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a b s t r a c t

In this paper, we present a novel and simple Yee Finite-Difference Time-Domain
(FDTD) scheme to solve numerically the nonlinear second-order thermoviscous Navier–
Stokes and the Continuity equations. In their original form, these equations cannot be
discretized by using the Yee’s mesh, at least, easily. As it is known, the use of the Yee’s
mesh is recommended because it is optimized in order to obtain higher computational
performance and remains at the core of many current acoustic FDTD softwares. In
order to use the Yee’s mesh, we propose to rewrite the aforementioned equations in
a novel form. To achieve this, we will use the substitution corollary. This procedure
is novel in the literature. Although the scheme can be extended to more than one
dimension, in this paper, we will focus only on the one-dimensional solution because it
can be validated with two analytical solutions to the Burgers equation: the Mendousse
mono-frequency solution and the Lardner bi-frequency solution. Numerical solutions are
excellently consistent with the analytical solution, which demonstrates the effectiveness
of our formulation.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The acoustic Yee Finite Difference Time Domain (FDTD) method has become one of the most effective tools for the
umerical solution of linear and nonlinear acoustic problems because of its mathematical appeal, conceptual simplicity,
asy implementation, and relative low computational costs. The method was first developed in the electromagnetic area by
ane Shee-Gong Yee in 1966 in order to study the scattering of electromagnetic waves [1]. In 1994, Botteldooren adapted
his method to solve linear acoustic problems in lossless media using a quasi-Cartesian grid [2]. In 1996, the same author
xtended the algorithm to include second-order nonlinear effects, heat conduction, and damping [3]. Since then, the rapid
rowth of the literature on the subject has been an indication of its general acceptance. In fact, the method has been used
n applications such as: room acoustics [4,5], environmental acoustics [6], sound diffusers [7], and ultrasounds [8–11],
mong others.
The purpose of this paper is to present a novel and simple Yee FDTD scheme to solve numerically the nonlinear second-

rder thermoviscous Navier–Stokes and the Continuity equations for the unknowns u⃗ (particle velocity) and p (pressure).
n their original form, these equations cannot be discretized by using the Yee’s mesh. As is known, the Yee’s mesh is
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optimized in order to obtain higher computational performance. It has been proved that it is a very robust technique and
remains at the core of many current FDTD softwares. So, the use of the Yee’s mesh is recommended.

In order to use Yee’s mesh, we propose to rewritten the nonlinear second-order thermoviscous Navier–Stokes and
ontinuity equations in a more convenient form. To achieve this, we will use the substitution corollary which tells us: any

second-order relation may be substituted by its first order approximation, since the resulting error is of third order. This
procedure is novel in the literature and has the following advantages:

(i) The novel equations are found to be easy to implement by using FDTD method based on the Yee’s mesh.
(ii) The viscosity and thermal conductivity can be dealt with directly.
(iii) The resulting algorithm is fast and accurate, and it allows us to obtain simultaneously the particle velocity u⃗ and

pressure p at low computational cost.

Although the scheme can be extended to more than one dimension, in this paper we will focus on the one-dimensional
solution. This will allow to compare the numerical solution with analytical solutions, as well as to do a brief and
understandable review of the more significant effects in nonlinear acoustics, such us: harmonic generation and difference-
frequency generation. Furthermore, we have implemented the algorithm in our own C++ code optimized for very short
execution times.

This work is organized as follows: Section 2 presents the conventional formulation of the second-order hydrodynamic
equations including viscosity and thermal conductivity. With this system of equations, the Westervelt and Burgers equa-
tions are obtained. Then, by using the substitution corollary the hydrodynamic equations are rewritten more conveniently.
Section 3 deals with the methodology: derivation of numerical scheme. Section 4 considers the validation of our FDTD
scheme using the Mendousse mono-frequency analytical solution and the Lardner bi-frequency analytical solution. This
section also includes an estimative global error between both solutions using standard deviation as a metric. In Section 5,
the authors includes the conclusions. Finally, we add an Appendix whose purpose is to schematize the mathematical
formulation and the main points developed in the paper through the use of a conceptual map.

