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Around 1.6 million people lost their life to Tuberculosis in 2021 according to WHO
estimates. Although an intensive treatment plan exists against the causal agent,
Mycobacterium Tuberculosis, evolution of multi-drug resistant strains of the
pathogen puts a large number of global populations at risk. Vaccine which can
induce long-term protection is still in the making with many candidates currently
in different phases of clinical trials. The COVID-19 pandemic has further
aggravated the adversities by affecting early TB diagnosis and treatment. Yet,
WHO remains adamant on its “End TB” strategy and aims to substantially reduce TB
incidence and deaths by the year 2035. Such an ambitious goal would require a
multi-sectoral approach which would greatly benefit from the latest
computational advancements. To highlight the progress of these tools against
TB, through this review, we summarize recent studies which have used advanced
computational tools and algorithms for—early TB diagnosis, anti-mycobacterium
drug discovery and in the designing of the next-generation of TB vaccines. At the
end, we give an insight on other computational tools and Machine Learning
approaches which have successfully been applied in biomedical research and
discuss their prospects and applications against TB.
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Introduction

According to the recent report from WHO, around 10.6 million new cases of
Tuberculosis (TB) are estimated to be reported in 2021 with around 1.6 million deaths
globally (Global Tuberculosis Report, 2022). When left untreated, TB can be fatal and has a
staggering 50%mortality rate over the course of 5 years. Major risk factors for disease include
- undernourishment, HIV infection, alcohol, smoking and diabetes (Global Tuberculosis
Report, 2022). Additionally, a hidden prevalence of latent TB, where the infection persists
without clinical manifestations, further pose challenge in HIV positive subjects and in
children below the age of 5 with the conversion rate to active TB being around 10% (Latent
Tuberculosis Infection Updated and Consolidated Guidelines for Programmatic
Management, 2018.)(Mehtani et al., 2021).

Mycobacterium tuberculosis, the causal agent of TB infects the alveolar macrophage in
the lung tissues which leads to the recruitment of innate immune cells followed by the
immigration of adaptive immune cells. As a response, the pathogen employs several virulent
factors to attack the local host cells and evade immunological defense mechanisms (Hingley-
Wilson et al., 2003) (Pajuelo et al., 2021). Due to the complex and shrewd strategies the
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bacterium deploys, regular protective responses fail to take off and
instead a caseating granuloma (with necrotic center) is formed.
Moreover, the pathogen fights against the immune system at
different stages of infection. Upon acquiring the bacterium
during bacterium invasion, the macrophages become necrotic
and secrets interferon alpha/beta and TNF resulting in local lung
tissue inflammation. The necrotic state is further maintained by
dysregulated neutrophils whose protective actions are inhibited by
the pathogen. Some infected macrophages turn into foamy
macrophages with altered functionalities providing habitation to
the pathogen. Furthermore, Mycobacterium tuberculosis actively
evades adaptive immune responses by inhibiting neutrophil
apoptosis, restricting antigen presentation in the dendritic cells
and by encouraging antigen export from the dendritic cells along
with maintaining an immune suppressive environment at the site of
infection (granuloma) (Pattanaik et al., 2022). In the T cells,
glycolipids secreted by the pathogen inhibits TCR signaling
during antigen presentation (Chandra et al., 2022).

In 1990s, DOTS (Directly Observed Therapy Short Course) was
adopted and introduced by the WHO in the fight against TB. The
regime consists of 6 months of sequential treatment with four
different antibiotics (isoniazid, rifampicin, ethambutol and
pyrazinamide). Although the program was very effective at the
beginning, with time, we observed increasing evolution of Multi-
Drug Resistant (MDR) M. tuberculosis (causal agent) at different
locations all around the world. Based on WHO report from 2016,
out of the 10.4 million cases of TB observed globally in 2015, around
5% were because of MDR strains. It was an alarming observation
considering the existing treatment options give limited success
against MDR and XDR -resistant to second line of treatment as
well and about 11% of MDR TB [(Perwitasari et al., 2022) TB. The
success rate of the current treatment regime against MDR TB is
around 54% (based on a meta-analysis of 91,538 MDR-TB infected
patients (Ahuja et al., 2012)] and a low of 28% for the XDR TB as
compared to a triumphant 83% against drug susceptible strains. This
presents a grim situation and emphasizes the need for new
diagnostic and treatment tools, to identify infected patients and
treat them in a timely manner (Khan et al., 2022; Sankar et al., 2022).
Moreover, as we stand against a pathogen which learns fast and
evolves rapidly to develop resistance against antibiotics, a
multisectorial approach with equal emphasis on new drug
discovery and on prevention (to limit the spread of the pathogen
in the population) of the disease is absolutely essential (Gygli et al.,
2017).

In highly endemic settings, WHO recommends administration
of the BCG vaccine against TB and it has been in the immunization
program for many countries since 1970s for neonates. The
effectiveness of the TB vaccine varies greatly based on the
population under consideration. Unfortunately, it is known that
the induced protection fades with age. Hence, a quest for better
vaccines using different platforms have been catching speed in the
last 2 decades—(a) Viral vector vaccines (Ad5 Ag58A, ChAdOx1
85A- MVA85A, TB/FLU-04L (mucosal)), (b) Subunit vaccines
(AEC/BC02, H56:IC31, ID93 + GLA-SE, M72/AS01E), (c) Whole
cell vaccine (RUTI®, DAR-901 booster, Immuvac, Vaccae™), (d)
Attenuated live vector (MTBVAC, VPM1002). The mentioned
vaccines are at different stages of pre-clinical and clinical trials.
However, certain schallenges remain - primary among them is the

complexity ofMycobacterium tuberculosis pathogen and lack of our
ability to screen out potent protective antigens. Secondly, a detailed
elucidation of protective immune response against the pathogen is
missing, and hence establishment of reliable co-relates of protection
remains a major challenge. Last but not the least, given the
heterogenicity of host-pathogen interactions in humans and
animal models, there have been discrepancies in the
immunogenicity when the vaccine candidate testing moves from
preclinical to clinical stage making the process incredibly
challenging (Li et al., 2020) (Zhu et al., 2018).

Attending to the immediate need for action, the WHO designed
holistic “END TB” strategy intends to bring down TB incidence rate
by 95% and TB deaths by 95% by the year 2035 as compared to the
figures in 2015. The third pillar of the “END TB” strategy focuses
on—“Intensified research and innovation” which urges for the
research and development of advanced tools that are effective
and adoptable to the current healthcare set up (END TB
Stretergy, 2016). Unfortunately, the COVID-19 pandemic had a
fatal effect on the execution of programs deployed under the END
TB strategy. Firstly, TB diagnosis received a severe blow during the
pandemic and the number of reported cases fell by 18% (in 2022).
This reduction was most evident in—India, Indonesia and
Philippines. Because of this decline, we could expect an increase
in community transmission as we now have a population which
remain undiagnosed and hence without any treatment and out of the
radar of the healthcare system, which put a larger population at risk.
Moreover, expectedly, WHO reports a decline of 17% in the people
receiving treatment against MDR-TB in 2020 compared to 2019 and
a significant decline in global spending on services essential for TB
control. Grimly, TB associated deaths also increased between
2020 and 2021 to 1.6 million deaths (equivalent to the number
reported in 2017). (Global Tuberculosis ReporT, 2022, 2022).

Given the integrated and urgent global focus against the disease, we
cannot fail to notice the advent of new computational approaches now
at our disposal (Table 1.) for basic and biomedical research and to
inspect the potential role they could play in achieving substantial TB
reduction. Computational approaches have already been used in
multiple avenues—from the simulation of host-pathogen interactions
to the drug discovery against the pathogen and can play an essential role
in driving the multi-sectorial approach we intend to take against the
disease (Bloom et al., 2017). Given that the coming decade would play a
major role in determining our dominance over TB (as per the timeline
of the “END TB” strategy), this review article provide details on some
important computational concepts with their current and potential
future applications in the fight against a complex and whimsical
pathogen who has plagued the human population for centuries. The
review attempts to - 1) provide details on advances of computational
approaches in therapeutic and diagnostic biomarker identification, in
compound screening, drug-ligand structural interaction and on vaccine
development, 2) discuss possible future development in computational
approaches against TB for the development of precise and efficient
interventions, 3) to motivate and facilitate researchers/clinicians
working against TB to tap into powerful computational resources
available at their disposal.

For better understanding, the review has been divided into four
parts, the first section focusses on applications of computational and
systems biology tools in the identification of diagnostic and
therapeutic biomarkers against TB, the second section focusses
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TABLE 1 List of Software/Tools which are being used for identification of lead compunds against TB.

