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Abstract: In the present study, different models constructed with meteorological variables are pro-
posed for the determination of horizontal ultraviolet irradiance (IUV), on the basis of data collected
at Burgos (Spain) during an experimental campaign between March 2020 and May 2022. The aim
is to explore the effectiveness of a range of variables for modelling horizontal ultraviolet irradiance
through a comparison of supervised artificial neural network (ANN) and regression model results.
A preliminary feature selection process using the Pearson correlation coefficient was sufficient to
determine the variables for use in the models. The following variables and their influence on hori-
zontal ultraviolet irradiance were analyzed: horizontal global irradiance (IGH), clearness index (kt),
solar altitude angle (α), horizontal beam irradiance (IBH), diffuse fraction (D), temperature (T), sky
clearness (ε), cloud cover (Cc), horizontal diffuse irradiance (IDH), and sky brightness (∆). The ANN
models yielded results of greater accuracy than the regression models.

Keywords: UV irradiance; ANN; modeling; multilinear regression models

1. Introduction

Ultraviolet radiation is the region of the solar spectrum with wavelengths between
100 and 400 nm. It is usually divided into three spectral bands: UV-C (100–280 nm),
completely absorbed in the Earth’s atmosphere; UV-B (280–315 nm), partially absorbed by
the stratospheric ozone; and UV-A (315–400 nm), weakly absorbed by ozone and therefore
transmitted to the Earth’s surface [1]. UV radiation varies greatly on the ground, depending
mainly on latitude, solar elevation, temperature, cloud characteristics, total ozone, aerosol
pollution, and surface albedo [2,3]. Ultraviolet radiation can induce serious adverse health
effects and may be responsible for premature skin aging, proliferation of skin cancer [4–6],
immune deficiencies and cataracts, as well as damage to ecosystems, crops [7,8], and the
biosphere [9]. However, ultraviolet radiation in moderate doses has health benefits, can
reduce blood pressure, has been linked to improvements in mental health, and promotes
the synthesis of vitamin D, among other advantages [10].

As not all ground meteorological stations have sensors to measure ultraviolet irra-
diance [11], mathematical models are therefore usually developed to generate ultraviolet
values based on experimental measurements of other meteorological data that are more
frequently recorded at ground meteorological stations, such as horizontal global irradi-
ance [12]. In many works, the ratio between the ultraviolet component and the horizontal
global irradiance, (IUV/IGH), has been studied, obtaining values of between 2.5% and
6% [13]. A complete review of this relation can be found in [14]. The ratio between both
magnitudes is location dependent and is influenced by the clearness index, kt; when cloudi-
ness increases, the ratio of IUV to IGH increases [15], i.e., the presence of clouds reduces
the global horizontal irradiance to a greater extent than the UV component [16–18]. The
dependence of solar UV irradiance on solar elevation has also been studied, observing that

Appl. Sci. 2023, 13, 1473. https://doi.org/10.3390/app13031473 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031473
https://doi.org/10.3390/app13031473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7064-0308
https://orcid.org/0000-0003-3233-0525
https://orcid.org/0000-0003-4733-7391
https://doi.org/10.3390/app13031473
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031473?type=check_update&version=2


Appl. Sci. 2023, 13, 1473 2 of 14

when solar elevation increases, the levels of IUV reaching the surface also increase. It can be
concluded that solar elevation is one determining factor when modeling solar UV radiation
under all sky conditions [18]. It has been found that the dependence of IUV upon IGH and
the relative optical air mass can be parameterized with the brightness index on a daily
basis [19,20], revealing a strong inverse linear dependence on the logarithm in relation to
the optical air mass.

