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a b s t r a c t

In this work, we provide for the first time the characterization of delay terms in systems of delay differ-
ential equations within the frame of the Network Simulation Method, a procedure that sets a formal
equivalence between the system of differential equations and an electrical network. The results were
not achieved previously, which strengths the formalism of the model and provides new opportunities
for the method. Free circuit software LTspice is employed to conduct the simulations, which requires
few simulation rules and can be programmed either by electrical symbol code or text file. Very few
devices are needed to design the network model, and the delay terms are easily implemented by
voltage-controlled voltage sources. A practical example for delayed adsorption/desorption kinetics is
employed to test the methodology, being the results compared with software Mathematica.
Additionally, the modelling of pulse width in passively mode-locked quantum dot lasers by the applica-
tion of a reverse bias voltage is addressed, which constitutes a promising application in communications
and advanced sensing. The power, versatility and simplicity of the Network Simulation Method enables it
as an exceptional alternative to solve complex systems described by delay differential equations, from
both researching and educational points of view.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

Delay differential equations (DDEs) have gained importance in
recent years, applied to the mathematical description of
scientific-technical and socioeconomical systems [1], considering
that is a common feature for natural processes to present mem-
ory effects. Examples include tumor-immune response via
chemoimmunotherapy, synchronization of chaos for arrays of
Josephson junctions applied to communications, adsorption kinet-
ics, theory of chemical reactions, complex balanced kinetic sys-
tems with distributed time delays, or replicator dynamics with
discrete multi-delays, among others [1–6]. Remarkably, the global
pandemic situation due to COVID-19 has led to important
advances in the dynamics of fractional-order delay models to
study the disease, including delay terms associated to quarantine
such as social distance, immigration and isolation [7]. Addition-
ally, recent advances in mathematics focus on the study of ran-
dom DDEs and new numerical procedures for DDEs with
boundary conditions [8–10], which enables this discipline as a
significant area of research.

Among the numerical approaches, the Network Simulation
Method (NSM) is a highly efficient procedure to solve systems of
coupled differential equations [11,12], based on the electrical anal-
ogy of transport processes [13]. Recent applications of the method
include the thermal insulation of unmanned underwater vehicles,
the evaluation of perturbed supply chains of a finite horizon, or
the study of differential equations exhibiting singularities and
chaotic behavior, qualifying the NSM as a powerful approach to
characterize the nonlinear dynamics in diverse areas [14–16].
Besides, the authors developed NSM software FATSIM-A and Sim-
Kinet as free educational tools to simulate flow transport in porous
media and chemical kinetic equations, respectively [13,17].
Despite all these advances, the implementation of delay terms
charac-
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has not been previously addressed for the NSM, which results in a
lack in its theoretical frame.

In this work we characterize for the first time the delay depen-
dence for the NSM, which immediately opens new applications to
the method. We will illustrate the implementation of the delay
terms in the electrical analogy through the employment of a first
order delay equation, the Hutchinson’s model, and we will apply
the approach to two practical examples of interest: (a) adsorption
kinetics with time delay, extendable to the oscillatory molecular
adsorption patterns in proteins [3], and (b) modeling of pulse
width in quantum dot mode-locked lasers (QDMLLs), essential
for communication, medical, micromachining and military applica-
tions, among others [18–22]. Additionally, we will compare the
results with those obtained with software Mathematica [23],
showing that they are orders of magnitude faster. The reason is
that very few electrical devices and programming rules are
required to design the network model.

In general, the NSM electrical analogy will lead to an equiva-
lence between a system of DDEs and an electrical network, which
is solved by means of appropriate circuit software. This last choice
is not unique, but in this work we have selected the freeware
LTspice [24], which adds value in terms of simplicity and usability,
taking advantage of the powerful numerical codes embodied [25].
Additionally, LTspice presents a user-friendly environment, mak-
ing the whole approach accessible for both researching and educa-
tional purposes in different areas.

2. Network simulation method and delay differential equations

2.1. NSM and DDEs electrical analogy

The NSM is a numerical procedure for the study of physical sys-
tems modeled by sets of differential equations, which is based on
the electrical analogy of transport processes [26,27]. The approach
consists of two well differentiated stages. Firstly, an electrical cir-
cuit equivalent to the mathematical model, including the initial
and boundary conditions, is obtained. Secondly, subsequent
numerical resolution of the network model is conducted by means
of a suitable electrical circuit software. An independent electrical
circuit corresponds to each differential equation of the mathemat-
ical model, being all connected by a common ground node, thus
constituting an electrical network. For physical transport pro-
cesses, the NSM establishes a correspondence between flow and
potential variables with electric currents and electric potentials,
respectively [11].

