+1’ 0142, ...,0.], the claims in (iii) follow after a finite

number of translations of the elements 6; (i =¢ + 1, ..., e) by elements in S. O

Non-closed points

To find suitable presentations of B’ that help us computing the Samuel slope at non-
closed points, first we need a technical result, Lemma 8.10 below. Then, a similar
argument as the one exhibited in the proof of Lemma 8.9 will lead us to a similar
statement (see Remark 8.11).

Lemma8.10 Let B’ = S[01, ..., 0.] be as in Sect. 8.2. Let &' be the closed point of
Spec(B’) with multiplicity m, and assume that ' is a point of multiplicity m defining
a regular subscheme in Spec(B'). If

mg = ma(gf)B/ + V1, V)
with y; € py fori =1,...,s, then

Py = pa(n’)B/ + V1o, V)
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Proof By the assumptions, there is a regular system of parameters at S, yi, ..., Vg4,
such that pyy = (y1,...,¥) for some r < d and myey = (y1, ..., y4). Since
S — B’ is an inclusion, we will identify y; with its image at B’. We have that,

VLs oo s Vs Vs oo s V) C Py (8.19)
Let B = B'/(y1,..., Vs, V1. ..., ¥s). Notice now that

d —r =dim(B'/p,) < dim(B") <d —r,

where the last inequality follows because mg//(y1, ..., yr, ¥1. ..., ¥s) can be gener-
ated by d — r elements. Therefore B’ is a regular local ring of dimension d — r and
the inclusion (8.19) is an equality. O

Remark 8.11 With the same assumptions as in Lemma 8.9, assume now that n’ € X’
is a point of multiplicity m defining a regular closed subscheme at &’. Let p,y C mg
be the corresponding prime, and suppose that

pn/ = pa(r]/) + <]/1’ ceey Vs>,

forsome yy, ..., ys € B'. Then, using a similar argument as the one given in the proof
of Lemma 8.9 (iii), it can be proven that, after reordering the elements 6;, and after
considering translations of the form Gi’ = 0; + s5; with s; € §, it can be assumed that
B’ = S[6y,...,0/]and

min{ﬁpn, @) :i=1,...,e} > min{ipn, (y):i=1,...,s}. (8.20)
To see this it suffices to observe that since p,  defines a regular prime at myg,
after translating the elements 6; if needed, we may assume that 6; € p,/ for

i=1,...,e(see Sect. 8.2(C)). Then we can select a regular system of parameters at
S, Y1y ooy Yry Yrtls - - - » Yd, SO that

Pa@y) = V1se-vs Yr)-
Now fori =1,...,e,
O =piayi+...+tpiryrtqiavi+ ...+ qisvs

where p; j,qix € B' = S[01,...,0;,...,6.]fori =1...,e,j=1,...,r,and
k=1,...,s.Fori=1,...,e,and j =1, ..., r, we can write

i 1
Pij =510+ D Siginib 0
with Si,j,05 80 jit,ip € Sandiy+...+i, > 1.Set

/
Qi = Qi — 8i,1,0Y1 —--- — Si,doYr € p,7/.
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Finally (8.20) follows using the same argument as in Lemma 8.9 (iii).
Now we are ready to address the proof of our main theorem:

Theorem 8.12 Let X be an equidimensional variety of dimension d defined over a
perfect field k. Let { € X be a point of multiplicity m > 1. Then:

o IfS-SI(Ox,¢) =1, then
1 = 8-SI(Ox ;) = H-ord (¢) < ord P (2).

In addition, if ¢ is a closed point then also Ordgf) ) =1
o IfS-SI(Ox,¢) > 1, then

H-ord(¢) = min{S-SI(Ox ), ord'" (£)}.