Several works have developed different mathematical models for obtaining UV values
as a function of certain atmospheric parameters such as relative optical air mass, cloud
modification factors [3,21,22], aerosols, different tilt angles and ozone as well as local
surface characteristics (albedo) [23], cosine of the solar zenith angle [2], precipitable water
content, total ozone column, aerosol optical depth, temperature, humidity and dew point
temperature under all sky conditions [13]. Many other works observed that IUV and
IGH are mainly affected by solar zenith angle [24]. Besides the variation in solar zenith
angle, cloud cover is an important factor in UV levels [25]; however, under clear skies, the
most important factor in the attenuation of solar radiation are aerosols [26]. The model
is therefore often programmed to perform a preliminary classification of the atmospheric
conditions, based on sky types, using the clearness index as a classifier with different
time intervals [2,3,27]. The UV component has been modeled in China, using two input
parameters: the effect of the comprehensive attenuation factors for assumed cloud-free
conditions and the effect of the clouds; this has obtained good results at a different location
from the one at which model was developed [28]. Other models were used to estimate IUV
under various sky conditions, analyzing the dependence of UV irradiance on the brightness
index, ∆, and the solar elevation angle [27]. It has been shown, using the brightness index
as a parameter to model cloudiness, that clouds hardly reduce the UV component, but
the horizontal global component does [3]. If a specific brightness is used, it is observed
that the UV component increases almost exponentially with the zenith angle [29]. In
addition, different statistical models have been developed to estimate daily IUV from IGH
through the linear correlation; these introduce a polynomial correction of the average ratio
IUV/IGH as a function of the transmittance index of global solar irradiance and the UV
atmospheric transmittance index by means of a multiple regression of the air mass and
clearness index [11].

Other researchers have obtained semi-empirical models based on the SMARTS radia-
tive transfer model [30], using atmospheric precipitable water, total ozone column, aerosol
optical depth, daily temperature, relative humidity, atmospheric pressure, and dew point
temperature as the input variables [13]. In this case, the IUV as modeled is considered to be
the product of the cloud modification factor of UV irradiance multiplied by the simulated
UV irradiance under clear sky conditions. For a quantitative evaluation of the effect of
clouds and aerosols on radiation, the so-called daily attenuation coefficients for cloud and
aerosols were defined.

In recent years, the use of ANNs is becoming frequent for the calculation of UV
component values because they possess some advantages over classic modeling. They do
not require a user-specified problem-solving algorithm, and they can respond to patterns
which are similar, but not identical, to that for which they were trained [31]. However, the
ANN is often a “black box” system; its use is not a user-friendly task for a non-expert [20].
In all the works found in the literature in the field of ANN, IGH has been used as input and
its use is now the norm to obtain accurate results when modelling IUV, regardless of the
number and the characteristics of the other variables used as inputs and the architecture of
the ANN [20,29,32,33]. In addition, other authors have developed UV estimation models
through an empirical artificial neural network (ANN) and support vector machine (SVM),
using different variables for each method in order to compare the results obtained for the
modeled values of the UV component [34].

Moreover, other magnitudes related to UV radiation have also been modeled using
ANNs, such as the ratio IUV/IGH, considering the transmittance index of IGH and the
atmospheric transmittance index as the inputs, or the UV atmospheric transmittance index,
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using the air mass and the clearness index as the inputs [11]. Statistical models and ANNs
showed good statistical performance with an RMS lower than 5% and an MBE between 0.4
and 2% [11]. All models can be used to estimate UV radiation at locations where only IGH
data are available [11]. ANN models have been developed to estimate solar UV erythemal
irradiance (UVER), based on a combination of optical air mass, ozone column content, and
IGH. The input data were collected at different locations, obtaining a mean bias deviation
of less than 1% and a root mean square deviation of less than 17% for all locations [35].

In this work, different models are proposed for the determination of the IUV based
on meteorological variables, using data collected at Burgos (Spain). To do so, supervised
artificial neural networks (ANNs) are used and a comparison is also made with the results
obtained through regression models. The following meteorological variables are included
in the study: horizontal global irradiance, IGH, clearness index, kt, solar altitude angle, α,
horizontal beam irradiance, IBH, diffuse fraction, D, temperature, T, sky clearness, ε, cloud
cover, Cc, horizontal diffuse irradiance, IDH, and sky brightness, ∆. First, a feature selection
procedure was applied to identify related features and to remove the irrelevant or less
important ones. After the feature selection procedure, two different strategies were used
for modelling IUV: multilinear regression and ANN modelling. Analysis and comparisons
of both models were conducted to study the influence of sky conditions on the accuracy of
the model. The experimental data for this study were collected during an experimental
campaign that ran from March 2020 to May 2022, in Burgos, Spain.