2. Problem formulation

2.1. Second-order hydrodynamic equations I

Let us start this section by writing the nonlinear second-order approximation thermoviscous hydrodynamic equations:

ρo
∂ u⃗
∂t

+ ∇⃗p = −
µ1

ρoc2o

∂

∂t

(
∇⃗p

)
(1)

∂ρ

∂t
+ ρo∇⃗ · u⃗ =

1
ρoc4o

∂p2

∂t
(2)

or a detailed derivation of this system of equations, the reader is referred to the book by Hamilton and Blackstock [12,
quations (36) and (37) p.52] or Ref. [13]. Here, ∇⃗ denotes the vector nabla operator, u⃗(r⃗, t) is the acoustic particle

velocity vector (which is assumed to be irrotational: ∇⃗ × u⃗ = 0), p(r⃗, t) is the acoustic pressure and ρ(r⃗, t) the acoustic
mass density. As usual, an ‘‘o" subscript attached to a physical quantity denotes the equilibrium state value (which is
assumed to be constant), more concretely: co is the small-signal sound speed (evaluated at the equilibrium state) and ρo
the equilibrium mass density. Finally, to facilitate the notation, we have defined the viscosity term µ1 or first loss term
as:

µ1 = µB +
4
3
µ (3)

where µB is the bulk viscosity and µ the shear viscosity.
Eqs. (1) and (2) are the second-order Navier–Stokes and Continuity equations, respectively. This system of equations

has to be completed by the second-order equation of state (cf. Eq. (4)), which shows the relation between pressure and
density (see [12, equation(40) p.53]):

ρ =
p
c2o

−
1

ρoc4o

B
2A

p2 −
µ2

ρoc4o

∂p
∂t

(4)

here B/2A is the dimensionless parameter of nonlinearity and µ2 is the second loss term which is due to the thermal
conduction of the fluid and has been defined as:

µ2 = κ

(
1
cv

−
1
cp

)
(5)

where κ is the thermal conductivity and cv , cp the specific heats at constant volume and constant pressure, respectively.
The system of Eqs. (1), (2), (4) govern the propagation of nonlinear acoustic waves in thermoviscous fluids. Now, if we

substitute Eq. (4) into (2), the hydrodynamic equations can be written as a function of p and u only. On the other hand,
2
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to simplify the notation, we define δ1 = µ1/ρo, δ2 = µ2/ρo. Therefore, Eqs. (1) and (2) can be rewritten and arranged in
he form:

∂ u⃗
∂t

= −
1
ρo

∇⃗p −
δ1

ρoc2o

∂

∂t

(
∇⃗p

)
(6)

∂p
∂t

= −ρoc2o ∇⃗ · u⃗ +
β

ρoc2o

∂p2

∂t
+

δ2

c2o

∂2p
∂t2

(7)

where β = 1 + B/2A is the coefficient of nonlinearity.

2.2. Westervelt and Burgers equations

As is well known, the Westervelt wave equation is one the fundamental equations in nonlinear acoustics [14]. This
equation can be directly derived from the system of Eqs. (6), (7) solving for p. In fact, applying the divergence on (6),
taking the partial derivative of (7) with respect to time and using the linear wave equation ∇

2p = 1/c2o ∂2p/∂t2, we can
obtain the Westervelt equation (see [12, equation (46) p.55]):

∇
2p −

1
c2o

∂2p
∂t2

= −
β

ρoc4o

∂2p2

∂t2
−

δ

c4o

∂3p
∂t3

(8)

where the term δ = δ1 + δ2 is the diffusivity of sound, which takes into account both loss terms: the viscosity and the
hermal conduction of the fluid.

It is also known that, from the one-dimensional form of the Westervelt equation, the Burgers Eq. (9) is derived (see [12,
quation (54) p.57]):

∂p
∂z

=
βp

ρoc3o

∂p
∂τ

+
δ

2c3o

∂2p
∂τ 2 (9)

where τ = t−z/co is the retarded time. The Burgers equation is one of the most popular nonlinear one dimensional wave
equations whose analytical and numerical solution is well known and documented in the literature. For a comprehensive
historical overview, the reader is referred to [15] and [16] and the references contained there.

Normally, the dimensionless form of the Burgers equation (see, for example, [17, equation (2.76)]) is more used than
the above equation. However, we will use the dimensional Eq. (9) as a test to prove our numerical algorithm.