Proof Closed points Assume that ¢ is a closed point and denote itby & € X.Lett = t¢
be the excess of embedding dimension. After an étale extension (B’, mg/, k(§')) of
(Ox &, mg, k(£)) we can assume the setting and the notation described in §8.2, where
B’ = S[0y, ..., 0,.]. After translating the 0; if needed, we have that

Mg = Mgy + (01, ... .0). (8.21)

Recall that Gry ) (S) — Grg/(B') is a finite extension which induces an inclusion
in degree one (see Proposition 8.4 (ii)). Therefore, any regular system of parameters
generating my ¢y, y1, - - . » Yd» can be considered as part of a minimal set of generators
of mg . Recall in addition that Vg (y;) = 1, fori =1, ...,d.

Continuing with the setting in Sect. 8.2, the Rees algebra G?*¢) is weakly equivalent
to the Rees algebra in (8.10), which in turn is a p-presentation of G@*¢) (see Sect. 8.7
(A)). Since h; (x)WP" € GO we have that ver(hi(x;)) > p% in V@t and
hence vgr (h; (6;)) > pz" in Spec(B’) fori =1,..., pz" (see (8.14)). Note here that if
hi(0;) =0 € B/, then Ver(hi(6;)) = oo, but the arguments below go through even in
this case.

Closed points in the non-extremal case. If dimy ) ker(A¢) < ¢, thendimy g ker(Ag/)
< t (see Lemma 3.9), and hence, necessarily, Ve/(6;) = 1 for some i € {1,...,e}.
Without loss of generality we can assume that vg/(61) = 1,...,Vg(8:) = 1 and
Ver(Ocq1) > 1,...,Ver(8,) > 1 forsomec € {1,...,¢e}.

Since the assumption is that Ve/(6;) = 1, fori = 1,...,c, we will pay special
attention to hi(Gi)Wpei fori = 1,...,c. To start with, by Definition 2.1 and the
properties in Proposition 2.5, we have that

- pzi
ver(hi(6;) — 0 ) =

. 0
> min {95/(5@9{" f)}
j=1,..,.pti J
> min [t @™+ " - . (8.22)
j=1,..., pti
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Next, we will distinguish different cases depending on the values g/ (a j.i) )/Jj. Recall
that Dg/(&;i)) = va@/)(&y)) > jforj=1,...,p%andi = 1,..., e (see Proposi-
tion 2.10). ‘

Case (a). There exists some i € {l,...,c} such that Dg/(d;’)) > jforall j =
1,..., pel. Then by Remark 2.2, and by (8.22), for that index i,

B (i (0) = min {50, 50 i 0) — 67" | = pt

from where it follows that Rs/(gy) = orda(g/)(g(d)) = 1. Here we use that
hi)WP € Gpr and (8.14).

Case (b) For each i € {1,...,c} there exist some j € {I, ...,pel} such that
ig/(&;i)) = j. Here we distinguish two cases:

Case (b.1)If j € {1, ..., p’" — 1}, then by Remark 7.10,

~ (1)
Veen(as”’)
1 = min {M} > Ord(x(f’)(g(d)) > 1,
J

hence ordy ¢ (G?D) = 1.

Case (b.2) Assume that for all i = 1,...,c we have ﬁg/(&y)) > jfor j =
1,...,p" —1and isf(d[(jg’_) = pli. After replacing 6; by 6; + s;, for some s; € S,
we may assume that the initial part of &Z@)i is not a p%-th power (here we consider

Ina(gr)(égg)i) = H(Y1,...,Ys) € Gryen(S) as a homogeneous polynomial of degree

p'i, see Sect.7.11 and Definition 7.12). Note that the elimination algebra is invariant by

the change 6; — 0; +s; (see Example 6.6). Observe that that now vg/ (6; +5;) > 1 but
from our hypothesis there must be at least one 6; +s; such that Ve/(6; +s;) = 1. Setting
6] = 0; +s; after relabeling if needed we can assume v/ (9)) = - - - = Ve/(0),) = 1, for
some ¢’ < c¢. If some 91./ falls into cases (a) or (b.1) we are done, and ord X (¢) = 1.