The paper is structured as follows: after the Introduction section, the characteristics of
the measurement equipment and the experimental data in use are described in Section 2.
In the same section, a methodology is also presented; this will be followed to obtain the
independent variables (meteorological and radiation variables) that were used to develop
the models. Then, in Section 3, the results of using the ANN models are shown. In Section 4,
the results obtained with the regression models are analyzed. Finally, the main conclusions
obtained in this work are presented in Section 5.

2. Equipment and Methodology

In this section, the measurement equipment used to determine the meteorological
and radiation variables is detailed, as well as the methodology followed to develop the
models that predict IUV levels. In the present work, these models are developed for all-sky
conditions.

2.1. Description of the Experimental Data

The data were collected at the weather station located on the flat roof of the Higher
Polytechnic School of the University of Burgos (42◦21′04′′ N, 3◦41′20′′ W, 956 m above
mean sea level), shown in Figure 1. The experimental campaign ran from March 2020
to May 2022. Data were collected every 30 s and averages were recorded every 5 min.
The experimental data IGH, IDH, IBH were subjected to the quality control (QC) procedure
proposed in the MESoR project [36]. Regarding IUV data, it has been established that it
could not be higher than extraterrestrial UV on the horizontal plane, UVH0 corresponding
to the same time frame. UVH0 was calculated using Equation (1):

UVH0 = ε0UVsccos Z (1)

where UVsc is the UV solar constant, and fc is the correction factor based on estimated
orbital eccentricity (ε0 = 1 + 0.033· cos

(
2·π·dn

365

)
) where dn is the day of the year multiplied

by the cosine of the solar zenith angle (cos Z). UVsc was obtained from the integration
of the solar spectrum, revised by Gueymard [37] at between 280 and 400 nm, yielding a
value of 102.15 W·m−2. Data corresponding to solar elevation angles lower than 5◦ were
discarded in order to avoid the cosine response problems of the irradiance measurement
instruments. After the filtering process, a total of 68,509 experimental measurement data
were used in the study.
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Figure 1. Experimental equipment.

IGH, IDH, and IBH were measured with Hulseflux pyranometers (model SR11: sensi-
tivity of 12.13 µV/(W/m2) and uncertainty of ±1.8%) and a pyrheliometer (model DR01:
sensitivity of 10 × 10−6 V/(W/m2) and uncertainty of ±1.2%), respectively. For direct
and diffuse radiation measurements, IDH and IBH, a GEONICA-SEMS-3000 sun tracker
equipped with a shading disc has been used. A Kipp & Zonnen pyranometer (model CUV5:
sensitivity of 300–500 µV/(W/m2) and uncertainty of ±5%) was used to determine the
IUV values. The cloud cover was calculated with a commercial SONA201D all-sky camera
(Sieltec Canary Islands, Spain). The trigger frequency of the camera was 1 s and its image
resolution was 1158 × 1172 pixels, recorded with the RGB color model (8-bit pixels with
integer values between 0 and 255 were used). A complete description of the experimental
facility and instruments can be found in previous works [14,38,39].

2.2. Statistical Parameters and Estimators

In addition to the experimental measurements (IGH, IDH, and IBH, as indicated above),
other meteorological variables easily obtained from those values were used. ∆ is the sky’s
brightness, as shown in Equation (2). It quantifies cloud thickness or aerosol loading.

∆ =
IDH∗m
Bsc·ε0

(2)

where Bsc is the extraterrestrial irradiance constant (=1361.1 W/m2 [40]) and m is the
relative optical air mass. The sky’s clearness index, ε, predicts cloud conditions using the
ratio between the diffuse horizontal irradiance and the direct one on the same plane, as
shown in Equation (3), where k = 1.041 for Z in radians.

ε =

(
IDH + I

IDH
+ kZ3

)
/
(

1 + kZ3
)

(3)

The clearness index, kt, obtained with Equation (4), defined as the ratio of the global
horizontal irradiance at ground level and the extra-terrestrial global solar irradiance, mea-
sures the fraction of the solar radiation transmitted through the atmosphere.

kt =
IGH

Bsc·ε0· cos Z
(4)

The sky ratio or diffuse fraction, D, as shown in Equation (5), is defined as the ratio of
horizontal diffuse irradiance to horizontal global irradiance. It refers to the cloudiness of
the sky and/or the turbidity of the atmosphere.