Sl. No. Tools/
Software

Description/Algorithm Link

Active site prediction tools

1 CASTp Binding sites and active sites of proteins and DNAs http://sts.bioe.uic.edu/castp/index.html?1ycs

2 BiteNet Identification protein binding sites https://github.com/i-Molecule/bitenet

3 P2Rank Machine learning based binding site prediction http://siret.ms.mff.cuni.cz/p2rank

4 PrankWeb Ligand binding site prediction https://prankweb.cz/

5 PUResNet Protein and ligand binding site using deep residual neural network https://github.com/jivankandel/PUResNet

6 PAR-3D Predict protein active sites http://sunserver.cdfd.org.in:8080/protease/PAR_3D/
index.html

7 ConSurf Binding site prediction https://consurf.tau.ac.il/consurf_index.php

8 Pocket-Finder Active site prediction http://www.modelling.leeds.ac.uk/pocketfinder/

9 3DLigandSite Ligand binding site prediction https://www.wass-michaelislab.org/3dlig/

10 FINDSITE Ligand binding site https://cssb.biology.gatech.edu/skolnick/files/
FINDSITE/

11 metaPocket Ligand binding site predictor https://www.eml.org/

12 SURFNET Calculate clefts in protein surface https://www.ebi.ac.uk/thornton-srv/software/
SURFNET/

13 LISE Ligand binding sites http://lise.ibms.sinica.edu.tw/

14 POOL Machine learning based functional site prediction http://www.pool.neu.edu./

15 MetalDetector To find metal binding site of protein https://metaldetector.dsi.unifi.it/

Molecular docking tools

1 AutoDock Lamarkian genetic algorithm https://autodock.scripps.edu/

2 AutoDock Vina Genetic algorithm https://vina.scripps.edu/

3 FlexX Incremental construction https://www.biosolveit.de/download/

4 FlexAID Protein side-chain elasticity and soft scoring function, based on surface
complementarity

https://www.biosolveit.de/download/

5 AutoDock Vina Genetic algorithm https://github.com/ccsb-scripps/AutoDock-Vina

Extended

6 GalaxyPepDock Based on interaction similarity & energy optimization https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=
PEPDOCK

7 GEMDOCK Evolutionary method for molecular docking http://gemdock.life.nctu.edu.tw/bioxgem/

8 LightDock Protein-protein, protein-DNA, protein-peptide docking https://lightdock.org/

9 Dockthor Protein-ligand docking https://www.dockthor.lncc.br/v2/

10 SwissDock protein-small molecule interactions http://www.swissdock.ch/

QSAR tools

1 AZorange ML based QSAR modelling https://github.com/AZCompTox/AZOrange

2 CODESSA Descriptors calculation for QSAR studies http://www.codessa-pro.com/

3 QSARINS QSAR modelling http://www.qsar.it/

4 CORELSEA For QSAR and QSPR http://www.insilico.eu/coral/CORALSEA.html

5 McQSAR Generates QSAR equations using the genetic function approximation paradigm http://users.abo.fi/mivainio/mcqsar/

6 AutoQSAR To make high-quality, predictive QSAR models https://www.schrodinger.com/

7 GUSAR To create QSAR/QSPR models on the basis of the appropriate training sets http://www.way2drug.com/gusar/index.html
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on methods and algorithms used for drug screening and on drug-
target interaction studies, the third section briefly discusses on the
young and thriving branches of systems and reverse vaccinology and
the last section details about some fascinating new advancements in
the field of computational biology and their prospective applications
against TB (Figure 1).

1) Applications of systems and computational for diagnostic
biomarker/therapeutic target prediction in TB

Identificationmolecularmediators involved in the pathogenesis of a
disease or in infection control can have a myriad of applications
including—establishment of diagnostic biomarkers, discovery of
novel drug targets, identification of biomarkers for monitoring
treatment regimens and assignments of correlates of protection
(CoP) for vaccines and vaccine candidates. Currently for drug
development against Mycobacterium tuberculosis, designated prime
targets include DNA gyrase (Mdluli and Ma, 2008), Leu tRNA
synthetase, ATP synthase and proteins involved in cell wall synthesis
like DprE1 and MmpL3 (Williams & Abramovitch, 2023) (Dartois &
Rubin, 2022). As for novel targets for drug discovery, KatG, Clp
proteases, Menaquinone and KatG have shown great prospects
(Bose et al., 2021). One of the promising diagnostic marker against
TB have been proposed to be lipoarabinomannan (LAM) antigen
(MacLean et al., 2019) (Goletti et al., 2016; Wallis et al., 2013).

Systems biology in biomarker/target
identification

Tools and principles of systems and computational biology have
unleashed fresh prospects in developing understanding of host

pathogen interactions and for the identification of novel disease
associated biomarkers/targets. The advent of high-throughput
technologies has provided us with huge volume of data which
have been parallelly followed by increase in our computation
power. Moreover, relatively easy acquirement of the retrieved
omics data (compared to the past) has opened a new dimension
to the thriving branch of systems biology where in results from
different scales of molecular biology—including—Proteomics,
Transcriptomics, Genomics and Epigenomics can be integrated to
understand pathologies and immune responses with higher
granularity. As we deal with a complicated pathogen in the
current scenario, there is a need for advanced tools to skillfully
summarize existing high-throughput data to discover credible
biomarkers for different stages of the disease (for diagnosis and
monitoring purposes), to single out molecular targets for drug
discovery and for the development of advanced vaccines
(Chandra et al., 2022). In a classic study, RNAseq data analysis
study retrieved 44 host response transcripts unique to TB as
compared to other diseases including HLA-DPB1, LHFPL2,
HM13, and CD74 (Kaforou et al., 2013).

Network Biology provides logical and extensive opportunities to
conduct systemic studies when gene/proteins are designed as nodes
and the relation between them are denoted by edges. Other networks
that could be constructed and used for data analysis include—gene-
protein networks, gene-disease networks and gene-drugs network
(Yue & Dutta, 2022). Functional enrichment analysis assigns
tentative gene ontologies to the genes under investigation using
basic statistical tests like the fisher’s test accompanied by test
correction methods like the false discovery rate. Other than this,
along with supervised machine learning algorithms, unsupervised
machine learning algorithms like principal component analysis and
neural networks provide us with an unprecedented scope to

FIGURE 1
The three wheels of research and development essential for TB management.
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understand underlying patterns associated with infections (Eckhardt
et al., 2020; Yao et al., 2021). In a sophisticated study, network
analysis along with functional enrichment analysis of data obtained
from literature successfully helped in identifying genes involved in
RTK signalling pathway (BLK, ABL1, and NTRK1) in infected hosts
to screen ligands for host-directed-therapies (Korbee et al., 2018).

In what could be considered a similar study from the pathogen’s
side, likely co-targets (DNAE1, RecA, Rv0823c) were identified from
the network of genes linked with AMR. Co-targets are targets which
can be aimed for apart from the regular target given the
susceptibility of the later to drug resistance. Similarly, by
combining network topological analysis with structural
modelling, a group identified acetyltransferases as likely co-
targets against MRD and XDR TB. This finding is highly relevant
given the functional role of these enzymes in the detoxification of
administered drugs (Chung et al., 2013). Another form of networks
which deserve a special mention are the metabolic pathway
networks. In an investigative study, Mtb specific pathways were
retrieved from KEGG database and “chokepoint” enzymes, which
enable unique substrate-product reactions in the metabolic
pathways, were identified. From the analysis of, 18 chokepoint
enzymes were proposed based on their presence in multiple
metabolic pathways. These chokepoint enzymes proposed as drug
targets were: HisC1/F, FalK, NarG, PanB/C, Mur-A/E/F, CobU/Y/
H, TrpB, narH, trpD, ilvD, ispG, metE (Kushwaha & Shakya, 2010).

As a demonstration of another way of metabolic pathway
network analysis, constrain-based metabolic essentiality analysis
was performed to calculate metabolic fluxes which reflect the
essentiality of a particular metabolite in essential biological
functions of the pathogen (like cell growth). This constrain-based
tool along with chokepoint enzyme retrieval from the genomic data
revealed—chor, mycolate, alaala, cexccoa, udcpp, arab-D,
cdpdhdecg, 26dap-M, hpmtria, kmycolate as potential drug
targets (Kim et al., 2009). Also, metabolic flux analysis of the
pathways involved in carbon dioxide fixation have suggested
isocitrate lyase as essential enzyme for pathogen survival and
hence as a durable target (Chung et al., 2013).

Other systems biology approaches have been reported in depth
and at varying scale for their application in understanding
Tuberculosis. A classic review summarized how these approaches
with different tools can be used to develop deterministic models at
the population level using SIR models (systems of ODE equations)
to simulate the transmission of the mycobacterium in a population,
for example, (Side et al., 2017). Down the line, the same approaches
can be used to model the cellular and molecular immune response
against the bacterium. Furthermore, at the molecular level, inside a
cell, omics data can be used to develop both statistical and
deterministic models to simulate immune responses to the
pathogen. When these data are obtained and studied on a time
scale, they can provide valuable information on the progression of
the disease and the host-pathogen interplay (Young et al., 2008). For
example, in a study, kinetic modelling using ODEs of the TCA
metabolic cycle and glyoxylate pathway revealed isocitrate lyase as a
target of interest (Chung et al., 2013).

Transcriptomics and gene expression data have been obtained
for TB using both from in vivo and in vitro samples to first better
understand host-pathogen interactions and then to detect early
molecular markers of the disease (Young et al., 2008). In a

sophisticated in vitro study, RNASeq data were obtained from
macrophages infected with a virulent and an attenuated strain of
Mycobacterium tuberculosis. Genes differentially expressed were
obtained by mapping the obtained RNASeq reads against the
genome and by estimating the read counts. Genes with high read
counts (FPKM >10, Fragments Per Kilobase of exon per Million)
were considered to be differentially expressed and were analysed
further. Through comparative analysis, they observed a peculiar
positive association of SLC7A2 to infection from the attenuated
strain. To note, that the same gene was downregulated in the
macrophages infected with the virulent strain. They further
validated their computational finding with in vivo studies to
propose SLC7A2 to be of interest in Tuberculosis credited to its
function in regulating the bacteria virulence in the macrophages
(J. Lee et al., 2019). In another study, differential gene expression
analysis from peripheral blood samples were able to distinguish
between TB infected and healthy controls usingMann-Whitney test.
The study found three biomarkers—DOC9 (low), EPHA (low) and
NPC2 (high) while demonstrating how TB progression can be
monitored using these biomarkers in patients (infected) with or
without treatment (recovering) (de Araujo et al., 2021).