In order to show how the electrical analogy establishes equiva-
lence between a set of coupled differential equations and an elec-
tric circuit network, it is particularly useful to visualize the process
through the example of the kinetics of a chemical reaction, which
is well known to be described by a set of coupled ordinary differ-
ential equations.

Consider the balance equation of a multiple chemical reaction
that represents the relative amounts of reactants, Ri, and
products, Pj:

X
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j
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; s ¼ 1;2; � � � ð1Þ

where mRi
and mPj stand for the stoichiometric coefficients of Ri and

Pj, and kf , kb are the forward and backward kinetic constants,
respectively. The index s labels each equation.

With the aim to assign sign to the stoichiometric coefficients,
which will be useful for the derivation, m�Ri

and m�Pj are introduced

in Eq. (1):
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where m�Ri
¼ �mRi

and m�Pj ¼ mPj .
The molar flows JRi

and JPj for each reaction s are defined as fol-

lows [28]:

JRi
¼ dnRi

dt
JPj ¼

dnPj

dt
ð3Þ

being nRi
and nPj the number of moles of species Ri and Pj, respec-

tively. Since the molar concentration and the number of moles are

related through the volume of the reactive medium V by cRi
¼ nRi

V

(equivalent for products), Eq. (3) can be rewritten as:

JRi
¼ V

dcRi

dt
JPj ¼ V

dcPj
dt

ð4Þ

The molar flows can be expressed in terms of the so-called reac-
tion rate JRs , a measure of the change in the concentrations of the
reactants and products per unit time, according to [13]:

� JRi

mRi

¼
JPj
mPj
¼ JRs ð5Þ

V
m�Ri

dcRi

dt
¼ V
m�Pj

dcPj
dt
¼ JRs ð6Þ

Eq. (6) establishes the mass local balance corresponding to both
Ri and Pj, where there is a creation-annihilation term given by reac-
tion rate JRs , determined by the mass action law [28]:

JRs ¼ kf
Y

i
cRi

mRi � kb
Y

j
cPj

mPj ð7Þ

Eq. (6) can be rewritten for reactants and products, respectively,
as follows:

JRs � Jci ¼ 0 and JRs � Jcj ¼ 0 ð8Þ

where Jci ¼ V
m�Ri

dCRi
dt and Jcj ¼ V

m�Pj

dCPj
dt are known as the cumulative

flows.
For the general case, each species takes part in more than one

reaction. For instance, if species A takes part in each reaction, a par-
tial balance equation is obtained for each reaction, following the
form:

V
m�A
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The total change in concentration cA sums up the contributions
of each reaction s, whose expression is given by [28]:

dcA
dt
¼

X
s

dcA
dt

� �
s

¼ � 1
V

X
s
mAs JRs ð11Þ

The total flow JcA is defined by:
X

s
JRs � J

cA
¼ 0 ð12Þ

Eq. (12) can be considered as Kirchhoff́s current law (KCL) at the
node cA from the point of view of the network model, and it is
equivalent to the corresponding differential equations of each
chemical species. The flow term JcA resembles the expression of
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the current through a capacitor when the voltage cA is applied at
its ends, since the constitutive equation between the current I
and voltageV at a capacitor is given by I ¼ C dV

dt , C being the capac-
ity of the capacitor.

Because of this similarity, the first-order derivative of the con-
centration is easily implemented in the model via a capacitor,
whose voltage V is then equivalent to cA. The term

P
sJ

R
s in Eq.

(12) represents the relations between the flows of the reactants
and the products. These terms are easy to determine since each
equation must satisfy KCL, because they represent mass local bal-
anced equations. They can be implemented in the network model
through devices named voltage-controlled current sources. These
generators are able to model any kind on non-linearity [11].

Concentration cA is always a positive quantity, so if a ground
node at one end of the capacitor to design the equivalent circuit
is chosen, the current branch is always outgoing from a particular
node cA (see Fig. 1). Its related voltage is just the voltage of the
capacitor. Since the first derivative has units of current, the rest
of the addends also have, representing JRs all the remaining
addends. Each of these addends must be considered in the electric
circuit as a parallel branch to verify KCL. Since all the species con-
centrations are positive, also all the node voltages are, and the
mathematical sign of each addend determines if the branch current
is incoming or outgoing.