D =
IDH

IGH
(5)
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The goodness-of-fit of the models was calculated in terms of nMBE (%) (normalized
mean bias error) and nRMSE (%) (normalized root mean square error). Equations (6) and (7)
show the statistical estimators employed in this study.

nMBE (%) = 100 ∑n(Xmodel − Xmeasured)

∑n Xmeasured
(6)

nRMSE (%) = 100

√
∑n(Xmodel−Xmeasured)

2

n
∑n Xmeasured

n

(7)

The Pearson correlation coefficient was used to determine the degree of correlation
between IUV and the meteorological variables under study. The Pearson criterion is based
on the Pearson correlation coefficient, r. If there is a strong correlation between IUV and
the selected variable, then the Pearson coefficient will be either 1 (direct correlation) or
−1 (inverse correlation). However, a Pearson coefficient close to 0 implies a weak or null
correlation. The rule of thumb [41] established five r intervals for the correlation: direct
(1 ≥ |r| ≥ 0.9), strong (0.9 > |r| ≥ 0.7), moderate (0.7 > |r| ≥ 0.5), weak (0.5 > |r | ≥ 0.3), and
negligible (|r| < 0.3). Figure 2 shows the correlation between all variables considered in the
study. The correlation of IUV with the independent meteorological variables is obtained
from the last row/column of the correlation matrix shown in Figure 2. The influence of
these variables on IUV can also be seen graphically in Figure 3, where the input variables
have been ordered according to the correlation with IUV.
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this study.

The meteorological variables with r(IUV, variable) < 0.4 were discarded as inputs for
the models, after which only the variables included in Table 1 were considered.

Table 1. Selection of meteorological variables to be considered, according to the Pearson correlation
coefficient r(IUV, variable).

Variable: IGH α kt IBH D ε T Cc

r(IUV, variable): 0.99 0.82 0.74 0.67 −0.64 0.62 0.57 −0.45

As Figure 3 shows, IGH has the strongest correlation with IUV, followed by the solar
altitude angle, α, and the clearness index, kt. Only D and Cc presented weak inverse
correlation with IUV. The results were coherent with those in the literature review.
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3. Artificial Neural Network Models

A topology consisting of an input layer, a hidden layer, and an output layer was
considered for the ANN, and the Levenberg–Marquardt algorithm was used to adjust both
the weights and the bias of the network, in accordance with Equation (8). The transfer
function in the hidden layer, f1, was sigmoidal, and f2 in the output layer was a linear
function. W1 and b1 were the weights and biases of the hidden layer, and W2 and b2 were
the weights and biases of the output layer, respectively.

IUV = f2(W2 ∗ f1(W1 ∗ Inputs + b1) + b2) (8)

All the meteorological variables indicated in Table 1 may be used to develop ANN-
based models. As indicated above, IGH is the variable with the greatest influence on IUV.
The Pearson correlation coefficient is 0.99, as shown in Figure 2. Therefore, IGH must
be included as a first input of the model. However, some of the variables are correlated
between each other and their inclusion together in the ANN model increased the complexity
of the model without significantly improving accuracy, both for the nRMSE and the nMBE
values. As can be seen in Table 2, the Pearson coefficient r(IGHvariable) highlighted a
high correlation between IGH and kt. On the other hand, as can be observed in Figure 2, a
high correlation exits between IBH, and D. To determine the optimal neural network, the
goodness of fit of the models obtained with the combination of inputs shown in Table 3 was
analyzed, using the previously defined indicators, nRMSE, and nMBE. In each combination,
one of the variables was eliminated or substituted. For the analysis, the experimental data
set was divided into three groups: 70% was used as a training set, 15% as a validation set,
and the remaining 15% was used to test the model. The three (training, validation and test)
data sets were the same in all the models that were developed.

Table 2. The Pearson correlation coefficient r(IGH, variable) for detecting redundant information.

Variable: kt α IBH D ε T Cc

r(IGH,Variable): 0.83 0.75 0.74 −0.71 0.66 0.56 −0.53
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Table 3. Results of IUV ANN models.