Furthermore, network biology tools have been used for
downstream analyses of the omics data and to retrieve
meaningful information (Young et al., 2008). In a study, gene
expression datasets from human subjects with pulmonary
tuberculosis were used to retrieve differentially expressed genes
(DEGs) associated with disease. The resulting gene list was
subjected to gene ontology studies before conducting clustering
analysis. Relevant clusters were obtained to construct a protein-
protein interaction (PPI) network to perform network analysis.
Through network analysis the authors characterised the hub
genes (genes with high degree score or more connectivity and
hence deemed to play an important role in the concerned
mechanism of state). The authors backed their findings from
literature and proposed CCL20, CXCL8, and IL6 as three of the
seven gene markers having high correlation of the disease from the
host side. They proposed these markers as potential diagnostic
markers and molecular targets against the disease (Sun et al.,
2020). Similar approach has been used to construct sub-networks
demonstrating differential gene expression patterns in different
stages of pathogen growth using gene expression datasets. The
study revealed potential drug targets involved in Mtb growth
arrest–dosR, sigD, hrcA and nadR (at early stages), furB, sigC
and sigE (at latter stages). The identified targets ssssshave
significant implications specially for the objective of impeding
persistent TB (Chung et al., 2013).

Apart from the extraction of differently expressed genes between
infected and control samples, omics data can also be analysed using
weighted correlation network analysis (WGCNA) which deals with
pairwise correlation through the analysis of biological networks. An
elaborate study traced on co-expressed genes from gene expression
data of samples obtained from different geographical locations
(endemic and non-endemic settings) which were mapped on a
meta-human-protein-protein interaction (PPI) network to obtain
“common core” modules using the Dijkstra’s algorithm (used to
single out the shortest path in a network). The modules underwent
functional enrichment analysis to reveal STAT-1 induced
proinflammatory responses as prominent expression pathway in
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all the datasets selected for the study along with giving insight into
modules differing in different perturbations (datasets)(Sambarey
et al., 2017). Apart from association studies of gene expression
profiles to a particular state or condition, the expression values of the
genes could also add great value in the calculation of metabolic flux
analyses in constrain-based modelling (Chung et al., 2013).

Screening of non-coding RNAs as
biomarkers

Several non-coding RNA including microRNAs, long non-
coding RNAs and circular RNAs have been associated with the
pathogenesis and immune modulation by the pathogen and have
been proposed as biomarkers for diagnosis (including for drug
resistant strains) and as prospective drug targets (Kundu & Basu,
2021; Tamgue et al., 2021; Liang et al., 2022) (Alipoor et al., 2020;
Sinigaglia et al., 2020; Ostrik et al., 2021). Omics technologies have
also been used in establishing biomarkers of TB infection at different
stages of infection and also upon treatment. A review
comprehensively enlists different miRNAs that have been
characterised using RNASeq data analysis from the blood
samples and individual blood cells of TB subjects using retrieval
of differentially expressed genes. Upon summarizing the results of
around 40 studies, the authors highlight some promising candidates
as potential biomarkers which are specific for active TB (and are not
upregulated in healthy or latently infected subjects)—MIR-133-3p,
MIR-26A-5p and MIR-155-5p (Sinigaglia et al., 2020).

Simple yet effective tools like—positive or negative likelihood
ratios have been used to identify microRNAs as reliable diagnostic
marker against TB (X. Li et al., 2021). In a study, multivariate logistic
model and relevance vector machine models were used to profile
microRNAs to different categories of TB infection in adults and in
children with the authors suggesting prospects of this approach in
assigning miRNA signatures to different population (Miotto et al.,
2013). The study found MIR-146a, MIR-30e, MIR-600, MIR-223
and MIR-532-5p to be associated with TB in the children group and
MIR-25, MIR-365 and MIR-16 to be associated with the infected
adult sample group. In another study, miRNAs, small nucleolar
RNA and other categories of non-coding RNAs were used to
distinguish TB patients. The study found that logistic regression
can effectively distinguish between patients with and without TB
while proposing four microRNAs (taken together) as sensitive
classifiers in diagnosing TB (de Araujo et al., 2019). Moving
towards more advanced and clinically suitable approach of
diagnosis, a consortium of research groups developed a model to
detect TB patients using circulating microRNAs present in the
serum (within the 6 months of the disease). For doing this they
used different ML algorithms, namely,—Random Forest, Neural
Networks, Support vector machine and Elastic-net Logistic
Regression to distinguish between patients with TB and adult
household contacts (controls). The authors validated their results
using leave-one-donor-out-cross validation (LOOCV). Elastic-net
logistic regression was shown to be the best performer with an AUC
of 0.7 (Duffy et al., 2018).This study skilfully demonstrated the
potential of extracellular circular miRNAs in discriminating subjects
with active TB from healthy controls. In another important study,
electronic health records were also included along with exosomal

RNAs to develop a support vector machine model which worked
with a high AUC of 0.97 in distinguishing TB patients from healthy
controls (Hu et al., 2019).

An all-encompassing review article lists down the protocols and
tools which are available for identifying and profiling non-coding
RNAs associated with particular conditions along with listing
relevant databases for non-coding RNAs. In the review article,
miRWalk 2.0, MatureBayes, Starbase v2.0 and CircRNAbase tools
have been listed as sophisticated tools to study interactions with the
biomolecules with targets and with each other (Almatroudi, 2022).

Screening of diagnostic biomarkers using
machine learning and deep learning

Machine learning and deep learning models have found their
applications in detecting and monitoring TB using clinical and
molecular data. Attempts have been made to use CT and
radiomics data as input to a deep learning model for TB
diagnosis (Nijiati et al., 2022) while genetic data are increasingly
being used to detect antibiotic resistance. A combination of these
methods can be used to monitor the disease progression in the
infected individual and to keep track of the spread of Mtb on the
population level (Liang et al., 2022).

Early identification of drug susceptible or resistant variants of
Mtb is of outmost importance (Swain et al., 2020) to chart out the
treatment options and have been conventionally been relied upon on
culture-based detection of susceptibility which is quite time
consuming and expensive. The large scale WGS sequencing
facilities established globally to detect coronavirus in the wake of
the pandemic provide an unprecedented opportunity for accurate
diagnosis of AMR TB. Sequencing of the whole genome of this
complex microorganism will not only provide information on drug
susceptibility but will also highlight the genetic islands of
susceptibility and resistance along with indicating other genes of
significance involved in disease transmission and severity. Given the
prospects, resources are required to be directed towards developing a
standardised bioinformatics pipeline for diagnosis (with special
emphasis on drug resistance detection) and in creating a safe and
easy-to-interpret environment for data sharing, processing and
high-end computation (Walker & Crook, 2022). Efforts in this
direction have already begun.

Direct Association (DA) studies use WGS data which compare
the recently obtained fastq files with pre-exiting list of mutations or
databases already associated with resistance to predict if a strain is
resistant using classic statistical approaches. Apart from DA, ML
algorithms are being looked upon to build robust models to predict
drug resistance. A review gives a brief on ten studies which have used
ML algorithms to predict AMR. In one study, 23 mycobacterial
genes (including eis, gidB, rrs, tlyA, rspL rspA, gyrA, ahpC, fabG1,
inhA, katG, rpoB, embB, pnca) and their surrounding base-pairs
were used as features to develop machine learning models using
different algorithms which were then validated using DA predictions
(Walker et al., 2015) (Sharma et al., 2022). Another study retrieved
222 prominent features for resistance prediction using the Multi-
task Wide and Deep Neural Network with fastq files obtained from
whole genome sequencing which showed high efficacy. This was
followed by development of another model—Wide and Deep Neural
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Network model, with still better accuracy (Green et al., 2022)
(Sharma et al., 2022). Other algorithms used for this purpose and
which showed high accuracy include Classification Trees and
Gradient Boosted Trees, which was used to unravel new
mutations which can concur resistance to fourteen drugs. The
important feature sets for predictive model building included:
Single Nucleotide Polymorphisms (SNPs) observed in genes
linked with resistance and SNPs in genes which are con-current
with resistance. The authors of the research study highlighted that
along with prediction this model could be used to rank different
features based on their importance (Sharma et al., 2022a).

Other machine learning algorithms have been used to classify
Mtb isolates based on resistance using the presence or absence of
specific SNP in genes of interest (Yang et al., 2018). A
comprehensive study tested different ML based classifiers and
dimension reduction techniques on Mycobacterium tuberculosis
isolates from different countries and against 11 different drugs.
Through the results the authors confirmed the prospects of ML
models in predicting resistance against different drug. Upon
comparison, gradient tree boosting and logistic regression seem
to have better performance than other algorithms. The author
pointed out that the said models when accompanied by
dimensional reduction (using PCA and non-negative matrix
factorization) further enhanced the performance by 10%–15%.
The authors also propose the application of these models in
identifying new markers of resistance (Kouchaki et al., 2019).

Support Vector machines and Linear Regression methods were
also able to rank features and correlate lineage specific mutations
with second-line drug resistance. A study used Stacked Ensemble
algorithm using structural, physiochemical and evolutionary
features to capture resistance against caprepmycin. The author
also noted that, features associated with protein sequences were
better in predicting resistance than features associated with genomic
sequences. Moreover, another study using Multiple XGBoost and
Random Forest model concluded that genes of importance were
distributed all around the genome. Lastly, it was reported that the
performance was enhanced when machine models were used in
conjecture with dimensionality reduction techniques like the sparse
principal component analysis and non-negative matrix factorization
algorithm (Sharma et al., 2022). Moreover, a recent study confirmed
dinucleotide frequencies to be an encoding system of interest for
representing genomic variations in machine learning algorithms to
classify drug resistance in Mtb isolates (Müller et al., 2021).

