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Long COVID: Is there a kidney 
link?
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Metabolic causes such as altered bioenergetics and amino acid metabolism may 
play a major role in Long COVID. Renal-metabolic regulation is an integral part 
of these pathways but has not been systematically or routinely investigated in 
Long COVID. Here we discuss the biochemistry of renal tubular injury as it may 
contribute to Long COVID symptoms. We propose three potential mechanisms 
that could be involved in Long COVID namely creatine phosphate metabolism, 
un-reclaimed glomerular filtrate and COVID specific proximal tubule cells (PTC) 
injury-a tryptophan paradigm. This approach is intended to allow for improved 
diagnostics and therapy for the long-haul sufferers.
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1. Introduction

The USA has suffered over 1 million deaths from COVID-19. The Centers for Disease 
Control (CDC) has confirmed approximately 95  million persons with a positive test for 
COVID-19 (1). Multiple scenarios predict this number is grossly underestimated (2). Our focus 
is on the additional tragedy of 1 to 12% (3) of the hundreds of millions infected world-wide may 
experience a protracted course of illness, variably called Long or Long-haul COVID or Post-
Acute COVID Sequelae (PACS) (4, 5).

No consensus definition of this syndrome has been promulgated. European authorities 
(6) and in the USA, the American Academy of Physical Medicine and Rehabilitation (7) and 
the Kaiser Permanente Mid-Atlantic group (8) have all offered guidance regarding diagnosis 
and/or management of Long COVID. A study from the Netherlands has attempted to refine 
the definition by correcting for pre-existing symptoms and using age and gender-based 
controls (3). Long COVID may be indistinguishable from the prolonged recovery that occurs 
after acute severe disease as in the case of patients requiring mechanical or pharmacological 
life support. But a significant proportion of Long COVID sufferers had milder initial 
infections (9). Many did not require hospitalization (5). Long COVID is expressed in over 
200 symptoms involving ten physiologic systems (9, 10), but among these fatigue (with a 
prevalence of 98%) and cognitive impairment (often termed Brain Fog with a prevalence of 
85%) are the cause of significant debility and decreased quality of life (9, 10, 11). The focus 
of this communication is the biochemical pathogenesis of muscle fatigue and Brain Fog and 
the involvement of renal tubular physiology. Thirty years ago, scientists at Oxford University 
and the Karolinska Institute articulated multiple metabolic causes of muscle fatigue and brain 
impairment (12). Of these metabolic causes, altered bioenergetics and amino acid metabolism 
play a major role. Thus, renal-metabolic regulation is an integral part but has not been 
systematically or routinely investigated in Long COVID. Here we discuss the biochemistry 

OPEN ACCESS

EDITED BY

Gian Marco Ghiggeri,  
Giannina Gaslini Institute (IRCCS),  
Italy

REVIEWED BY

Humberto Muzi-Filho,  
Federal University of Rio de Janeiro,  
Brazil
Marcello Mariani,  
Pediatrics Infectious Diseases Unit,  
IRCCS Istituto Giannina Gaslini,  
Italy

*CORRESPONDENCE

David Bar-Or  
 davidbme49@gmail.com

SPECIALTY SECTION

This article was submitted to  
Nephrology,  
a section of the journal  
Frontiers in Medicine

RECEIVED 05 January 2023
ACCEPTED 15 March 2023
PUBLISHED 03 April 2023

CITATION

Garrett RE, Palacio CH and Bar-Or D (2023) 
Long COVID: Is there a kidney link?
Front. Med. 10:1138644.
doi: 10.3389/fmed.2023.1138644

COPYRIGHT

© 2023 Garrett, Palacio and Bar-Or. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Hypothesis and Theory
PUBLISHED 03 April 2023
DOI 10.3389/fmed.2023.1138644

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1138644%EF%BB%BF&domain=pdf&date_stamp=2023-04-03
https://www.frontiersin.org/articles/10.3389/fmed.2023.1138644/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1138644/full
mailto:davidbme49@gmail.com
https://doi.org/10.3389/fmed.2023.1138644
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1138644


Garrett et al. 10.3389/fmed.2023.1138644

Frontiers in Medicine 02 frontiersin.org

of renal tubular injury as it may contribute to Long COVID 
symptoms. This approach is intended to allow improved diagnostics 
and therapy for the Long-haul sufferers.