2.3. Second-order hydrodynamic equations II

For the purpose of this paper, we propose to rewrite Eqs. (6), (7) in a more convenient form. To achieve this, we
use the so-called substitution corollary which tells us: any second-order relation may be substituted by its first order
approximation, since the resulting error is of third order [12]. Therefore, it is legitimate to use the following linear
(first-order) relations:

∂

∂t

(
∇⃗p

)
= −ρoc2o∇

2u⃗,
∂2p
∂t2

= c2o∇
2p (10)

Substituting these relations into Eqs. (6) and (7), and using the fact that ∂p2/∂t = 2p∂p/∂t , we can write:

∂ u⃗
∂t

= −
1
ρo

∇⃗p + δ1∇
2u⃗ (11)

∂p
∂t

= −ρoc2o ∇⃗ · u⃗ +
2β
ρoc2o

p
∂p
∂t

+ δ2∇
2p (12)

As shown below, writing the hydrodynamic model equations in this form is more suitable because it allows for direct
and easy numerical discretization.

2.4. Reduction of hydrodynamic equations to 1D

For a ẑ-directed, with no variations in the x̂ and ŷ directions, i.e. ∂
∂x =

∂
∂y = 0; the system of Eqs. (11), (12) reduces

down to the one dimensional case:
∂uz

∂t
= −

1
ρo

∂p
∂z

+ δ1
∂2uz

∂z2
(13)

∂p
∂t

= −ρoc2o
∂uz

∂z
+

2β
ρoc2o

p
∂p
∂t

+ δ2
∂2p
∂z2

(14)

The system of equations above (13), (14) is essentially equivalent to the one dimensional Westervelt equation or its
simplified version, the Burgers equation. Although both of these wave Eqs. (8) and (9) have been and are numerically
3
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resolved in a large number of problems [18–22], their solution is not complete because the separate wave equation loses
the structure relationship between p and u, i.e. the relationship between the amplitudes and the phases of the fields. On
he contrary, the numerical solution of the system (13), (14) allows us to get the evolution of both physical quantities u
nd p simultaneously.

. Methodology: Derivation of numerical scheme

To solve the system of equations numerically (13), (14), we first set the numerical solution domain Ω = {(z, t) : z ∈

[0, zmax], t ∈ [0, tmax)} which is discretized into a space–time mesh defined by a set of integer and semi-integer nodes.
In the classic Yee acoustic FDTD method [3], the field u(z, t) is defined on integer nodes of the space–time whereas the
field p(z, t) is defined on semi-integer nodes. Namely:

u(z, t) = u(k∆z, n∆t) ≡ un(k) (15)
p(z, t) = p [(k + 1/2)∆z, (n + 1/2)∆t] ≡ pn+1/2(k + 1/2) (16)

where k and n are integer (k = 0, 1, 2, . . . , kmax; n = 0, 1, 2, . . . , nmax), and ∆z = zmax/kmax and ∆t = tmax/nmax are the
spatial and temporal mesh sizes, respectively.

Now, let us define the following discrete operators:

Iu · F (mu) =
F (mu + 1/2) + F (mu − 1/2)

2
(17)

Du · F (mu) =
F (mu + 1/2) − F (mu − 1/2)

∆u
(18)

D2
u · F (mu) = 4

F (mu + 1/2) − 2F (mu) + F (mu − 1/2)
∆u2 (19)

ith mu an integer. The operator Iu is called Centered Average Operator (in the variable u), which is a second-order
pproximation in ∆u/2 of the analytical identity operator, i.e. F (mu) = Iu · F (mu) + O

[
(∆u/2)2

]
∆ u/2. The operator

u is called Centered Difference Operator, which is a second-order approximation of the analytical first-order derivative,
.e. F ′(mu) = Du · F (mu) + O

[
(∆u/2)2

]
∆ u/2. The operator D2

u is called Second-Order Centered Difference Operator, which is
second-order approximation of the analytical second-order derivative, i.e. F ′′(mu) = D2

u · F (mu) + O
[
(∆u/2)2

]
∆ u/2.