In a more advanced approach, DeepAMR have been used to
detect TB strains resistant to multiple drugs by combining an auto-
encoder and layers of classification where each layer would represent
resistance to a particular drug—representing a multilayer
classification system termed as ensemble classifier chain. The
input for the model is a dataset denoting presence or absence of
particular SNPs in a given sequence. Based on sensitivity analysis the
authors were also able to characterize which feature set (defined be a
sets of SNPs) heavily influence the classification and chalk out the
genetic correlations of drug resistance. For example, the study found
that there is high correlation between resistance to isoniazid and
resistance to rifampicin (cross-resistance) (Yang et al., 2019). A 1-D
architecture of convolutional neural network was developed to
include genetic and non-genetic features to predict antibiotic
resistance with accuracy for five different antibiotics. The input

matrices (21 × 4) consisted of a 21 base reference window for each
SNP of interest. The stated deep ML model slightly outperformed
logical regression and random forest algorithms in predicting
resistance (Kuang et al., 2022).

But here it is important to note that deep learning models are
like dark boxes and the intrinsic know-hows remain unknown even
if the predictive efficacy is high. Given this, an innovatory ensemble
algorithm adopted by researchers from Boston to investigate genetic
causative factors which drive antibiotics resistance in Mtb strains
require a special mention. The researchers developed a 1-D deep
convolutional neural network to categorise strains as resistant or
susceptible with high efficacy. After screening out the most
influential genes which affect Deep Convolutional Neural
Network (DCNN model performance, mutations in these genes
were further characterized using support vector machine algorithm
which uses a hyperplane to distinguish between resistant and
susceptible strains. The method overall delivered an impressive
accuracy of 93% along with highlighting genes (embB, gyrA and
pncA) and respective mutations of interest (Zhang et al., 2021).

In another project convolutional neural networks were
successfully used to retrieve and characterize known and novel
genetic loci linked with single or multi drug resistance (with
AUC ranging from 80.1% to 99.5%). The input layer for the
model were genomic loci sequences along with regulatory
elements around the loci from strains resistant and sensitive to
different drugs. The architecture of these networks involved 3 pairs
of convolutional layers along with two max pooling layers and the
output layer was designed to calculate the probability of resistance to
the 13 antibiotics being considered in the study (Green et al., 2022).
The DeepLIFT algorithm was used to further characterize the loci of
interest (in other words, for feature extraction), in order to pinpoint
nucleotide sites of interest in relation to drug resistance. For this
purpose, reference genome of a susceptible strain of the bacteria was
used. This analysis revealed 18 novel SNPs with their prospective
role in resistance—acpM-kasA, gid, rpsA, clpC, embCAB, aftB-
ubiA, rss-rrl, ethAR, oxyR-ahpC, tlyA, katF, rspL, rpoBC, fabG1-
inhA, eis, gryBA, panD, pncA (Deeplift: Docs, Community,
Tutorials, Reviews | Openbase, 2022) (Green et al., 2022).

Screening of therapeutic targets using
machine learning and deep learning

Genomic studies can play an important role in identification of
target gene candidates through the process of functional annotation.
In a thorough study, transposons insertion sequencing (Tn-Seq) was
used to identify genes of interest in Mtb as the isolates were cultured
in enriched and minimal media. The objective of the research was
the identify universally essential and conditionally essential genes in
the metabolic pathways of the pathogen using comparative
genomics. This study demonstrates a bioinformatics pipeline
which can streamline the identification of conserved genes
among dynamically changing Mtb variants and hence can
propose strategic target genes (purK, purC, purB, purH) for
intervention against disease progression (Minato et al., 2019).

Extreme Gradient Boosting (XGBoost) is a machine learning
algorithm which works as an ensemble of decision trees arranged in
a stage-like manner to enhance the predictive capacity of the model.
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The algorithm has been used before to identify and predict draggable
target proteins in humans. The model worked by taking protein
sequences as input, where these sequences were encoded
using—grouped dipeptide composition (where amino acids are
grouped based on their physiochemical properties), reduced
amino acid alphabets (where amino acids are represented as
clusters based on physiochemical properties and structural
similarities), pseudo amino acid composition segmentation
(which represent amino acid frequency in a sequence and
sequence correlations) (Sikander et al., 2022). An exhaustive
implementation of the algorithm in the screening of anti-TB
drug targets at different stages of the infection is still pending.
Figure 2 summarizes key biomarkers/drug targets identified using in
silico approaches while Table 2. lists different systems and machine
learning algorithms that have been used for biomarker identification
against TB.

2) Applications of computational approaches in drug discovery for
compound screening against TB

Currently, several new-generation antibiotics are at different
stages of clinical trials and possess varied mechanisms of action.
Bedaquiline, the top most drug candidate which has passed through
the clinical trials and is under regimen development, attacks the
ATP synthase pump of the bacterium. Pretomanid and Delamanid,
also in the advanced stages of clinical development conditionally
target the electrochemical cycle of the pathogen and intervene in the
synthesis of mycolic acid (prominent cell wall component of Mtb
species). Promising drugs currently under phase II and III clinical
trials include—SQ109, which inhibits MmpL3 and TBA7371, OPC-
167832, and BTZ043 which disables DRP epimerase (involved in the
biosynthesis of D-arabinose, a component of the Mtb cell wall)
(Dartois & Rubin, 2022). Drug discovery for host-targets which
could induce immunomodulation are still under early stages of
development, i.e., target identification and validation. Along with
the above-mentioned drug candidates, given the rise of MDR/XDR,
the hidden burden of the disease, and the changing host-pathogen
dynamics in the course of infection, a multitude of drug options
would be required to achieve TB elimination.

Computer-aided Drug Design (CADD) or in silico drug
design can be differentiated into three stages of—1) target
identification, (discussed in the above section), 2) compound/
ligand screening and 3) structural characterization of the drug-
target complex. For the convenience of readers from bio-medical
background, we start this section with an introduction of
computational tools available for drug discovery. Figure 3
illustrates two important branches of in silico methods used
for drug discovery. Virtual screening (VS) is a procedure to
identify leads (drug candidate) across a large and extensive
library of bioactive molecules. Traditionally, VS associated
techniques have been divided into two major approaches: 1)
Ligand-based virtual screening, 2) Structure-based virtual
screening. Both of these techniques have been used extensively
used for drug discovery against TB. Supplementary material
Table 1 provides a detailed description of the basic concepts
involved in CADD

Ligand-based Virtual Screening ranks candidate drug
molecules based upon their properties and how similar they are
to existing active compounds (Motamen & Quinn, 2020). Molecular
representations are used for input compounds to screen out a subset
of active compounds from a pool of compounds of interest based on
existing structure-activity information (Urbina et al., 2021) (Heo
et al., 2022). Similarity and internal structure searching,
quantitative-structure activity relationship (QSAR) and
pharmacophore-based search are examples of ligand-based
methods (Jankute et al., 2017).

As we direct our resources towards the fight against TB, it is
essential to integrate knowledge generated over 70 years of in vitro
and in vivo experiments conducted for drug identification. With
such large volume of data, machine learning algorithms can act as
facilitators in retrieving lead compounds with desired structural and
functional properties (Mikušová & Ekins, 2017). A research team
through a series of publications managed to illustrate the utility of
Bayesian algorithm in screening out small compounds with potent
anti-tubercular activity (with target selection through whole cell
screening) using molecular descriptors (mainly representing
structural properties) (Ekins et al., 2013; Ekins et al., 2014)
(Ekins et al., 2013). Though it is important to note that, the

FIGURE 2
Diagnostic/Therapeutic Biomarkers reported using in silico approaches (A) in the host (humans) and (B) in the pathogen Mycobacterium
tuberculosis.
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authors recommended the use of an ensemble (collection of machine
learning algorithms) of ML models for better prediction accuracies
(Ekins, Freundlich, et al., 2013).

Machine Learning approaches have been proposed to have great
prospects in the drug discovery process as its application involve
development of classification models based on anti-bacterial
properties and extraction of important features which would
define these properties. ML algorithms have been used before to
screen out small molecules, natural compounds and antibacterial
peptides from established databases. Molecular descriptors and
fingerprints along with SMILE strings (of the drug candidates)
were key input formats for model development and deployment
(Jukič & Bren, 2022). Graphical properties, like molecular shape
indices and molecular connectivity indices have been used
previously to represent physiochemical properties of small
compounds. These graph-based signatures have been used to
develop a freely available ML application (mycoCSM) to predict
inhibitory properties of the compound against Mtb, which when
combined with conventional virtual learning approaches can screen
out high quality hit compounds (D. E. V. Pires & Ascher,
2020)(Blundell & Pires, 2015) (Jukič & Bren, 2022). In another

sophisticated study, ChEMBL-NTD database and the TCAMS (from
GSK) database were used to build and evaluate several ML models
and these models were evaluated based on precision, sensitivity,
specificity and accuracy to reveal AdaBoost decision tree (ABDT),
k-Neural Network architecture and Random Forest classifier as the
best performers. For model development, the authors considered
three sets of molecular descriptors—molecular property descriptors,
kappa descriptors and constitutional descriptors. After a screening
process through the chi-square test a total of 14 descriptors were
included as features in these models (Wani & Roy, 2022).

Given the need of precise intervention because of the advent and
progression of AMR, the prospects of anti-tubercular peptides seem
very promising - as a therapy against the disease. Given this, authors
have contributed to the development of machine learning model -
iAtbP-Hyb-EnC which uses an ensemble of ML algorithms
(Probabilistic Neural Networks, K-Nearest Neighbour, Fuzzy-
K-Nearest Neighbour, Random Forest, Support Vector Machine)
to classify peptides based on their activity against M.tb. The protein
sequence and physiochemical properties along with one-hot-
encoding formed a heterogeneous feature vector and the model
delivered an accuracy of 92.68% (Akbar et al., 2021). In another

TABLE 2 Algorithms and tools used for screening and identification of biomarkers against TB.