Otherwise if all 6/,i = 1,..., ¢/, with ¢/ > I are in case (b.2), then it follows that
H-ordg?) (§/) = 1. In such case, moreover, since £ is a closed point and the initial part

of Ez;lg)l has some term which is not an p‘-th power, there is a differential operator
D in S of order b < p*' such that va@/)(D(&;le)l)) = pY — b. Now, D is also a

differential operator in S[x1, ..., x.], thus we have that D (h (xl))Wl’[rb € gldte),
since G@+e) ig differentially saturated. Finally, observe that

- = 0y — =
D(h () = D@ ) +axf ' o dy

Using the same argument as in the proof of Theorem 4.4 in [5] (p. 1286) it follows that
the norm of D (k1 (x1)) is an element of order one in G), and hence ordy ) (G @y =1.
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To conclude, for all the cases orda(g/)(g(d)) = 1, and by Theorem 7.9 and
Remark 7.17,

~(1) ~(1)
va(en(@; ) Va(en (@ i)
min & ordyen (G) | = min —epl ord e (GY)
j=1,....pt J p!

Hence H-ord{ (§) = H-ord' (§") = ord e (G) = 1.

Closed points in the extremal case. By Lemma 8.9, we can assume that mgr =

My + (01, ..., 6;) witht < e, that

min{vg (6;) i =1,...,t} =min{vg(6;) :i =1,...,¢,...,¢e},

and that ve/(9;) > 1 fori =1,...,¢. Thus {61, ..., 6;} is A¢-sequence.
Recall that by Remark 7.10, foreveryi € 1,...,e,andeach j =1, ..., pé" -1,

(i)
@n(a;’)
ordgen (GD) < % (8.23)
Since h; (6;)WP" € Gp, we have that
- ¢ -
ordg (hi (G)WP") > orde/(Gpr) = ordyery G, (8.24)

(see (8.14)). We will distinguish two cases:
Case (a’) Suppose that g/ (6;) > ordg ) G'@ foralli € {1,...,}. Then

S-SI(Oy' £1) > ordy ) 6. (8.25)

Inaddition, fori = 1,...,17,..., e wehave also Vg/(6;) > ordg ) [ CON and by (8.23),

Li (i L (i
ve (07" +afel T+ +al)6)

phi

Pl > ordyen G,

fori =1,...,e. As a consequence, by (8.24) and Remark 2.2,

S, (5 N7
Ve (@ ;) B Vag)(@ ;)

pti — pti

> Orda(g/) g(d).
Therefore,

Vo (g’ )(a I )

SI(P)(') = min L ordg e (G@) | = orda e (GD) = Heord ) (£).
p i
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Thus, by (8.25),
H-ord'?) (¢") = min{S-SI(Oy' ¢), ord ) (£")).

Case (b’) Suppose that Vg (6;) < ordy e G for some i € {I,...,t}. We will
prove that in this case:

,min {ng(@'), Orda(S’)(g(d))}

,,,,,

Va(s)(a 1)

= SIP)E) = min_ T”orda<s><g< Nt (8.26)

¢ .

By (8.24) and Remark 2.2, either vg/ (9] ") = vs/(a(l)é?p ~') for some j €
¢ G

{1, ..., pz" — 1}, or else Ug/(éip ) = ﬁg/(agzi). In the first case, we would have

— o apti — ([~ pli—j . ... . .
that vg/ (0, ) = Ver (a ; 0; ) which by Proposition 2.10 implies that
PiTe(O) = Ve @) + (p' — jve ),

and therefore, Vg (0;) = ig/(éy))/j = Va(g/)(fl;i))/j > Orda(g/)g(d) (by

Remark 7.10) which is a contradiction. Thus, necessarily, Ve (6;) = ig/(d% )/ pei =
v“(f’)(&sl)f )/p[i < ordg e G9D (since by assumption Ve (6;) < ordg e g<d>).
Conversely, if for somei = 1, ..., e, Va(é’)(&z(:e)[ )/pli < orda(gf)(g(d)), then this

leads to Ve (6;) = v,gx(a(’) )/ PY = vy (&Sgi )/p'i. Hence equality (8.26) holds.
Now we check that the theorem follows from here for & € X’. On the one

hand, by Lemma 8.9, for each A/ -sequence, 81, . . ., §;, we can find suitable elements
01,...,0;,...,0,,s0that B = S[6y,...,0.] and

mm {vg 1(6;)} > m1n {vg/(B )},

.....