.1. Time advancement equations

Using the operational language described above, we propose the following scheme, which is a second order approxi-
ation in ∆u/2, to discretize the Eqs. (13), (14):

Scheme for Eq. (13):

Dt · un+1/2
z (k) = −

1
ρo

Dz · pn+1/2(k) +

+ δ1 Iz · It · D2
z · un+1/2

z (k) (20)

Scheme for Eq. (14):

Dt · pn(k + 1/2) = −ρoc2o Dz · un
z (k + 1/2) +

+
2β
ρoc2o

It · pn(k + 1/2) Dt · pn(k + 1/2) +

+ δ2 Iz · It · D2
z · pn(k + 1/2) (21)

where the centered average operator in (20) and (21) acts only on the terms where it is necessary to match the fields
with the nodes of the space–time mesh.

Explicitly, the time advancement equations for u and p take the form:

• Time advancement equation for u:

un+1
z (k) = un

z (k) − C1
[
pn+1/2(k + 1/2) − pn+1/2(k − 1/2)

]
+

+ C3
[
un
z (k + 1) − 2un

z (k) + un
z (k − 1)

]
(22)

• Time advancement equation for p:

pn+1/2(k + 1/2) =
1 −

√
1 − 4C5g(k, n) (23)
2C5

4
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where

g(k, n) = pn−1/2(k + 1/2) −

− C2
[
un
z (k + 1) − un

z (k)
]
− C5

[
pn−1/2(k + 1/2)

]2
+

+ C4
[
pn−1/2(k − 1/2) − 2pn−1/2(k + 1/2) + pn−1/2(k + 3/2)

]
(24)

he scheme holds five constants, which have been defined as:

C1 =
∆t

ρo∆z
, C2 = ρoc2o

∆t
∆z

, C3 =
δ1

2ρoc2o∆z
,

C4 =
δ2∆t
∆z2

, C5 =
β

ρoc2o
(25)

Note that, the nonlinearity of the analytical equations involve a square root in the scheme as can be seen from Eq. (23).

3.2. Absorbing boundary condition

As is known, to simulate an unbounded spatial domain using a finite computational memory, it is necessary to apply
absorbing boundary conditions (ABC) at the mesh borders. The simplest ABC is Mur’s boundary condition which is obtained
by discretizing the one-wave equation at the mesh borders [23]. For one dimensional problems, the Mur’s boundary
condition is a perfect absorber. Our scheme requires to apply ABC over both, pressure and velocity. On the right-hand
side defined by the node kmax, the ABC is applied as follow:

un+1
z (kmax) = un

z (kmax − 1) +

+ C6
[
un+1
z (kmax − 1) − un

z (kmax)
]

(26)

pn+1/2(kmax + 1/2) = pn−1/2(kmax − 1/2) +

+ C6
[
pn+1/2(kmax − 1/2) − pn−1/2(kmax + 1/2)

]
(27)

ith C6 a constant defined as:

C6 =
co∆t − ∆z
co∆t + ∆z

(28)

he boundary condition on the left-hand side can be derived similarly.

. Validation: simulations and results

To validate the proposed FDTD scheme, the numerical results are compared with two analytical solutions to the Burger
quation: the Mendousse mono-frequency solution and the Landner bi-frequency solution.

.1. Validation with Mendousse solution

Consider the following boundary value problem for the Burgers equation:⎧⎨⎩ ∂p
∂z

=
βp

ρoc3o

∂p
∂τ

+
δ

2c3o

∂2p
∂τ 2

p(0, t) = Po sinωot
(29)

here the boundary condition is a harmonic mono-frequency function of amplitude Po and frequency ωo.
Mendousse obtained an analytical solution for this problem [24], which is expressed as a ratio of Bessel function series

(see [12, equation(264)p.134]):

p(z, t) = −Po
4Γ −1 ∑

∞

n=1 n(−1)nIn
( 1
2Γ

)
e−n2αoz sin

[
nωo

(
t −

z
co

)]
Io

( 1
2Γ

)
+ 2

∑
∞

n=1(−1)nIn
( 1
2Γ

)
e−n2αoz cos

[
nωo

(
t −

z
co

)] (30)

here In is the modified Bessel function of the first kind and order n, αo is the small-signal attenuation coefficient and Γ

s the Goldberg number, both defined as:

αo =
δω2

o

2c3o
, Γ =

1
αozsh

(31)

eing zsh the shock distance:

zsh =
ρoc3o (32)
βPoωo

5
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Fig. 1. Analytical time-dependent Mendousse solution (red curve) at various distances z for the following values: co = 1500 m/s, ρo = 1000 kg/m3 ,
β = 10, δ = 1.5 · 10−3 m2/s, Po = 1 MPa and fo = 0.3 MHz (ωo = 2π fo). For these values zsh = 17.9049 cm. The linear (first order) solution also is
plotted in the figure (blue curve).