After visualizing the general formalism of the NSM, now we
describe the implementation of delay terms for the model. To illus-
trate the procedure, we will choose a system of delay differential
equations, where the i-th equation has the form:

dxiðtÞ
dt

¼ f i t; xj t � sj
� �� �

j¼1;���;n

� 	
ð13Þ

where f i is a function of time t and variables xj, which depend
on time delays sj that can be zero or not. As mentioned, the NSM
adopts the following correspondence between mathematical and
electrical variables:

xi � Vxi

dxi
dt
� Ici ð14Þ

where Vxi is the electric potential (V) and Ici is the electric current
(A). Each addend in Equation (13) is considered as an electric cur-
rent flowing through a branch which balances with the rest of the
terms according to KCL [11]:

Jci ¼ Ici ¼
dxi
dt

ð15Þ
Fig. 1. Current flows
P

sJ
R
s and JcA at the concentration node cA, satisfying KCL.
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Jf i ¼ If i ¼ f i t; xj t � sj
� �� �

j¼1;���;n

� 	
ð16Þ

Jci � Jf i ¼ 0 ð17Þ
The last equation represents KCL at node xiðtÞ (equivalently,

Vxi ) of the circuit.
The next step is to find appropriate electrical devices to imple-

ment Jci and Jf i . Expression Jci ¼ dxi=dt resembles the characteristic
equation relating the current I flowing in a capacitor with the elec-
tric potential V, I ¼ C dV

dt . Addend Jci is implemented by means of a
capacitor of unit value ðC ¼ 1FÞ. In general, function f i is imple-
mented by a voltage-dependent current source containing all the
dependence [11]. Notwithstanding, the characterization of
addends exhibiting delay has not been previously addressed for
the NSM method. The key ingredient is to implement them in
the circuit network through open voltage-controlled voltage
sources, as showed in Fig. 2 (right branch). In this fashion, when-
ever a term with delay in the current source is needed, the corre-
sponding auxiliary node (node xiðt � sÞ in Fig. 2) is called as a
function, which retains the value of xi at previous times, depending
on s. For our simulations, we use freeware LTspice to run the cir-
cuit model, making use of the sophisticated numerical techniques
of analysis that this code embodies (see details in section 2.2). It is
worth pointing out that only three simple electrical devices are
needed to model the whole mathematical system.

To show how a network model with time delay is designed, let
us analyze Hutchinson’s delayed logistic equation [29]. This equa-
tion plays a fundamental role in the mathematical modeling of
ecology problems:

dx tð Þ
dt
¼ ax tð Þ � a

K
x tð Þx t � sð Þ ð18Þ

where a > 0 and K > 0 are the intrinsic growth rate and the car-
rying capacity of resources, respectively. Variable x usually repre-
sents a population.

As mentioned, the derivative term dx tð Þ
dt is implemented by means

of a capacitor of 1F. Function f ¼ ax tð Þ � a
K x tð Þx t � sð Þ is imple-

mented via a voltage-dependent current source. To characterize
the term showing time delay, x t � sð Þ, a voltage-controlled voltage
source is employed (see Fig. 2). The whole electric network consists
of one circuit, corresponding to Eq. (18).

Remarkably, both the design and the solution of analogical elec-
tric networks constitute an important alternative to other classical
numerical procedures. Examples include predator–prey models
modeled via analog multipliers, capacitors and resistors and delay
Lotka-Volterra via operating amplifiers and multipliers powered by
a continuous voltage [30,31]. However, one of the main advantages
of the NSM against other electrical analogies is that very few sim-
ple electrical devices are required to implement the network
model [11]. As mentioned, the solution presented in this work
for the implementation of the time-delayed addends in NSM was
not achieved previously, thus completing the theoretical frame
for the procedure.

2.2. Numerical algorithms in LTspice

LTspice offers three different integration methods in its control
panel. Since certain circuits (containing time constants of very dif-
ferent values) can give rise to stiff equations, it is convenient the
integration algorithm to be stiff-stable. To achieve this objective,
trapezoidal (trap) and Gear integration methods of variable order,
from two to six, are internally considered. After achieving conver-
gence, the solution is stored, and the process is restarted for the
next instant. The time step is variable: the program adjusts it
according to the precision required for the computation time to