for which we either fall in case (a’), or else we fall in case (b’) and then equality (8.26)
holds.
On the other hand, higher values of SI(P)(&’) are only obtained in case (b’) after

translations on the coefficients a ap by elements on S. These in turn induce changes of

the form 6/ := 6; +s;, with s5; € mg ey and with the additional property pointed out in
(8.13), thus Vg (0)) > Vgr(0;) fori =1, ..., e.Observing thatalso B" = S[6, ..., 6],
again by Lemma 8.9, we can extract a Az-sequence among 6y, ..., 0, for which we
either fall in case (a’) or else we fall in case (b’) and equality (8.26) holds.

To conclude, to check that the theorem holds at (O ¢, m, k(£)) it suffices to observe
that by Proposition 8.6 and Remark 8.5, Grmg (Ox.¢) = Gryy(B’). Therefore, the
theorem follows from Proposition 3.10.
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Non-closed points. Let { = n € X be a non-closed point of multiplicity m > 1.
Denote by p;, the prime defined by 1 in some affine open set U C X. Choose a closed
point

te{ncXx (8.27)

with the following conditions:
(1) & and n has the same multiplicity m.
(2) Ox ¢ /py is aregular local ring of dimension d — r for r > 1.
Let B = Ox ¢,andlet B — B’ an étale extension, and § —> B’ afinite morphism as
in Sect. 8.2. Denote by and p,, the prime dominating p,;, &’ the closed point dominating
&, and py(,yy the prime p,y N S. By [3, Corollary 3.2], py(,) determines a regular
prime. Under these assumptions, using [3, Lemma 3.6], we can assume that B’ =
S[61, ..., 0.] with 0; € p,y (see Sect. 8.7 (C)). Note thatipn, (6;)) > landvg (6;) > 1,
fori =1,...,e.Since 6; € p,y, it follows that p,y = poy) + (01, ..., 6).
Non-closed points in the non-extremal case. If 7 is not in the extremal case, nec-
essarily Vpﬂ, (6;) = 1 for some i. After reordering we may assume that v,/ (6) =
L...,vy0) = 1and Vyy(Ocy1) > 1,...,V,(8,) > 1. Note that, in particular,
vpn,(e,») =l1fori=1,...,c.

Now using the fact that

ﬁn/ (gl;l)) = \)a(n/) (Zl;l)) = Vpa(n’) (Zl;l)) = ﬁpn, (El;l))

cases (a) and (b.1) follow using the same argument as in the closed point case. Observe
that in case (b.2) if ﬁpn/ (Z’;ll)i) = p[i, after replacing 6; by 6; + s;, for some s; € S,

we may assume that the initial part of Zzl(jg)i is not a p'i-th power (here we consider
Inpa(ﬂ,) (Zl;jzl_) =H{Y;,....Y,)¢€ Grpa(,/) () as ahomogeneous polynomial of degree

p'i). Here there is no need to localize as it is shown in the proof of [5, Proposition
5.8].

After the translations 6; 4 s; we may fall into cases (a), (b.1) or (b.2). From here it
follows that H-ord'¢’ () = 1.

Non-closed points in the extremal case. Here we can repeat the arguments in cases

(a”) or (b’) for B;J =S o) [61, ..., 6.] where the arguments are valid for a local
7 o

ring (see 8.7(B)). Thus:

H-ord') (") = min{S-SI(Ox ), ord& (1)} (8.28)
We have that S-S1(Oyx ;) < S-SI(Ox ). To prove the theorem for n € X we will
want to use Proposition 3.11. But to do so, among other things, we need to show that
there is some A,/-sequence in B (without localizing at p,y), that is also a A¢/-sequence,

Yiseens yt’” . € p,y, for which the following equality holds:

H-ord') (") = min{w, (v)), . .. Ty (), ord'?) (')). (8.29)
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From here the theorem will follow for Oy , because

e cither H-ordg(d)(n) = H-ordgf,)(n’) = ordg?,)(n/) = ordgf)(n), and applying Propo-
sition 3.11 to y{, ..., ¥/, we would get that:
n

8-SI(Ox.) = min{Ty (7). ..., Vy (y)} = ordie) (') = ord i (n);

e or H-ord}{’ (n) = H-ord{) (') = S-SI(Ox,,y), and, again, by Proposition 3.11
applied to the same sequence we would get that:

S-SI(Ox ;) = S-SI(Ox/ ).

To find y{,...,¥/, € py C B’, with the previous properties, we will proceed as
n
follows.

Using the same arguments as in the proof of Proposition 8.13 below, the closed
point £ € {n} € X in (8.27) can be selected so that in addition to (1) and (2) it also
satisfies the following condition:

(3) Both points, & and n, are in the extremal case.

Recall that under these conditions, we have that
tr < ty. (8.30)

Also, following the same arguments as in the proof of Proposition 8.13 below we
can assume that ﬁpn, (6;) > 1 and hence that vg/(6;) > 1fori =1, ..., e (see (8.44)).

Suppose first that H-ordgf/) ) = ordg(d/)(r;/ ). Since
- 0 -
ordy , (hi@)WP") > ordy, , (Gx/) = orday) G, (8.31)
and by Remark 7.10,

~(0)
Vpa / (a' )
Ordpa(r]/) (GDy < 2 J ~

)

foralli = 1,...,eand j = 1,...,p‘zf — 1, the hypothesis Vpn,(Q,-) > 1 fori =
1...,e, implies

~ (i)
Vpa(n/) (apli )
_— >

1.
phi
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Now, by the discussion in Sect. 7.11, after a finite number of translations of the
form 9,.’ = 6; + s; with s; € S it can be assumed thatfori =1, ..., e,

~ (i)
Vpa / (a ll-)
% = ordy ).

Recall that for each translations, Oi’ = 6; + s;, we have that

~ ()
VPagr) (apéi)
—_— >

1
pti

Upa(n/) (si) =

(see (8.15) and (8.17), which implies that, after a finite number of translations, we are

in the following situation: B’ = S[0y, ..., 6,], with
Ty, (6;) = ordyy) () (8.32)
and
Vp, (0) > 1 (8.33)

fori = 1,...,e. This already implies that S-SI(Oy~ ,/) > ordgg,)(n’). Since mgr =
My + (01, ..., 0), after relabeling, we can assume that 0y, ..., 9,5, form a Ag/-
sequence. Thus

mg/ = ma(g/) + (91, ceey 9’5’)’
and by Lemma 8.10,

pn/ = ma(n/) —+ <91, ey 6;5,).

Hence t,; = ¢ and setting t = t,/, we have that 6y, ..., 6, form also a A,/-sequence.
Since in addition &’ is in the extremal case, we can assume that k(§) = k(&) (see
Remark 8.5). Finally, we can use Proposition 3.11 (with yl.’ =¢;fori=1,...,t)to

conclude that
H-ord (1) = ord (1) = min{S-SI(Ox ), ord'?’ (m)}.

Suppose now that H-ordggl/) ) < ordg(d/)(r/ ). Since 7’ is in the extremal case, by
Proposition 8.13 below, we only have to consider the case where

I < H-ord® (") < ord& (). (8.34)
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As in Sect. 8.2, we can assume that

, G iyl Ny ;
hi@)Wwr =@ +aPer M4+ a[(:g)wpe € Gy (8.35)
By (8.34), there must be some indexes iy, ..., i., for which
~(ij)
vp, @5 )
1 <7y (6 = + < H-ordg(,)(n’).
p J
If the second inequality is strictfor all iy, . . ., i., then we can make changes of variables

of the form 91.’1_ = 6;; +si; with s;; € S and

L))

Vp,]/ (apéij )

Vhogyy (Sij) Z 4 ——
p J

(see (8.17)), such that for some index, which we can assume to be e,
Vp,, (61) = H-ord'?) () <y, (6]
By, (0)) = Heord(y) () < T, (6],

fori = 1,...,e — 1. Notice that from the way the changes are made, ﬁg(@i/ ) >
Ve(0;) > 1 and B’ = S[6y, ..., 0,] (here there is no need to localize as it is shown in
the proof of [5, Proposition 5.8]; see also Sect. 7.11).