Fig. 2. Spectra components of the time series shown in Fig. 1.

Using the commercial software Wolfram Mathematica [25] we have plotted in Fig. 1 the time-dependent Mendousse
solution (30) at various distances z using the values showed in the figure caption. We have chosen to set β = 10 in
order to show the nonlinear effects in a short distance and, therefore to shorten the computational time in the numerical
simulation. This figure shows the well known behavior of the progressive distortion of a nonlinear wave. During the
propagation, the sinusoidal wave gradually develops a sawtooth profile (which is full at the distance z = 3zsh). The
sawtooth profile fades progressively until, after traveling a long distance, the wave returns to its original sinusoidal shape
although much reduced in amplitude due to the effects of dissipation. This behavior is also observed in the frequency
domain. Indeed, the progressive distorsion of the nonlinear wave involves the harmonics generation as shown in Fig. 2.
Harmonics grow fast at first, later these decay until the fundamental mode ω with a strongly reduced amplitude.
o

6
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Fig. 3. Comparison between the numerical (black dots) and analytical (red curve) Mendousse solution along the direction of propagation ẑ. Parameters
ere set as in Fig. 1.

To compare the analytical solution shown in Fig. 1 (red curve) with the numerical solution obtained from the proposed
cheme (22), (23), we take a numerical space domain of length zmax = 61zsh (zmax = 10.922 m). The spatial mesh size is
elected to be ∆z = λ/Rλ where Rλ is the number of samples per wavelength or numerical resolution in λ. The accuracy of
he numerical solution depends on Rλ, and for an optimum result it is usually enough to take Rλ = 20 with λ the shorter
avelength implied in the problem. From Fig. 2, we can see that the harmonics generation involve the appearance of an

nfinite number of wavelengths but, above the fifth term, the contribution is negligible. So, we take Rλ = 20 and λ = λo/5
λo = co/fo) to set ∆z = 50 µm. On the other hand, time step size is selected as ∆t = 0.9∆z/co = 30 ns. With these
values kmax = zmax/∆z = 218440. To ensure that the wave travels along the entire spatial domain from 0 to kmax, we
have to take at least 242711 iterations. Fig. 3 shows the numerical solution (black dots) versus the analytical Mendousse
solution (red curve) along the propagation direction ẑ (z = k∆z). For the sake of simplicity, the space domain [0, kmax]

has been divided into six subintervals centered around the values z = 0, 0.5zsh, zsh, 3zsh, 6zsh and 60zsh (corresponding to
the observation planes in Fig. 1). It is important to note that at a very far distance from the origin (last panel in Fig. 3),
the numerical solution suffers the well known phase-error or numerical dispersion. This error is inherent in any FDTD
scheme and it is due to the difference between the numerical phase velocity and the real velocity [26].

In order to estimate a global error (absolute (abs) and relative (rel)) obtained to compare the numerical with the
analytical solution, let us use the standard deviation σ as metric:

σabs =

√ 1
N

N∑
k=1

[(sa(k) − sn(k)) − µabs]2 (33)

σrel =

√ 1
N

N∑
k=1

[
sa(k) − sn(k)

sa(k)
− µrel

]2

(34)

here

µabs =
1
N

N∑
(sa(k) − sn(k)) (35)
k=1

7
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Table 1
Approximation errors in the Mendousse solution corresponding to panels in Fig. 3.
Panel: k in µabs σabs µrel σrel

[0, 200] −4.69615 · 10−6 8.85873 · 10−4
−2.4587 · 10−3 1.70759 · 10−2

[1690, 1890] −2.04626 · 10−6 2.35083 · 10−3
−5.44085 · 10−3 5.23365 · 10−2

[3480, 3680] −2.85154 · 10−6 6.04192 · 10−3
−1.13558 · 10−2 1.19867 · 10−1

[10642, 10842] 9.45146 · 10−5 7.06477 · 10−3
−1.82129 · 10−2 1.9583 · 10−1

[21385, 21585] −1.18006 · 10−6 3.38684 · 10−3
−2.04512 · 10−2 2.2267 · 10−1

[214759, 214959] −9.13433 · 10−8 1.07915 · 10−5
−2.90787 · 10−1 2.37741

Fig. 4. Analytical Lardner solution (red curve) along the propagation direction ẑ at t = 0. Parameters were set as following: co = 1500 m/s,
o = 1000 kg/m3 , β = 10, δ = 1.5 · 10−3 m2/s, Po = 1 MPa and fo = 0.1 MHz (ωo = 2π fo); A = B = 1, a = 20 (ωa = aωo), b = 23, (ωb = bωo). Blue
urve is the lineal solution.