Model Number & Variables Training Test

# Variables nRMSE (%) nMBE (%) R2 (%) nRMSE (%) nMBE (%) R2 (%)

1 IGH, kt, α, IBH, D, ε, T, Cc 3.82 0.00 99.68% 3.77 −0.01 99.69%
2 IGH, α, IBH, D, ε, T, Cc 3.87 0.00 99.67% 3.83 −0.01 99.68%
3 IGH, IBH, D, ε, T, Cc 4.26 −0.01 99.60% 4.21 −0.01 99.62%
4 IGH, α, D, ε, T, Cc 3.89 0.00 99.67% 3.86 −0.02 99.68%
5 IGH, α, ε, T, Cc 3.91 −0.02 99.66% 3.88 −0.03 99.67%
6 IGH, α, T, Cc 4.04 0.00 99.64% 4.01 −0.01 99.65%
7 IGH, α, ε, Cc 4.15 0.00 99.62% 4.09 0.00 99.64%
8 IGH, α, T 4.85 0.00 99.48% 4.82 0.04 99.49%
9 IGH, α, Cc 4.30 0.00 99.59% 4.24 0.00 99.61%
10 IGH, α, ε 4.71 −0.01 99.51% 4.67 0.02 99.53%
11 IGH, α 5.13 0.01 99.42% 5.09 0.07 99.44%
12 IGH 10.30 0.00 97.66% 10.29 0.19 97.70%
13 kt, α, Cc 4.36 0.00 99.58% 4.34 0.02 99.59%
14 kt, α 5.13 0.00 99.42% 5.10 0.05 99.44%
15 kt 39.72 −0.05 65.26% 40.08 0.58 65.14%
16 IBH, α, Cc 8.70 −0.01 98.33% 8.55 0.08 98.41%
17 IBH, α 11.94 0.00 96.86% 12.03 −0.02 96.86%
18 IBH 45.45 0.00 54.50% 46.05 0.45 53.98%

Table 3 shows the 18 ANN models developed with the nRMSE, nMBE, and the corre-
sponding R2 values obtained for the data used in both the training and in the test models.

The results shown in Table 3 confirmed that the inclusion of meteorological variables
with a high Pearson correlation coefficient in no way improved the accuracy of the ANN.
On the one hand, considering IGH, α, ε, T, Cc, ANN model number 5 might be more
appropriate than models 1 to 4 listed in Table 3. On the other hand, eliminating solar height
had a negative influence on the values of the statistics under analysis. Therefore, solar
height was left as an independent variable in the models. Likewise, worse results were
observed after removing cloud cover and leaving temperature. Based on the above, the
model to be used was model number 9, from Table 3, as that model presented a reduced
number of inputs (IGH, α, Cc) and yielded adequate nRMSE and nMBE values. In addition,
it was observed that model 9, which uses IGH, yielded a somewhat lower nRMSE than
model 13, obtained using kt instead of IGH and with the two other above-mentioned
variables (α, Cc). However, both models could be used, as they yielded similar results. On
the other hand, significantly worse statistics were observed when using IBH instead of IGH
with the two previously mentioned variables (α, Cc). It can be seen that the selected model
(model 9) presented an R2 of 99.59% with the training dataset, and of 99.61% with the test
dataset, and similar values were obtained with the model that used kt instead of IGH.

Figure 4 shows the relationship between IUV and IGH based on the data considered in
this study. Both the training and the test datasets showed similar distributions.

Figure 5 also shows the relationship between solar height and ultraviolet radiation for
both the training and test datasets. These figures are included because solar height will be
a variable that will be part of the selected models, as can be seen in Table 3, while Figure 6
represents the ultraviolet radiation vs. cloud cover for both datasets.

Figure 7 shows the values predicted with ANN model number 9, where the “Output”
corresponds to the neural network outputs and “Target” to the experimental values for
both training and test dataset results.
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4. Regression Models

Having determined the ANN-based models, a regression fit was performed with the
same selected variables (IGH, α, and Cc) analyzing first and second-order models. A similar
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study was also performed with (kt, α, and Cc). The models were fitted with 85% of the data
to generate the regression models, and the remaining 15% of the data were used to test the
models. The data used for fitting and testing the regression models were the same as those
used for the ANN models. It should be noted that when using IBH instead of IGH or kt, the
accuracy of the models worsened significantly, which could be expected a priori in view of
the correlation matrix shown in Figure 2. Therefore, these models were not included in the
present study.