Fig. 2. General NSM circuit equivalent to Hutchinson’s delay differential equation, Eq. (18). The right branch represents the auxiliary voltage-controlled voltage source which
controls the delay.
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be minimum. The trapezoidal method is usually the best integra-
tion option, generally stable and accurate, where the time penalty
is to calculate the underlying function at each time. Gear integra-
tion is also effective, but requires greater step time work to reach
the same accuracy, being generally slower than trapezoidal meth-
ods [32]. However, the trapezoidal is just marginally stable on stiff
circuits, and may cause a numerical artifact called trap ringing, in
which the integrated solution oscillates step by step over the true
continuous time behavior. This phenomenon represents a recur-
ring topic in the literature, also present when circuits switch
[33]. For this reason, LTspice incorporates an additional method
called modified trap, which is identical to the standard trap, except
for one additional post-processing that eliminates the oscillation
by using interpolation. Subsequently, LTspice calculates upper
and lower interpolation lines, saving the average value in place
of the original result [24]. In section 3, an application of the NSM
procedure on adsorption kinetics exhibiting delay will be per-
formed, comparing the LTspice numerical algorithms with those
from software Mathematica.
Fig. 3. Dependence of surface tension r tð Þ on time t for the NSM (black line) and
Mathematica (empty red dots).

Table 1
Comparison between LTspice and Mathematica algorithms for simulation of the
adsorption problem introduced by Eqs. (19)-(20).

Numerical integration method Computing time (s)

LTspice Gear 0.023
Trapezoidal 0.024
Modified trapezoidal 0.022

Mathematica Explicit Runge-Kutta 3.345
Adams 3.407
Stiffness 3.454
3. Applications

3.1. Adsorption kinetics

Adsorption processes that naturally present delay must be
described by means of DDEs. As an example to test the method,
let us apply the NSM formalism to solve a practical model of
adsorption kinetics involving the surface tension of gelatin solution
at an interface air/solution, originally developed by Ohshima et al.
in 2004 [34]. The introduction of time delay in adsorption kinetics
at the interface between air and a polymer solution leads, under
certain conditions, to overshoot and oscillation in the time course
of the surface tension of aqueous gelatin solution [34]. The equa-
tions describing the model are:

dNðtÞ
dt

¼ kac0 Nm � NðtÞ½ � � kdN t � sð Þ ð19Þ

r tð Þ ¼ r 0ð Þ � r 0ð Þ � r 1ð Þ½ � 1þ K
K


 �
N tð Þ
Nm

ð20Þ

In this problem, NðtÞ and cðtÞ are the polymer concentration in
the solution and on the interface, respectively, and r tð Þ represents
the surface tension. Constants ka, kd are the rate constants for
adsorption and desorption, respectively, c0 ¼ cð0Þ, Nm ¼ 1þK

K Nð1Þ,

4

K is a characteristic constant for the adsorption and desorption
processes and s is the time delay [34]. Parameters and initial con-

ditions for simulations are: a ¼ 0:56h�1, K ¼ 4:0, s ¼ 7:4h,
r 0ð Þ ¼ 59:42mNm�1, r 1ð Þ ¼ 54:34mNm�1 and Nm ¼ 100, where
a ¼ kac0 and kd ¼ a

K.
Fig. 3 shows the dependence of the surface tension r tð Þ (mN/m)

on time t(h) obtained via NSM (black line) and software Mathe-
matica [23] (empty red dots), exhibiting agreement. The NSM for-
malism can be extended to describe other related complex
phenomena exhibiting delay, such as the oscillatory molecular
adsorption patterns of proteins, which study is connected to the
time scale needed for self-organization [3].



Table 2
Experimental QDMDLL parameters employed in the NSM simulations.

Parameter 0V �3V
T 3.23 5.00
Gð0Þ 3.33 4.18
Qð0Þ 2.33 3.20
ag 0.1 0.2
aq 0.1 0.2
s 2.68 4.65
C 0.13 0.08
c 29.14 39.15
k 0.55 0.55
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Table 1 shows the computing time for numerical algorithms
computed in LTspice and Mathematica applied to Eqs. (19)-(20).
For LTspice, the best computing time is 0.022 s by using the mod-
Fig. 4. Optical power for passively mode-locked quantum dot lasers with monolithic sa
image). Pulse widths are 16.20 and 5.27 ps, respectively.