Objective Algorithms/Tools

Identification of Biomarker using Systems Biology • Differential Gene Expression Retrieval (from Microarray and RNASeq dataset)

• Network Topological Analysis (Hub gene analysis)

• WGCNA Analysis

• Metabolic Pathway Networks—Chokepoint Enzyme detection

• Dynamic Network Analysis (Ordinary Differential Equation (ODEs))

Screening of non-coding RNA • Random Forest

• Neural Network

• Support Vector Machine

• Elastic-Net Logistical Regression

Screening Diagnostic Biomarkers (incl. AMR detection) • Direct Association studies

• Principle Component Analysis

• Logistic Regression

• Classification Trees

• Gradient Boosted Trees + PCA

• Random Forest

• Wide and Deep Neural Network model

• Convolutional Neural Network (CNN)

• Deep Convolutional Neural Network (DCNN)_

• DeepAMR Algorithm

• DeepLIFT Algorithm

Screening of Therapeutic Targets • Tn-Seq Analysis

• WGS Analysis

• Extreme Gradient Boosting (XGBoost) Algorithm
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study, XGBoost algorithm showed higher performance than SVM
and Random Forest algorithm in the detection of “active”molecules
of the pathogen that could be used as a target for intervention (Ye
et al., 2021). In another research study, researchers developed a
cheminformatics approach to select targets of interest to conduct
in vitro studies. A Bayesian machine learning model was used to
differentiate chemical compounds based on their activity and
toxicity in the cellular environment. The highest scoring
compounds along with the in silico detected target was then
taken forward to in vitro studies (Ekins et al., 2015). The results
of the study suggest BAS 04912643 and BAS 00623753 as promising
drug candidates against TB. Table 3 provides detailed list of
compounds which have been deduced using in silico approaches.

Structure-based screening presents the most optimal
interaction between ligands and a molecular target (drug-
target complex). 3D structure of protein molecules is essential
in order to predict the interactions in silico (Nayak &
Sundararajan, 2023). Target-based VS appears to primarily use
the docking concept, in which the three-dimensional structure of
a target protein is used to bind with the bioactive molecules and
score them based on their corresponding binding score (Djaout
et al., 2016; Churqui et al., 2018; Macalino et al., 2020; Srinivas
et al., 2021). Strategies which include pharmacophore and
protein-ligand fingerprinting, could be used in structure-based

VS as well (Macalino et al., 2020). Thus, rather than the total
number of hits, the excellence of a VS is marked by the
exploration of enticing target scaffolds (Djaout et al., 2016).

Several structural biology approaches have been used to develop
therapeutic strategies against M.tuberculosis (Prabitha et al., 2022).
A recent review article discusses in detail about the different targets
which have been used for ligand screening against TB along with
providing a list of websites and repositories from which novel
ligands can be retrieved (Ejalonibu et al., 2021). In silico tools
which can be used for target identification like, homology
modelling, virtual screening, molecular docking, and molecular
dynamics simulation to identify druggable targets and lead
natural metabolites to fight against M. tuberculosis have also
been reviewed in other informative articles (Okombo and
Chibale, 2017; Rudraraju et al., 2022 (Kingdon & Alderwick,
2021; Swain and Hussain, 2022)). In one study, M. tuberculosis
genes were choosen druggable target to prepare specific compound
library from ZINC database, ChEMBL database, and Enamine
REAL database for virtual screening. The author of the study
suggested that, in case the structure of the target molecule is not
available then we can go for homology modelling either using newly
mentioned AlphaFold and deep learning (DL) methods or by using
computational tools like SWISS-MODEL, I-TASSER, and Phyre2.
After preparation of target and small molecule library, receptor

FIGURE 3
Structure-based and ligand-based drug designing pipeline. The first step of drug discovery is protein target dentification, in which disease-modifying
target proteins could be identified through electronicmedical records (EMRs), gene expression data, whole genome sequencing data; specifically whole-
genome single nucleotide polymorphism (wgSNP) to categorize SNPs that distinguish isolates in a genotypematched cluster, whole-genomemultiocus
sequence typing (wgMLST), and conventional TB genotyping data which examine specific regions in M. tuberculosis genome and distinguish strains
based on gain or loss of segments of DNA sequence. Compound library preparation could be done through various databases and different virtual
screening and pharmacophore modelling could be done to select a potential lead compound against target protein. Afterward to confirm their
interactions and conformational flexibility, molecular docking andMDs could be performed. Finally, to calculate binding energy of protein with ligand and
solvent, linear interaction energy can be done to produce a potent inhibitor.
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TABLE 3 Studies with Quantitative-Structure Activity Relationship (QSAR) techniques have been used for TB (LBDD).

S.
No.

Method Target used Lead molecule Role in TB References

1 • 3D-QSAR model MDR/XDR (6S) 2-Nitro-6- {[4-
(trifluoromethoxy) benzyl] oxy}-6,7-
dihydro-5H-imidazo [2,1-b] [1,3]

oxazine

Increase the risk of death Chaudhari &
Pahelkar (2019)

2 • QSAR Pks13 Coumestan 48 It abbreviates fatty acyl chains
to produce α-alkyl β-

ketoesters

Zhang et al.
(2019)

• ADMET

3 • 3D-QSAR GlfT2 5-arylidene-2-thioxo-4-
thiazolidinone

catalyzes the elongation of
galactan chain

Ortiz et al. (2019)

• Molecular docking

4 • QSAR InhA and PS Lignans and Neolignans Activity of dissociative type
2 fatty acid synthase

Maia et al. (2020)

• Molecular Modeling

• ADMET

5 • QSAR by Austin Model
1 (AM1)

MTB C171Q (KasA) Xanthone Fatty acid synthesis Yuanita et al.
(2020)

• MLR

6 • QSAR model
using MLR

DNA gyrase Quinoline ATP hydrolysis Adeniji et al.
(2020)

7 • QSAR ATP synthase Quinolines Respiratory electron flow Saxena & Alam
(2020)

8 • QSAR based on MLR MtbH37Rv strain Cinnamic acids Production of cultural filtrate
proteins

Teixeira et al.
(2020)

9 • QSAR DprE1, InhA, PS, and DHFR Compound 11026134 from
benzothiazinone derivative

Synthesis of thymidylate Viana et al.
(2020)

• molecular modelling

• pharmacophores

10 • QSAR strainStaphylococcus aureus and
Mycobacterium tuberculosis

(2E)-N-(4-bromo-3-chlorophenyl)-
3-phenylprop-2-enamide

Cause infections in soft tissue Kos et al. (2020)

11 • QSAR PKS13 Imidazo oxazines It abbreviates fatty acyl chains
to produce α-alkyl β-

ketoesters

(B & M. K, 2020)

• Docking study

12 • SAR analysis H37Rv Coumarin Production of cultural filtrate
proteins

Pires et al. (2020)

13 • 4D-QSAR model DHQase II Shikimate Catalyzes the shikimate
pathway

Miranda et al.
(2021)

14 • SAR Pks13 4H-Chromen-4-one It abbreviates fatty acyl chains
to produce α-alkyl β-

ketoesters

Wang et al.
(2021)

15 • 3D-QSAR DNA gyrase Triazole ATP hydrolysis Adeniji (2021)

• Virtual screening

16 • 3D-QSAR Rv2421c Coumermycin Growth of Mtb Cloete et al.
(2021)

17 • QSAR: regression dormant MTB 1,2,4-triazole Non-replicating state of Mtb Aher and Sarkar
(2022)

• classification based

18 • QSAR InhA and DprE1 Thiosemicarbazone Production of
lipoarabinomannan and

arabinogalactan

Valencia et al.
(2022)

• MDs

19 • Synthesis InhA and DprE1 N-(4-phenoxy phenyl)-7H-pyrrolo
[2,3-day]pyrimidin-4-amine

Jesumoroti et al.
(2022)

• SAR

(Continued on following page)
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based virtual screening and molecular docking study has been
carried out using different tools and software such as; AutoDock
Vina, AutoDock tool, CDOCKER, FRIGATE, Glide, Gold, LibDock,
and FlexX (Ejalonibu et al., 2021). Most of the articles surveryed
have targeted proteins like, MurB, MurE, InhA, DHFR, FabG,
cyclophilin A, DprE1, PanK, PknB, KasA protein, Isocitrate lyase,
RmID, FtsZ, AroQ, Mbtl, EthR, MraY, NarL, PknA, BioA and LDtB.
In an advanced study, machine learning based molecular docking
method was used, where the authors reported a target of M.
tuberculosis called ribosomal peptidyl transferase and performed
the ML based virtual screening to boost up the screening
productivity (Kovalishyn et al., 2018). Then molecular dynamics
simulation (MDs) was performed to get the conformational stability
and flexibility of complex using different forcefield parameters like;
AMBER, GROMOS, and CHARMM. From the MDs trajectory,
clustering approach was performed for getting an representative
structure (RS) within a cut-off value by users. Then ensemble
docking methods were applied to find anti-TB drugs and to
minimizing the disadvantages of receptor-ligand docking. Table 4
provides a list of methods which have been used for structured based
drug designing against TB.

Pharmacophore modelling is a technique that is used to
identify and determine potential associations among protein-
ligand complexes. The formed association should have uniform

electrostatic andmechanical properties, which are required to elicit a
therapeutic benefit - it is required to maintain ideal biomolecule
interconnections with the use of a distinct molecular target structure
in order to block its biochemical reaction (Zhang et al., 2018). In one
study, the authors have used structure based and shape-based
pharmacophore modelling using Discovery Studio software (DS),
molecular docking by using libdock in DS and computational tools
for the prediction of inhibitors against KasA in TB (Puhl et al., 2020).
They have used a pre-existing structure of DG167 for KasA protein.
Also 7 compounds were considered applying MST (Kd =
20–224 μM) out of 62 commercially available small molecules
identified from different in silico processes. Finally, they found
the molecules with high score were ZINC23955828 and sildenafil,
which were derived through the whole cell Mtb machine learning
model and through the shape-based pharmacophore method
respectively. Other molecules which presented good binding
score to KasA include chlorpropamide and flubendazole from
receptor-based pharmacophore method; lovastatin from shape-
based approach; ZINC47871032 and ZINC89983431 from ML
models. But, from these compounds chlorpropamide,
flubendazole and ZINC47871032 were found to have no
significant changes, hence it was concluded that although these
molecules could interact with the active site, with no major changes
in the conformation of complexations.