Renal dysfunction is a well-established cause of metabolic 
disturbances and toxin accumulations that impair muscle and brain 
function (13, 14). Renal disorders of sodium, potassium, magnesium, 
calcium, phosphate, and pH are familiar causes of metabolic 
myopathies and encephalopathies and therefore will not be further 
discussed here (15). We emphasize less heralded pathways that are 
potentially disturbed after COVID kidney injury.

The incidence of acute kidney injury (AKI) in hospitalized 
patients with COVID varies during the time course of the disease 
and according to demographic factors. Teixiera et al. report AKI 
incidence in hospitalized COVID patients in the USA at 33–57% 
with about a third of these requiring renal replacement therapy 
(16). Acute kidney injury in COVID is often multifactorial with the 
preponderance of morphologic injury being in the renal tubules. 
Recent evidence from kidney biopsies and post-mortems has 
disclosed significant injury to the proximal tubular cells (PTC) (17). 
The injury was demonstrated by abnormal urinalysis and 
biochemical evidence in the urine of PTC dysfunction including 
phosphaturia, uricosuria, aminoaciduria, and low molecular weight 
proteinuria (17). Biomarkers and detailed light and electron 
microscopy disclosed marked renal tubular cell damage. Immune 
staining revealed marked PTC decrements in Megalin and URAT-1 
transporter. Direct severe acute respiratory syndrome coronavirus  
viral invasion was confirmed by transmission electron microscopic 
evidence of viral particles but with the caveat that the observed 
particles may be  artifactual. However, other investigators have 
found viral particles by electron microscopy in the tubules and 
podocytes and confirmed the presence of SARS-CoV-2 nuclear 
protein antigen. The pathology illustrated the most extreme, in that 
most specimens were postmortem (17).

A cogent argument for the role of direct viral infection by SARS-
CoV-2 in PTC injury has been presented by Soleimani (18). There 
follows a meticulous discussion of the complex physiologic 
derangement of the infected PTC (18). Renal PTC injury would 
be expected during the viremic stage of COVID given the high density 
of the SARS-CoV-2 receptor, ACE2, on the PTC membrane (17). 
Consequent perturbations of renal tubular function are discussed 
under the three sections on the proposed mechanisms generating 
Long COVID symptoms.

Only a minority of Long COVID patients present with a history 
of AKI. However, PTC dysfunction that is not associated with 
diminished urine output or rising serum creatinine may 
be unrecognized. Our search was unable to find renal tubular function 
data on unselected hospitalized COVID patients. In the study of 
Werion et al. normoglycemic glycosuria was not found, in contrast to 
the marked defects in reabsorption of urate, phosphate and amino 
acids. Little information was offered regarding proximal renal tubular 
acidosis. These observations are critical, since the clinician who 
reviews the urine dipstick values will be  unlikely to search for 
proximal tubular damage in the absence of unexpectedly alkaline 
urine or glycosuria. If PTC dysfunction is diagnosed and 
hypouricemia/uricosuria is present, the morbid risk for the COVID 
patient is increased, according to this one source (17). We hypothesize 
plausible mechanisms that may explain, at least in part, the Long 
COVID symptoms of “brain fog” and muscle fatigue.