5

ified trapezoidal method, while Mathematica gives 3.407 s by
employing the explicit Runge-Kutta method. Moreover, any choice
in LTspice is orders of magnitude faster, which could lead to advan-
tages for slow running numerical problems. The power and robust-
ness of the powerful numerical algorithms implemented in the
electrical circuit simulation programs confirm the feasibility and
precision of the NSM, enabling the approach as an outstanding
alternative for the resolution of DDE problems.
3.2. Control of pulse width in passively mode-locked quantum dot
lasers

Quantum-dot semiconductor lasers operating in mode-locking
are outstanding optical sources for generating ultrashort pulses,
exhibiting low-jitter, high repetition rates and less sensitiveness
turable absorber at reverse bias voltage equal to 0 (top image) and �3 V (bottom
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to temperature changes. QDMLLs are of particular interest in a
plethora of applications, highlighting communication and detec-
tion systems [35]. Experimentally, it is well known that the
increase of a reverse bias on the saturable absorber section short-
ens the laser pulse width [36], but the numerical simulations
remain scarce. The authors are currently developing a line of
research involving the modelling of ultrashort pulses in passively
mode-locked quantum dot lasers by means of the NSM delay
approach, applied to LiDAR technologies in military and aerospace
environments, which constitutes a prominent area of research [37].
The absorber section is monolithically integrated in the device,
making the unit a compact and portable source, and Lorentzian
spectral filtering is considered.

The DDE model that describes the QDMLL is given by [36,38]:

c�1
dA
dt
¼ �Aþ

ffiffiffi
k
p

e
1�iagð Þ

2 G t�Tð Þ� 1�iaqð Þ
2 Q t�Tð Þ

� �� �
A t � Tð Þ ð21Þ

dQ
dt
¼ q0 � Q � s 1� e�Q

 �
Aj j2 ð22Þ

dG
dt
¼ g0 � CG� e�Q eG � 1

 �
Aj j2 ð23Þ

Here, A is the envelope of the electric field in the complex
domain, Q is the saturated loss in the absorber section and G rep-
resents the saturated gain of the device. Time t is the renormalized
time, T is the cold cavity roundtrip delay time, q0 and g0 are the
unsaturated gain and adsorption parameters, C is the ratio
between the absorber and gain relaxation times, s is the saturation
parameter, while ag and aq are the line enhancement factors for
gain and absorber sections, respectively. Additionally, c describes
the spectral filtering bandwidth and k accounts for losses in the
cavity. The values of these parameters employed in the NSM sim-
ulations are obtained from real experiments for reverse bias volt-
ages equal to 0 and �3 V, summarized in Table 2. The
unsaturated gain and adsorption parameters are determined as
follows:

g0 ¼ CG 0ð Þ; q0 ¼
Qð0Þ
s

ð24Þ

Fig. 4 shows the time dependence of stable optical power Aj j2
for voltages 0 (top image) and �3 V (bottom image). The results
clearly indicate that voltage �3 V shortens the laser pulse width.
Besides, a noticeable increase in the optical power is achieved. In
order to measure the pulse width, full width at half maximum
(FWHM) is the standard employed, along with pulse repetition
rate, set equal to 4.96 GHz [36]. The results are summarized in
Table 3, compared with the experimental values.

The agreement between the experiment and the NSM simula-
tions, along with the simplicity of the network model, enables
the method as an excellent approach to model QDMLL pulses. Fur-
ther simulations are focused on the effect of temperature on the
devices, study of threshold values for ag and aq, application of
Bragg spectral filtering, effect of noise sources, and the inclusion
of dispersive time delays. The characterization of these phenomena
and the control of the pulse dynamics has led to collaborations
with researching groups of microelectronic design, for the study
of advanced sensing applications.
Table 3
Experimental and NSM simulation values for the pulse width corresponding to the
QDMLL described in [36].

Bias voltage Experimental NSM

0 V 16:25ps 16:20ps
�3 V 5:12ps 5:27ps

6

4. Conclusions

In this paper, we introduce the first model for delay terms in
DDEs within the frame of the NSM, goal not achieved previously.
The procedure is easy to implement, requiring very few devices
to complete the network model. The key ingredient is to employ
open voltage-controlled voltage sources that retain the values of
the variables for selected time delays. Remarkably, the model can
be run in free circuit software such as LTspice, which accurate
numerical algorithms present advantages over powerful software
such as Mathematica in terms of computing time, also exhibiting
equivalent results. The work presented strengths and completes
the formalism of the NSM, enabling it as a formal and outstanding
alternative to the resolution of DDE problems in a fast and simple
way, accessible to both researchers and scholars. In order to illus-
trate the power of the method applied to real problems, the mod-
elling of ultrashort pulses in passively mode-locked quantum dot
lasers was conducted, a fascinating topic that presents vast appli-
cations in medicine, remote sensing or communications. Con-
cretely, it was found that the implementation of a reverse bias
voltage in the absorber section produces a remarkable shortening
of the pulse width, in agreement with the experiments. The future
lines of research of the NSM include the implementation of delay
terms for partial differential equations, with special application
to density-driven flow in porous media.
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