TABLE 3 (Continued) Studies with Quantitative-Structure Activity Relationship (QSAR) techniques have been used for TB (LBDD).

S.
No.

Method Target used Lead molecule Role in TB References

Production of
lipoarabinomannan and

arabinogalactan

20 • Atom-based and field
based-3D-QSAR
models

DprE1 ZINC12196803 Production of
lipoarabinomannan and

arabinogalactan

Mali et al. (2022)

21 • HQSAR PknB Quinazoline Responsible for the growth of
pathogens

Hanwarinroj
et al. (2022)

• 3D-QSAR

22 • QSAR strainsStaphylococcus aureus ATCC
29213 and Enterococcus faecalisATCC

29212 and MRSA and VRE

(2E)-3-[3-(Trifluoromethyl)
phenyl]-N-[4-(trifluoromethyl)
phenyl]prop-2-enamide &

Facultative anaerobic gram-
positive bacteria

Strharsky et al.
(2022)

• Docking study (2E)-N-(3,5-dichlorophenyl)-3-[3-
(trifluoromethyl)phenyl]prop-2-

enamide

23 • SAR gram-positive bacteria and two
mycobacterial strains

(2E)-3-(3,4-Dichlorophenyl)-N-[3-
(trifluoromethyl)phenyl]prop-2-

enamide

Cell wall formation Strharsky et al.
(2022)

& (2E)-3-(3,4-Dichlorophenyl)-N-
[4-(trifluoromethyl)phenyl]prop-2-

enamide

& (2E)-3-(3,4-Dichlorophenyl)-N-
[4-(trifluoromethoxy)phenyl]prop-

2-enamide

24 • SAR Pks13 1-(1-(4-bromophenyl)-5-hydroxy-
2-methyl-4-(piperidin-1-ylmethyl)-

1H-indol-3-yl)ethan-1-one

It abbreviates fatty acyl chains
to produce α-alkyl β-

ketoesters

Cai et al. (2022)

25 • QSAR DNA gyrase Triazole ATP hydrolysis Adeniji et al.
(2022)
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TABLE 4 List of methods for Structure based drug designing (SBDD) against TB.

S. No. Method Target Role in TB References

1 • VS Pks13 It abbreviates fatty acyl chains to produce α-alkyl β-ketoesters Çınaroğlu & Timuçin
(2019)

• MD

2 • Molecular docking Pks13 It abbreviates fatty acyl chains to produce α-alkyl β-ketoesters Cruz et al. (2019)

• MDS

• Binding free energy calculation

3 • Docking Rv2984 Intricate in the catalytic synthesis of inorganic polyphosphate Shahbaaz et al. (2019)

• MDS

4 • Docking study MurB and MurE Cell wall formation Rani et al. (2019)

• MDS

• Binding free energy calculation

5 • Target-based drug screening InhA Activity of dissociative type 2 fatty acid synthase Wang et al. (2019)

6 • VS Calprotectin Innate immune activation Gheibi et al. (2019)

• MDS

• MM/GBSA calculation

7 • VS ICL Bypasses two decarboxylation of TCA cycle Lee et al. (2019)

• MDS

8 • VS LipU Cellular uptake Kaur et al. (2019)

• MDS

9 • VS GS Catalyzes glutamates to glutamine Kumari & Subbarao
(2020)

• Molecular docking

• MDS

• Binding free energy analysis

10 • Receptor based pharmacophore e
modelling

KasA and InhA Fatty acid synthesis Puhl et al. (2020)

• Shape-based pharmacophore model

• Selection of compounds

• Docking studies and in vitro analysis

11 • Pharmacophore model generation M. tuberculosis (H37Rv
strain)

Production of cultural filtrate proteins Naz et al. (2021)

• molecular docking

• MDS

12 • in silico VS DNA gyrase ATP hydrolysis Shallangwa & Adeniji
(2021)

• Molecular docking

13 • Homology modelling MmaA1 Transformation process Veeravarapu et al. (2021)

• VS

• ADME analysis

14 • In vitro study InhA Activity of dissociative type 2 fatty acid synthase Ahmad et al. (2022)

• Docking

• DFT calculation

• MDS

(Continued on following page)
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Fragment based drug discovery (FBDD) involves identification
of small molecules as inhibitors to target biomolecules of
significance in diseases followed by crystallographic studies to

characterise the target-ligand binding (Murray & Rees, 2009).
Multiple targets have been identified from the pathogen’s side for
the screening of inhibitory fragments including—ArgB (involved in

TABLE 4 (Continued) List of methods for Structure based drug designing (SBDD) against TB.

S. No. Method Target Role in TB References

15 • Molecular Docking InhA Activity of dissociative type 2 fatty acid synthase Angelova et al. (2022)

• MDS

16 • Molecular docking Pks13 It abbreviates fatty acyl chains to produce α-alkyl β-ketoesters Taira et al. (2022)

• MDS

17 • Pharmacophore modelling PPARγ Regulator of TB pathogenesis Prabitha et al. (2022)

• Docking

• MDS

18 • VS MtICL Intracellular infection Duan et al. (2022)

• Molecular docking

19 • Structural characterization Rv1417 and Rv2617c Forms transient molecular complexes in the cell envelope Paco-Chipana et al.
(2022)

• Docking

• MDS

20 • VS PrpR Regulate the expression of enzyme tangled in methylcitrate
pathway

Rajasekhar et al. (2022)

• Docking

• MDS

• MM/GBSA

21 • Docking PI3K It abbreviates fatty acyl chains to produce α-alkyl β-ketoesters Dasmahapatra et al.
(2022)

• Prime-MM/GBSA

• PASS algorithm

• MDS

22 • Molecular docking CYP51A1 Animal version of cytochrome which involves in the
conversion of lanosterol

Munia et al. (2022)

• MDS

• Pharmacophore site identification

• DFT calculation

23 • VS GlgE It stretches linear α-glucans Singh et al. (2022)

• Drug-likeliness properties

• MDS

• In vitro analysis

24 • Pharmacophore modelling MtDHQ Catalyses the shikimate pathway Souza et al. (2022)

• VS

• Docking

• MDS

25 • Molecular docking Rv1417 and Rv2617c Forms transient molecular complexes in the cell envelope Aguilar-Pineda et al.
(2023)

• DFT

• MDS

MDS, molecular dynamics simulation; VS, virtual screening.
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arginine biosynthetic pathway), BioA (involved in biosynthetic
pathway), Ag85C and KasA (involved in mycolic acid synthesis),
EthR (regulator of mycolic acid production), and DprE1 (involved
in the synthesis of arabinogalactan scaffold). More than one hit
compounds have been identified to be potential inhibitors of each of
the targets mentioned above. For example, Thiolactomycin and
Pantetheine analogs have been identified to bind with KasA with
promising binding affinities. DprE1 inhibitors as derived through
FBDD are at the early stages of clinical evaluation (Mallakuntla et al.,
2022; Togre et al., 2022).

The complex pathology of Mtb which involves multiple
molecular agents (involved in pathogen entry and sustenance)
and the failure of multiple innate immune mediators highlight
the need for the adoption of a multi-target approach. Network
biology (including topological analyses) approaches have been
proposed to be highly beneficial in identifying host or pathogen
targets. To identify conformational similarities between the targets
identified for the study, a pocket similarity score can be calculated
using programs like the Apoc program. After identifying and
characterizing drug targets, lead screening can be performed for
single or multiple ligands (Srivastava et al., 2019). Around five
inhibitory fragments were identified against six known targets
with varying function (GyrA, GyrB, InhA, Ag85C, PS, PDF) of
the pathogen using QSAR methodologies and the study brilliantly
demonstrates the possibility of a multi-target approach against the
pathogen (Speck-Planche et al., 2012).

Several compounds have been identified during the last few
years with potential anti-tubular properties and are currently
undergoing preclinical and clinical studies like, bedaquiline
(Antoci et al., 2021; Chakraborti et al., 2021; Patil & Jain, 2021;
Deshkar & Shirure, 2022), PA-824 (Lenaerts et al., 2005; Edwards &
Field, 2022; Xu et al., 2022; Yan et al., 2022), and delamanid
(Skripconoka et al., 2013; Liu et al., 2018; Nasiri et al., 2022).
Existing drugs have also been modified to repurpose them
against TB and they include -riminophenazines (Valinetz et al.,
2020; Brunaugh et al., 2022), b-lactams (Moon et al., 2018; Story-
Roller & Lamichhane, 2018; Ur Rahman et al., 2018), and
oxazolidinones (Balasubramanian et al., 2014; Alghamdi et al.,
2020; Margaryan et al., 2022; Ndukwe et al., 2022). These are
examples of how in silico approaches have been successfully
employed in retrieving promising lead compounds in preclinical
and clinical studies. However, so far none of the mentioned
compounds fulfilled all the criterion to be labelled as an ideal
anti-TB drug. (Cihan-Üstündağ et al., 2019; Appetecchia et al.,
2020). Tables 3, 4 provides details about different methods which
have been used to identify lead compounds against TB using Ligand-
based and Structure-based drug designing approaches respectively.