From the data shown in Figure 4 an approximately linear relationship between IUV and
IGH can be deduced after fitting a first-order model as a function of IGH,
IUV = 0.3676 + 0.0369·IGH. It could therefore be considered, as an approximate value,
that IUV was 3.7% of IGH, for the data analyzed within the study period and in the local-
ity of Burgos, Spain. The results with the linear model R2 = 97.32%, RSME = 11.02%,
and nMBE = 0.00% were worse than those obtained with more complex models, which
included a larger number of variables but had the advantage of simplicity.

The following linear regression models given by Equation (9) can be considered as
a first option, in the case of preferring greater accuracy, than the linear model with IGH
without using ANNs:

IUV = b0 + ∑3
j=1 bj ∗ xj (9)

Although this means including more independent variables in the model. The use of
a second-order regression model, such as the one shown in Equation (10), could also be
considered, should greater precision be needed:

IUV = b0 + ∑3
j=1 bj ∗ xj + ∑3

j=1 bjj ∗ x2
j + ∑3

k > j
j = 1, 2

bjk ∗ xj ∗ xk (10)

Equations (9) and (10) show the first-order and the second-order models to be fitted
to the ultraviolet irradiance model, considering x1 = IGH, x2 = α and x3 = Cc both in the
first-order and the second-order models. Equation (11) shows the first-order regression
model fitted with the above three variables, and Equation (12) also shows the linear
regression model fitted only for IGH and solar altitude, i.e., eliminating cloud cover from
the linear-regression model.

IUV = −1.9243 + 0.0323·IGH + 6.5892 ∗ α + 0.0035·Cc[
R2

Training = 98.83%, nRMSETraining = 7.29%, nMBETraining = 0.00%
][

R2
Test = 98.82%, nRMSETest = 7.36%, nMBETest = 0.11%

] (11)

IUV = −1.7224 + 0.0317·IGH + 6.9531·α[
R2

Training = 98.82%, nRMSETraining = 7.32%, nMBETraining = 0.00%
][

R2
Test = 98.81%, nRMSETest = 7.39%, nMBETest = 0.11%

] (12)

Equation (13) shows the second-order model, with the three independent variables
selected for ANN model 9, fitted to the data that are studied in this work.

IUV = −1.8212 + 0.0167·IGH + 19.0462·α+ 0.0126·Cc− 9.29·10−6·I2
GH + 0.0188·IGH·α+ 8.80·10−5

·IGH·Cc− 7.2559·α2 − 0.0958·α·Cc− 6.59·10−5·Cc2

[R2
Training = 99.43%, nRMSETraining = 5.06%, nMBETraining = 0.00%]

[R2
Test = 99.45%, nRMSETest = 5.02%, nMBETest = 0.06%]

(13)
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A simpler model is shown in Equation (14), in which cloud cover is removed as an
independent variable, which may be useful if cloud-cover data are unavailable.

IUV = −1.1625 + 0.0238·IGH + 10.2243·α− 1.27·10−5·I2
GH + 0.0253·IGH·α− 8.8361·α2

[R2
Training = 99.30%, nRMSETraining = 5.63%, nMBETraining = 0.00%]

[R2
Test = 99.32%, nRMSETest = 5.60%, nMBETest = 0.07%]

(14)
A study was also conducted on the use of kt instead of IGH. In this case, the values are

shown below in Equations (15)–(18).

IUV = −11.3956 + 22.8218·kt + 24.3899·+ 0.0021·Cc (15)[
R2

Training = 93.18%, nRMSETraining = 17.57%, nMBETraining = 0.00%
][

R2
Test = 93.01%, nRMSETest = 17.95%, nMBETest = 0.11%

]
IUV = −11.1581 + 22.5424·kt + 24.4465·α

(16)

[
R2

Training = 93.18%, nRMSETraining = 17.57%, nMBETraining = 0.00%
][

R2
Test = 93.01%, nRMSETest = 17.95%, nMBETest = 0.11%

]
IUV = −0.3544 + 2.0833·kt + 14.0893·α−0.0165·Cc−9.0813·k2

t + 40.7916·kt·α
+ 0.0405·kt·Cc − 7.9650·α2 − 0.0170·α·Cc − 8.83·10−5·Cc2[
R2

Training = 99.39%, nRMSETraining = 5.26%, nMBETraining = 0.00%
][

R2
Test = 99.40%, nRMSETest = 5.24%, nMBETest = 0.08%

]
(17)

Analogously to IGH, the model in Equation (17), in which cloud cover as an indepen-
dent variable is removed, is useful if the cloud-cover data are unavailable.