To summarize, there is a presentation of B, B’ = S[6;,...,6,], such that
vpn,(e);) > l1fori=1,...,e(thusvg(6;) > 1fori =1,...,e),and so that

Wy, () = SI(P)(n') = H-ord} ().

Now recall that mgr = mgey + (6], ...,6,). We claim that we can select 7z
elements among 6y, ..., 0, so that the order of at least one of them at p,s equals
ﬁpn, (0;). The claim follows immediately if 9; S mgr\mg,. Otherwise, we can assume,
without loss of generality, that the classes of 67, ..., 0,;, are linearly independent at
mg//mg/ and that vy , ) > Vp, (6)) fori = 1,..., 1. Then we can replace 6]
by 6] + 6,, so mg = mgey + (O], ... ,0,;,), 0, ..., 9[;, form a Ag-sequence and
Vp, @) = Vp, (6)). By Lemma 8.10, p,y = poqy) + (65, ...,9,;,), thus 7z > 1,
hence by (8.30), ter = t,/, we have that 9{, e, %, is also a A,/-sequence and setting

t :=t,y, by construction

min{y , (0)). ..., (6))} = H-ord) (). (8.36)
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Note that, in general, ipﬂ, (6;) < vy (6;). If these inequalities were strict for all i =
1, ..., t then we would have found a A,/-sequence for which

.= — d
min{v, (0), ...,y ()} > H-ordg(,)(n/),

and since H—ordg?,)(n’ ) < ordgf/) (") and we already know that the theorem holds for
Bpn,, we would get a contradiction. Hence, there must be some index i for which

vy (0;) = H-ordgf,)(n’ ). Finally, since &’ is in the extremal case, we can also assume
that k(&") = k(&), and apply Proposition 3.11to y/ = 6/ fori = 1, ..., t, from where
it follows that the theorem holds for n € X. O

Proposition 8.13 Let X be an equidimensional variety of dimension d defined over a
perfect field k. Let { € X be a point of multiplicity m > 1 which is in the extremal
case. IfH-ordg?)(;) < ordgf) (2), then

H-ord"(¢) > 1.

Proof Closed points. Suppose first that { = & is a closed point in X. Consider a suit-
able étale extension of (Ox ¢, mg, k(£)) as in Sect. 8.2, and work on (B’, mg, k(§')).

Following the notation and results in §8.2 (A), we can write B’ = S[0, ..., 0,] with
0; € mg fori =1,...,e. And since &’ is in the extremal case, by Lemma 8.9, we can
assume that vg/(6;) > 1fori =1,...,e.
Recall that
Vo (&) (51(;4)1. ) y
SI(P)(E") = Hllin — ordge) (G T (8.37)
i=1,..., e p

and that foreveryi € 1,...,eandeach j =1,..., p% — 1,

va@/) (&;l))

H-ord') (§") < ordyer)(G9) < , (8.38)

where the first inequality follows from the hypothesis in the proposition, and the second
from Remark 7.10. Thus, there must be some i € {1, ..., e} such that,

Vo (&) (5123,. )

" < ordgen (GD). (8.39)

p

For every i such that (8.39) holds, since h; (Gi)Wp[’ € Gp,

I : I Gy i (i ;
orde (h; (0)WP") = orde (07 +a0r T 4 4 a;’e{, ywr'
> ordy(Gp) = ordg ey G, (8.40)
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(see equality (8.14)). Thus, necessarily, for those indexes i,

~(1
Va(g') (aﬁ,ef )

1% ’

Ve (0) = oh

and since Vg (6;) > 1 the result follows from the definition of H—ordgf,) EH =
H-ord{? (&).