Drug Repurposing. COVID-19 pandemic has highlighted the
need for repurposing validated drugs for use against novel or
neglected pathogens. With the rise in drug resistance against
Mtb, this approach of drug discovery cannot be more relevant.
Dataset with antimalarial drugs were used to screen through target
receptors derived from whole cell screening of the M.tb using naïve
Bayesian algorithm. Such ligand-based screening has also been used
against E. coli target molecules with several other machine learning
algorithms including—Deep Neural Networks, Feed-forward
Neural Network and Random Forests (Urbina et al., 2021). Other
in silico approaches that can be used for drug repurposing

include—Phenotypic screening, Target-based methods,
Knowledge-based methods, Mechanism-based methods,
Signature-based methods, Pathway-based methods and Molecular
docking (Kulkarni et al., 2023). Molecular docking has been used
recently to study the interaction of 10 FDA approved drugs with two
proteins involved in the synthesis of mycolic acid. The study
revealed lymecycline as a potent drug (already FDA approved)
against Mtb (Umapathy et al., 2021).

Toxicity Evaluation. Machine Learning algorithms have also
been used in predicting the toxicity potential of a compound of
interest based on its structural similarities to known compounds.
These methods are referred as Quantitative Structure- Activity
Relationships and Quantitative Structure Property Relationships
[Please refer to the Basic Concept section (description of
molecular descriptors)]. Apart from it, systems biology
approaches are also being used on high through put datasets
wherein the effect of ligand-target interactions are evaluated in
the host cellular systems based on the molecular chain of
reaction this interaction unleashes and their toxicological
implications (Vo et al., 2020).

For the development of next-generation of treatment strategy
against TB, a multi-dimensional approach of control is only logical
given that the bacterium attacks and evades using myriad of inter/
intra-cellular molecular pathways. There is a growing support for
use of host-directed therapies along with use of anti-microbial drugs
in order to train the immune system as a supportive arm while
learning to fight against immune-evasion attempted by the pathogen
(Chandra et al., 2022).

3) Applications of computational approaches in vaccine
development

It is scientifically hypothesized that Mycobacterium tuberculosis
do not induce a protective immunity in the infected subjects as the
chances of re-infection remain high in previously infected patients.
Hence, we know preventive vaccines are required to induce a
significantly divergent and controlled host responses as compared
to the natural immune response. Better characterization of the
mycobacterium virulence and immune evasion respectively are
suggested to pave way for the development of epitope-based
vaccines and for prospective vaccines which work on the concept
of trained immunity, two approaches a recent review advocate for
(Chandra et al., 2022).

The new branch of reverse vaccinology which follows the
“genome to vaccine” approach require advanced computational
tools to screen through the pan-genome of the pathogen for the
identification of ideal vaccine antigens (Vaccinology in Reverse,
2020). Prospective vaccine candidates from several other gram-
negative bacteria have been identified through bacterial genome
screening and characterization (Pizza et al., 2000; Tettelin et al.,
2000). To curate a list of genes from the bacterial genome which
would be exposed to the immune mediators upon infection,
functional genomics analysis could play an instrumental role and
would basically involve clustering and dimension reduction studies
in an open-ended manner (to group associated genes/protein
according to their functional commonalities)(Bambini &
Rappuoli, 2009). Reverse vaccinology has been used before for
vaccine design against TB. One of this study revealed six
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promising novel vaccine candidates against TB which were—PE26,
PPE65, PBP-1, Erp, EsxL, PGRS49 (Monterrubio-López et al., 2015)

Molecular docking and simulation studies have also been
performed to study the interactions of the designed vaccine with
different immunological receptors to check for binding properties
and hence resultant potential immune responses. In a sophisticated
study, analysis of the bacterial proteome was performed to reveal five
proteins of interest for the development of a subunit vaccine. Among
the five selected proteins P9WL69 was deemed as a vaccine
candidate and was docked against TLR-2, TLR-4, TLR-9,
Mannose receptor and MYD88 to characterize the
immunogenicity of the selected vaccine candidate. The protein-
receptor complexes were further characterized using molecular
simulation studies. The study, along with demonstrating the
methodology and parameters involved in proteome screening and
analysis, also focuses keenly on the potential immunological
signalling pathways that can be triggered by the putative vaccine
candidate. This excellent study acknowledges the requirement of a
strong and divergent innate immune response which is thought to be
required to generate durable protection against Mtb (Arega et al.,
2021). In similar studies the constructed vaccine assembly with or
without adjuvants were docked against TLR-2 (Moodley et al., 2022)
and TLR-3 (Bibi et al., 2021) to characterize their immunogenicity
further revealing promising vaccine candidates.

In another structural-biology based study, secretory proteins of
Mtb were screened for their antigenicity properties to reveal MyCP1,
ECCE1, ECCD1, and ECCB1 antigens as best performers. 9-mer and
15-mer peptides were retrieved from these antigens as B-cell and
T-cell epitopes and their binding interactions with MHC molecules
were characterized withmolecular docking and simulation studies to
comprehend the potential efficiency of the proposed vaccine
candidate to be presented to the lymphocytes. The proposed
vaccine candidates were further validated in through in vitro
experiments (Jagadeb et al., 2021). In another study using pan-
proteome screening and epitope prediction suggested two Mtb
antigens of importance (DAG acetyltransferase and ESAT-6-like
protein) for the development of a multi-epitope vaccine. The
interaction of the putative multi-epitope vaccine with both MHC
molecules and TLR-4 were characterized using molecular docking
and simulation studies (Albutti, 2021). The author of the study in the
process of developing a multi-epitope vaccine proposed a
consolidated computational framework for the designing of
multiepitope vaccine against Mtb.

Apart from reverse vaccinology, the young and thriving branch
of systems vaccinology is also expected to play a vital role in out fight
against bacterial infections. The field deals with understanding
protective immune responses to infection at molecular level and
is greatly fueled by the omics data available (especially the gene
expression data from host after vaccine administration). Apart from
eliciting the molecular chain of interactions unleashed by
vaccination, regression studies when employed on the omics data
can reveal credible biomarkers or correlates of protection of immune
progression which holds high value for immune monitoring and in
evaluating vaccine responses. Apart from protection, systems
vaccinology along with other computational and ML algorithms
can help in delineating molecular mechanisms of adverse events
triggered by vaccine candidates in pre-clinical and clinical studies
(Pulendran, 2014; Querec & Pulendran, 2014; Fletcher, 2018; Satti &

McShane, 2019). Omics data retrieved from vaccinees or from cell
cultures can be used to associate gene expression profiles/or SNPs
with vaccine induced immune responses using basic statistical tests
(like, Wilcoxon signed-rank test to find differentiation of geometric
means between the treatment and the control group when dealing
with transcriptomics data). Upon BCG administration such a study
revealed significant role of hepatic nuclear factor (HNFs) in
hematopoietic stem cells and monocytes in inducing—trained
immunity (a phenomenon of elevated innate immune system)
which have been lately associated with BCG vaccination (Cirovic
et al., 2020). A similar genomic study, specific for neutrophil
uncovered changes in methylation profile of the leukocyte upon
vaccine administration proposing an induced “functional re-
programming of neutrophils” as another factor contributing to
trained immunity (Moorlag et al., 2020). BCG vaccine has also
been reported to have immunomodulatory properties and have been
test against several autoimmune diseases like Type-1 diabetes. In a
multi-omics association study, expression/demethylation of
following genes in the Treg cells were revealed to be associated
with the immunomodulatory properties of the vaccine: CD25,
CTLA4, CD62L, CD45, TNFRSF18, IKZF2, IKZF4, TNFRSF18,
Foxp3, and IL2 (Keefe et al., 2021).

Despite the multitude of studies being conducted to gather the
entire picture of the immunological profile associated with BCG,
there is a gap of understanding the molecular mechanism through
which this vaccine could/would provide protection against TB.
Given this transcriptomics/gene expression analysis of the
immune responses triggered by Mtb itself can provide important
insight into the protective (required) as well as detrimental immune
responses (similar to analyses already conducted for other pathogens
(Naidu and Lulu S, 2022) which could aid in setting up an target
product profile for vaccine development. Efforts in this direction
have already begun. For example, gene expression analysis followed
by network topological studies have highlighted CTLA4, PRF1,
GZMB and GZMA as hub genes associated with latent TB
(Zhang et al., 2021). Similar analysis on THP-1 cells, with the
use of WGCNA revealed close associated of IL1B, IRAK4 and
CCL20 (immune system related genes-among other genes) as
being closely associated with MTB infection (Lu et al., 2021).

4) Future prospects

The research community working against TB have made
extraordinary progress in employing advanced computational
tools to better understand the pathogenesis of the disease and to
develop interventions. Yet, given the hefty challenges involved in TB
management, more exploration is required to fully utilize and
optimize systems and computational tools available at our
disposal—for biomarker identification, drug discovery and to find
an efficient prevention strategy. In a ground-breaking study, host-
pathogen interaction in macaques affected with TB was thoroughly
analysed in a temporal manner using imaging, single cell-RNA-Seq
and pathogen-clearance-parameter data. The most important
findings of the study was that– 1) the timing of intervention
(based on the stage of the granuloma) can greatly affect its
efficacy of the treatment, 2) TH2 type immune response is
negatively associated with infection control and positively
associated with high-burden granuloma formation, 3) TH1/
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TH17 based adaptive immune responses lead to low-burden
granuloma formation. Based on these findings, the authors of the
study proposed distinct drug targets and hence perspective drugs
candidates for different stages of the granuloma formation. Such
multi-scale data integration and analysis was conducted using
clustering, co-expression, classification and network biology-
based algorithms (Gideon et al., 2022.). Along with underlining
the indispensability of computational and systems biology tools in
the current pro-data research atmosphere, the study signals towards
an upcoming glorious period in TB research in humans. Depending
on data availability, investigators would be able to comprehend the
whole picture of the dynamics of host-pathogen interaction and
hence, would be able to come up with precise preventive/therapeutic
interventions to regulate/eliminate the pathogen, which is the basis
of the thriving branch of Precision Medicine.