µrel =
1
N

N∑
k=1

(
sa(k) − sn(k)

sa(k)

)
(36)

is the arithmetic mean (absolute (abs) and relative (rel)) with sa(k) and sn(k) the values for the analytical and numerical
olutions at the node k, respectively.
Table 1 shows (µ, σ ) for each panel in Fig. 3. Except for the phase error, we can conclude that the numerical solution is

ighly consistent with the analytical solutions, which demonstrates the effectiveness of the proposed numerical scheme.
All numerical computations were performed using C++ programming language and double-precision arithmetic on a

PU Intel i9-10900x (20) @4.500 Hz. Taking 218440 spatial nodes and 242711 iterations, the computational cost was of
.66 min.

.2. Validation with Lardner solution

We now consider the boundary value problem (29) but with the boundary bi-frequency condition:

p(0, t) = APo sin(aωot) + BPo sin(bωot) (37)

here A, B are real numbers, and a, b integer with b > a. The analytical solution for this problem was found by Lardner [27]
n the form (a general multi-frequency solution can be found in [17,28]):

p(z, t) =

−Po
2Γ −1 ∑

∞

l=−∞

∑
∞

m=−∞
nlm(−1)l+mIlme−n2lmαoz sin

[
(lωa + mωb)

(
t −

z
co

)]
∑

∞

l=−∞

∑
∞

m=−∞
(−1)l+mIlme−n2lmαoz cos

[
(lωa + mωb)

(
t −

z
co

)] (38)

here ωa = aωo, ωb = bωo, nlm = al + bm and

Ilm = Il

(
A
2a

Γ

)
Im

(
B
2b

Γ

)
(39)

ith Γ y αo defined in (31). As in the Mendousse solution, In is the modified Bessel function of the first kind and order n.
For A = B = 1, a = 20 and b = 23, we have plotted in Fig. 4 the Lardner solution (38) at t = 0 and z in [0, 30] cm.

or clarity in depiction, we have used logarithmic scale in the ẑ-axis in order to show the evolution of the wave along
he propagation direction in the same diagram. The parameters used are shown in the figure caption.
8
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Fig. 5. Analytical time-dependent Lardner solution (red curve) at various distances z (see Fig. 4). As usual, blue curve is the lineal solution.

Fig. 6. Spectra components of the time series shown in Fig. 5.
9
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P

i

Fig. 7. Numerical Lardner solution along the propagation direction after 10222 iterations. Parameters were set as in Fig. 4.

Fig. 8. Comparison between the numerical (black dots) and analytical (red curve) Lardner solution along the direction of propagation ẑ (z = k∆z).
arameters were set as in Fig. 4.

Fig. 4 shows other classical phenomenon of nonlinear acoustics, known as difference-frequency generation: two nearby
nitial frequencies (ωa, ωb) create their difference-frequency ωb − ωa. In our example, near the distance z = 28 cm, the
difference-frequency (ωb −ωa = 3ωo) becomes dominant. The wave stays in this shape for a long distance until finally, all
the energy not dissipated is transferred to the fundamental mode ωo. This phenomenon is shown in major detail in Figs. 5
and 6. In Fig. 5 we have plotted the time-dependent Lardner solution at various distances z and in Fig. 6 their spectrums.
These figures clearly show how the wave gradually develops the difference-frequency 3ωo along the propagation direction.