Non-closed points. Let { = n € X be a non-closed point of multiplicity m > 1.
Denote by p; the prime defined by 7 in some affine open set of U C X. Choose a
closed point & € {n} € X with the following conditions:

1. & and n have the same multiplicity m.
2. Ox ¢ /py is aregular local ring of dimension d — r for some r > 1.
3. Both points, £ and 7, are in the extremal case.

Conditions (1) and (2) hold in some open affine set U C X containing 7.
To see that condition (3) can be achieved, choose a minimal set of generators
sees Zrs Vlsens Viy € Ox,, of p,0x , with v, (y;) > 1,fori =1, ..., 1,. Notice
that after shrinking U, if needed, we can assume that p, = (z1,...,2r, Y1, .-+, y,ﬂ)
on U, and that for any closed point £ € U ﬂm, Ve(y;) > 1fori=1,...,1,.

Let £ € U N {5} be a closed point. Since condition (2) holds, we can find
Zr4ls--->24 € mg such that mg = (z1, ...,zd,yl,...,y,”) with Vg (z;) = 1, for
i=1,...,d. Since ve(y;) > lfori =1, ...,1,,(3)holds. In particular if ; denotes
the class of y; in mg /mg., then

ker(Ag) = (V1,.... V1) (8.41)

and 1; < 1.

Let B = Oxg, and let B — B’ an étale extension, and § — B’ a finite
morphism as in Sect. 8.2. Denote by and p,y C B’ the prime dominating p, B, £’ the
closed point dominating &, and pe ;) the prime p,y N S. By [3, Corollary 3.2], pg ()
determines a regular prime. Under these assumptions, using [3, Lemma 3.6], we can
assume that B’ = S[0y, ..., 0,] with 0; € p,y. Note that ﬁpn, (0;) > land ver(6;) > 1
(see §8.7 (C)).

Since ker(Az) Q) k(') = ker(Ag), by (8.41) and Remark 8.4,

Mg = Mgy + (Vis oo Vi) (8.42)
Thus, by Lemma 8.10,

Py = Pair) + V1o V) (8.43)
By Remark 8.11, maybe after translating the 6;, we can assume that B" = S[6], ..., 6,]

and that
min{Upn, (0,-’) i=1,...,e} > min{ﬁpn, yi):i=1,...,s}> 1. (8.44)

@ Springer



A. Benito etal.

Now, using (8.16) and the definition of H-ordy/(n’), the proof of the proposition
follows using a similar argument as the one we used for closed points (see §8.2 (C)),
thus 1 < H-ordy (") = H-ordx (n). O

The following example illustrates that, for a given d-dimensional variety X, there
may be non-closed points n € X with S-SI(Ox ,) = 1 but ord® () > 1. Thus the
last part of the first statement of Theorem 8.12 might not hold for non-closed points.

Example8.14 Let p € Z-( be a prime and let X be the hypersurface in V) :=
Spec(IF[x, y1, y21) defined by f = x? — yfyz. Then p = (x, y1) determines a non-
closed point of maximum multiplicity p which is not in the extremal case. The Rees
algebra

G® = Diff (Fplx, y1, y21[(x? =y y2) WP)
= Fplx, y1, 21y} WL, (x? — yPy) WPl (8.45)

represents the stratum of p-fold points of X. Let & be the closed point corresponding
to m = (x, y1, y2). Then the natural inclusion F,[yi, y2] C Fplx, y1, y2] is GgA.
admissible at & and provides a presentation of B = I, [x, y1, y21/(f) as in Sect. 8.2.
The Rees algebra

G@ =TF,ly, nlly! wry,

is an elimination algebra for G . Notice that (8.45) is a p-presentation of G® which
is already in normal form at 5, and that

V07 p
p p

=1.

On the other hand, setting q := pNIF,[y1, y2], we have that ordg?) (1) = ordgq G@) =
%. Thus, H—ordg(z) m=1< ordg?)(n), even though 7 is not in the extremal case.
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