In the coming decade, as we leap towards the deadline set for the
“END TB” strategy, the role of Machine Learning algorithms in
every aspect of TB research cannot be underestimated. Figure 4
illustrates a network of the major “keywords” linked with the
research articles included in the current literature survey. As it
can be observed, the prominent presence of machine learning and
deep learning algorithms in these papers is quite striking. It goes
without saying that further standardization and optimization of
these methodologies are expected based on requirements. For
example, with regards to drug screening, building ML models to
screen out active hit compounds (small/natural compounds) is a
major challenge. The samples selected to train the model can heavily

influence the precision and accuracy of it in determining the binding
affinity to the target. Focusing on conformational interactions
between drug and target, a group tried to neatly incorporate
minority classes of drug conformations using an oversampling
technique called synthetic minority oversampling technique
(SMOTE), which based on regression, generate and add up more
data which represent the minority class of conformation in the
training datasets (to avoid sample biasness problem). This
oversampling technique when combined with linear regression
and k-nearest neighbour algorithm gave highest accuracy in
predicting suitable target protein conformation (for ligand
binding) as was validated experimentally (Akondi et al., 2022). A
group successfully incorporated this technique to develop several
ML models using a TB database to expand on the sample size.
Minority (less sample size) sub-samples of interest of potential drugs
with or without anti-tubercular properties can play an important
role in the development of robust and sensitive ML models (Wani &
Roy, 2022). Further elaborate studies are required for the
identification, expansion and incorporation of these classes in the
drug discovery process against TB.

Secondly, Deep Neural Networks (DNNs) can find vital
applications in the fight against TB as their usage have been
strongly advocated for biomedical use. The primary reason for
why DNNs are so attractive is because—1) they offer a way to
make sense of the huge amount of biochemical and molecular data
currently being produced (which could aid in the drug discovery
process), 2) there are parallels between the architecture of deep

FIGURE 4
Network of representative keywords retrieved from the research papers included in the review article. The network clearly indicates the dominance
of Machine Learning and Deep Learning algorithms in the research and development domain linked with Tuberculosis.
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learning models and the conceptual framework of the central dogma
which make the use of DNN models even more tempting to unravel
the pathogenicity of the disease and to decode how the immune
system responds to the host (Mamoshina et al., 2016). For example,
Pairwise input Neural Networks (PNN)could provide a fantastic
opportunity to simultaneously characterize and rank many drug-
ligand interactions for a faster screening process. Given that Mtb is a
complex pathogen and that the need of new drugs have become
more and more urgent with the advent of drug resistance, PNN
provide a strategic pipeline to reduce the time of discovery and to
come up with credible drug candidates. Based on the similar
concept, DeepBind algorithm provide information on the ability
of candidate transcription factor and RNA-binding proteins to bind
to a given genetic sequence. This tool can provide information on
the pathogenesis of Mtb, the immune evasion and the resultant
hyper (immune) reactivity—whichmight open doors for therapeutic
interventions, including non-coding RNA (Mamoshina et al., 2016).
Other tools which can be used to predict RNA-protein interaction
are summarized in a review article by Zhong et al. (2021) which
presents IPMiner and RPIScan, tools (both of which uses deep
learning autoencoder networks along with Random Forests
classifiers) as promising tools to predict RNA-protein
interactions. These tools can be immensely valuable in creaming
out credible non-coding RNAs as therapeutic agents (in conducting
drug-protein interaction studies) and also in understanding RNA-
protein interactions during TB pathogenesis for identifying key
diagnostic motifs.

For better evaluation of ligand libraries used for FBDD,
integration of QSAR based multi-scale models (which are able to
integrate biological and chemical features of a compound whose
query structure have been provided) have been suggested. This
approach needs to be explored further with urgency against TB
to come up with highly credible group of targets and their respective
inhibitory fragment/fragments for the development of a multi-target
treatment option which would be instrumental as we increasingly
get short of treatment options. Efforts in this direction have already
begun (Speck-Planche et al., 2012). Also, many advanced
computational applications are also now available for drug
screening and to perform advanced analysis on binding studies
and can be used to bring out highly credible anti-TB drug candidates
for wet lab studies post in silico analysis (Kleandrova & Speck-
Planche, 2020). An important example is inverse molecular docking
which begins with a selected ligand and used to prioritize target
proteins from a set of pre-determined molecular targets.
CANDOCK, the inverse molecular docking programme have
been used to screen out natural compounds against host targets
involved in TB. In this study, binding sites were identified for small-
molecule binding before preparing them for inverse docking. Post
docking, target molecules can be ranked based upon their docking
score—revealing the best target-drug pair which along with being
instrumental in the drug discovery process, can also provide
invaluable information on the key host pathways involved in TB
pathogenesis and progression. (Jiménez-Luna et al., 2021).

Advanced simulations often generate enormous data sources
containing a high proportion of MD trajectories and millions of
molecular structures. Primary challenge that Molecular Dynamics
faces is to make sense of this data and to extract meaningful
information of the structural complex under consideration as

quickly as possible (Shao et al., 2007). The process of
conformational clustering groups geometrically similar MD
conformations into a cluster and is a useful approach to
addressing this challenge as it allows for the study of
thermodynamic properties of millions of MD conformations in
great depth by dividing them into different clusters based on the
associate properties (Gyebi et al., 2021).Many clustering algorithms
established in computer programming have already been effectively
implemented for MD datasets. The most frequently used clustering
algorithms can be split into two distinct categories based on their
basic principles: hierarchical and partitional clustering algorithms.
And its subtypes. It is important to note that there is no “one-size-
fits-all” clustering algorithm and they can be used based on the
research requirements considering their respective merits and
limitations (Glavaški et al., 2022)(Nayak & Sundararajan, 2023).
The linear interaction energy (LIE) analysis computes the non-
bonded van der Waals (vdW) and electrostatic (ele) interactions for
the compound with protein target and the compound in water to
compare the bound and unbound state of the small molecule/ligand/
compound as well as binding capacity of the compound. This
analysis provides better approximations to experimental binding
free energies to the results obtained after in silico analysis (Furlan &
Bren, 2021; Nayak & Sundararajan, 2023). The advanced
computational tools discussed above, highlight the fact that, in
the age where machine learning based drug screening is
increasingly used by researchers, the tools and concepts of
structural biology still find relevance to characterize molecular
level receptor-ligand interactions at an atomic level to churn out
high quality drug candidates post in silico analysis.

Last but not the least, in silico evaluation of potential drug
toxicity provide an extraordinary opportunity to bring up credible
lead compounds. Efforts have already begun to co-aggregate data
from in vitro and in vivo experiments from different studies to have
a comprehensive database of chemical structures and their
associated biochemical properties like ACToR (Aggregated
Computational Toxicology Resource). Such databases would act
as important resources to feed machine learning models aimed at
predicting toxicity. Also, the advent of miRNA technologies for
preventive and therapeutic interventions, have created a new
dimension for toxicity studies wherein the implication of
miRNA-target binding in Tuberculosis can exhaustively be
evaluated to screen out the safest miRNA candidates for further
optimization (Vo et al., 2020).

As discussed above, the other application of machine learning
algorithm would be in the screening of drug resistant strains of Mtb
based on the genomic data of the pathogen. Although attempts are
being made to keep track of the variants locally and globally, it is
essential that a standardised protocol is drafted and deployed for
whole genome sequencing analysis and for prompt identification of
drug resistant variants (Ley et al., 2019). This would greatly
accelerate the process of variant detection and characterization
while making the derived results more credible. A great starting
point in this direction would be development of a well-calibrated
(well trained) ensemble model (A. Zhang et al., 2021) which can
include appropriate machine learning models to capture the
mechanism behind antibiotic resistance and in the process act as
a universal predictive toolbox - handy for the clinicians and
diagnostic centres to rapidly screen out antibiotic resistant
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strains. Lastly, for vaccine development and pre-clinical/clinical
evaluation, defining of co-relates of protection (CoP) can greatly
facilitate immune-monitoring and hence accelerate the regulatory
process post vaccine development. Machine learning algorithms are
recently being used assign immune signatures of protection for other
diseases. Given that protective immune response to TB is yet to be
elucidated, systems biology tools along with ML provide great
prospects of research in establishing the CoPs against TB
(Arevalillo et al., 2017).

Limitations of using computational tools in
TB research

Primary limitation of the use of computational tools and in
using heavy data in research and development sector is the cost
associated with it. Hardware and software with high computing
power have hefty pricing raising questions on affordability. On the
other hand, use of ML algorithm to establish diagnostic biomarker
would require considerable thought on the possible study biases
(like, sampling bias, exclusion biases and measurement biases.
Moreover, it is important to note that the quality of the findings
from ML algorithms are dependent on high quality structured data
which could often be difficult to obtain in medical settings baring to
infrastructural limitations. In molecular simulation studies for drug
discovery, the primary challenge remains to be the setting up of
parametric values to be as close to the biological conditions which
are pretty dynamic. Another major ethical concern in the use of in
silico approaches is associated with the need of storage, privacy and
security of obtained biological data—legal and practical guidelines
for the same are yet to be drafted and deployed.

Conclusion

The current review takes a comprehensive approach to discuss
key monitoring and interventional strategies under development
against TB using computational and systems biology approaches.
Due to its broad approach the articles provide only a brief overview
of several advanced computational tools, details on which can be
obtained in the cited articles. In conclusion, the success of the “END
TB” strategy is dependent on the collective focus of the scientific
community in developing and employing advanced methodologies
to screen, manage and prevent the spread of Mtb strains specially in

the endemic settings. Computational tools provide an
unprecedented opportunity to make use of the available data
to—increase our understanding of the disease, screen out the best
drug/vaccine candidates and to develop clinically usable tool-box for
tracing and hence managing antibiotics resistance. Through this
review, we try to provide the current status of development of these
applications while presenting exciting future prospects of research
and development in this field.
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