IUV = −2.7058+7.3586·kt + 11.4945·α − 10.8880· + 42.6023·kt·α − 7.7515
·α2[

R2
Training = 99.30%, nRMSETraining = 5.63%, nMBETraining = 0.00%

][
R2

Test = 99.32%, nRMSETest = 5.62%, nMBETest = 0.08%
] (18)

It can be observed that when quadratic terms are included in the regression models,
the models containing kt instead of IGH led to similar results, with the models containing
IGH yielding somewhat better results. Therefore, in the case of using a second-order model,
it may be preferable to use kt in the formulation, as it gives an idea of the clearness of the
sky, and the results are similar to using IGH. The same is not true when using linear models,
where the accuracy of considering kt in the formulation worsens significantly, as can be
seen when comparing Equations (15) and (16) with (11) and (12), which correspond to the
first order models for kt and IGH, respectively. Therefore, the use of first-order models
makes it preferable to introduce IGH in the formulation, as the models with kt yielded less
accurate results.

Figures 8–10 show the response surfaces obtained with the second-order regression
models shown in Equations (13) and (17), which correspond to the second-order regression
models developed for IGH, α, and cloud cover and for kt, α, and cloud cover, respectively.
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5. Conclusions

In the present work, different models have been analyzed for the determination of
horizontal ultraviolet irradiance based on meteorological and radiative variables collected
in Burgos (Spain), using supervised ANNs and regression models.

The ANN-based models presented higher accuracy in their predictions of horizontal
ultraviolet irradiance than the regression-based models. Specifically, in the case of the
selected model, which included IGH, α, and Cc as independent variables, the datasets
used to train the neural network and the test data yielded nRMSE readings of 4.30% and
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4.24%, respectively. This ANN-based model was more accurate than the one obtained with
the second-order regression model, which used the same variables and yielded nRMSE
readings of 5.06% and 5.02% with the training and the test datasets, respectively.

It has also been observed that when quadratic terms were included in the regression
models, the models containing kt rather than IGH yielded similar results, while the models
containing IGH were somewhat better. In the case of using the neural network with kt, α
and Cc as independent variables, nRMSE readings of 4.36% and 4.34% were obtained with
the training and the test datasets, respectively. Analogously to the case of IGH, the ANN-
based model for kt was more accurate than the model obtained for kt with a second-order
regression fit using the same variables yielding nRMSE readings of 5.26% and 5.24% for
the training and the test datasets, respectively.

It may therefore be preferable to use kt in the formulation in the case of using a second-
order model, as it gives an idea of the clearness of the sky and the results are similar to
those obtained when using IGH. The same could not be said when using linear models,
with which the accuracy when considering kt in the formulation worsened significantly.

In the case that cloud cover measurements are not available, models 11 and 14 in
Table 3, which have only two independent variables (α and IGH) and (α and kt), respectively,
and which can be easily measured at most stations, present results with high nRMSE
accuracy (5.13% in both cases); they can be useful for predicting ultraviolet radiation.The
effectiveness of the above methods for modeling horizontal ultraviolet irradiance has
been demonstrated, using a reduced number of variables, with the data analyzed in the
present study.
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Nomenclature

Bsc Extraterrestrial irradiance constant (=1361.1 W/m2)
Cc Cloud cover (%)
D Diffuse fraction
IBH Horizontal beam irradiance (W/m2)
IDH Horizontal diffuse irradiance (W/m2)
IGH Horizontal global irradiance (W/m2)
IUV Horizontal ultraviolet irradiance (W/m2)
kt Clearness index
m Relative optical air mass
MBE Mean bias error (%)
n Number of data

https://riubu.ubu.es/handle/10259/5512
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RMSE Root mean square error (%)

T Temperature (◦C)
Xmeasured Measured variable
Xmodel Predicted variable
Z Solar zenith angle (rad)
α Solar altitude angle (rad)
∆ Sky brightness
ε Sky clearness
ε0 Average value of the orbital eccentricity of the Earth
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