Let us now obtain the numerical Lardner solution using the FDTD scheme (22), (23). To do so, we take the space domain
zmax = 30 cm. As is known, we have to sample to the shortest wavelength. Therefore, the spatial mesh size is set to be
∆z = λb/Rλ with Rλ = 20 and λb = co/(ωb/2π ) resulting ∆z = 32.6087 µm. With these values, kmax = zmax/∆z = 9199.
The time step size is selected to the value ∆t = 0.9∆z/co = 19.5652 ns. After 10222 iterations, the wave has traveled the
full space domain. Fig. 7 shows the numerical solution for k in [2146, 9199] (i.e. z in [7, 30] cm as in the zoom of Fig. 4).

The accuracy of the scheme is shown in Fig. 8 where we have plotted the numerical solution (black dots) versus
analytical Lardner solution (red curve).

Error analysis shown in Table 2 indicates again that numerical results for Landner solution are consistent and accurate.
10
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Table 2
Approximation errors in the Lardner solution corresponding to panels in Fig. 8.
Panel: k in µabs σabs µrel σrel

[0, 400] 6.02984 · 10−5 8.48514 · 10−3 2.99538 · 10−3 7.56073 · 10−2

[2559, 2959] 4.1713 · 10−5 1.15461 · 10−3
−2.93475 · 10−2 3.11641 · 10−1

[3479, 3879] 2.61603 · 10−5 5.28597 · 10−4 9.60465 · 10−3 3.22338 · 10−1

[4399, 4799] 1.85882 · 10−5 2.46314 · 10−4 1.72706 · 10−2 4.93399 · 10−1

[5319, 5719] 1.50827 · 10−5 1.38296 · 10−4 9.6298 · 10−3 2.50851 · 10−1

[8386, 8786] 1.2029 · 10−5 9.59782 · 10−5
−5.20627 · 10−3 6.17032 · 10−2

5. Conclusions

In this paper, we have proposed a novel FDTD scheme to solve the nonlinear second-order thermoviscous hydro-
ynamic model in one dimension. The numerical results obtained show good agreement with the analytical solutions.
herefore, the present scheme is an alternative way to solve the one dimensional Westervelt wave equation (or its
implified version: the Burgers equation) numerically. Our scheme can be considered to be competitive and worth
ecommending for its simplicity, accuracy and speed.
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ppendix

In this appendix we schematize the mathematical formulation and the main points developed in the paper by using
he conceptual map shown in Fig. 9.

As the figure above shows, the starting point is the system of equations 3DA1 (Eqs. (6) and (7)). The path on the left side
s the usual way to solve the nonlinear second-order thermoviscous hydrodynamic model. For simplicity, we will focus
n the one-dimensional problem 1DA2 where the 1D Westervelt equation appears. To solve this system of equations for
he unknowns uz and p, in principle, one proceeds as follows: First of all, the 1D Westervelt equation (or its simplified
ersion, the Burgers equation) must be solved to find the unknown p(z, t). Then, to find the velocity uz(z, t) one must

solve the first differential equation in 1DA2 with the values of p found. This is a tedious process.
As an alternative way to the above, one can reduce the system 3DA1 to the one dimensional form and apply finite

difference to solve it numerically. But in this case, it is not possible to apply the Yee’s mesh, at least, easily. As it is
known, in the Yee’s mesh the velocity uz(z, t) is defined on integer nodes of the space–time whereas the pressure p(z, t)
is defined on semi-integer nodes. The Yee’s mesh is optimized in order to obtain higher computational performance. It
has been proved that it is a very robust technique and remains at the core of many current FDTD softwares. So, it is
recommended the use if the Yee’s mesh.

In order to use Yee’s mesh, we propose the following novel procedure (red path in the conceptual map Fig. 9):

(i) We use the substitution corollary in the proposed way (Eq. (10)) to obtain the system of equations 3DB1. Using the
substitution corollary for this purpose is novel in the literature.
11
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R

Fig. 9. Mathematical formulation developed in the paper.

(ii) The system of equations 3DB1 is original in the literature and it allows us to apply the Yee’s mesh easily. So, one
of the advantages of this formulation is to be able to apply the Yee’s mesh without many difficulties.

(iii) As an example, we have discretized the system of equations 1DB1 (Eqs. (13) and (14)). The result is a robust and
a compact scheme (Eqs. (22) and (23)) which allows us to get the unknowns uz and p simultaneously without any
extra effort. This is another advantage in relation to solve the Burgers equation first for p and then obtaining uz .

(iv) Our scheme is a simple alternative to solve the one dimensional Westervelt equation or its simplified version, the
Burger equation.
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