2. Mechanism I: Bioenergetic 
impairment-creatine phosphate and 
GAA deficiency syndromes

Generalized PTC injury impairs phosphocreatine synthesis. The 
PTC has a high concentration of the enzyme arginine-glycine-
amidinotransferase (AGAT) (19). AGAT is the first and rate-limiting 
enzymatic step in phosphocreatine synthesis. The renal tubule uses 
phosphocreatine as an energy source during periods of high demand 
but 95% of the body’s creatine is in skeletal and cardiac muscle. Most 
of the remaining 5% is in the brain and red blood cells (20). Creatine 
phosphate is a major energy source for skeletal muscle (20). 
Two-thirds of the intracellular creatine is in the form of 
phosphocreatine which, via the catalysis of creatine kinase, can replete 
consumed ATP faster than by glycolysis or oxidative phosphorylation 
(Figure 1).

The AGAT reaction yields guanidinoacetate (GAA) and ornithine. 
The renal tubule exports much of the GAA to the liver for the final 
step for creatine synthesis and the liver supplies much of the rest of the 
body including muscle and brain (21). Inherited defects in AGAT 
cause muscle fatigue and learning and language difficulties (22). 
Investigators have postulated that GAA deficiency as well may be an 
under recognized depletion syndrome (19).

Symptomatic deficiency would be most prominent in those with 
anorexia and malnutrition, on a vegetarian diet, and those with 
accelerated renal or enteric losses of creatine and in those with 
diminished functional PTC mass. Malnutrition risk as a negative 
prognostic factor in COVID-19 patients is recognized (23). 
Malnutrition is one of the main causes of immunodeficiency, affecting 
both the innate and the adaptive immune response (24), exposing 
individuals to an elevated risk of infection (25) and a lower capacity 
to inhibit viral proliferation. Malnutritional risk is also a negative 
prognostic factor for mortality, hospital length of stay and clinical 
status at discharge in patients with COVID-19 (23, 26).

Adipose tissue-induced inflammation in obesity leads to 
metabolic disturbances that could lead to complications such as 
dyslipidemia, hypertension, diabetes and cardiovascular disease. 
ACE2 on adipocytes exerts systemic effects on the cardiovascular 
system (27). Interactions among sex, adipocyte ACE2, and 

FIGURE 1

Phosphocreatine pathway.
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complications of obesity, have been reported (28). Leptin is one of the 
most important adipokines driving these pro-inflammatory effects 
and higher leptin is associated with increased Angiotensin II levels as 
well as decreased ACE2 expression and activity (29). Thus, the 
impairment of this one PTC reaction could contribute to Long-
haul symptomatology.

3. Mechanism II: Un-reclaimed 
glomerular filtrate

The kidneys receive one fifth of the cardiac output and from this 
the glomeruli generate 176 liters of filtrate per day in a 70 kg man. This 
filtrate is rich in molecules essential to the body including water, 
glucose, electrolytes, minerals, bicarbonate, phosphate, amino acids, 
albumin and small proteins, e.g., transthyretin (pre-albumin) that 
carry critical vitamins. It is the life-sustaining and gargantuan 
responsibility of the renal tubular cells to reabsorb and return to the 
body about 99% of these substances. The proximal tubule does the 
heavy lifting in this regard. Curiously, in clinical medicine, even when 
managing acute kidney injury, few direct measures of this reabsorptive 
function are routinely ordered. Kidney function in the hospital is 
assessed by urine output and measurements of plasma urea and 
creatinine levels. These tests reflect only the renal excretory function 
which, albeit critical, offers little information of the myriad other 
kidney functions (Figure 2).

The reclamation of glomerular filtrate is critical and is mediated 
by multiple membrane transporters for small molecules and by 
efficient endocytosis for proteins that enter the filtrate.

During COVID infection with AKI, dysfunction of the array 
of  transporter molecules could result in electrolyte and 
mineral  abnormalities that could contribute to Long 
COVID symptomatology.

The usurpation of the endocytotic pathways in the renal proximal 
tubule has been meticulously described (18, 30). The latter reference 
includes details on various mechanisms SARS-CoV-2 translocation in 
intestinal and other cells as well. COVID AKI is frequently associated 
with albuminuria. This could result from direct glomerular injury 
and/or failure of proximal tubular endocytosis. The glomerular 
podocyte expresses ACE2, so it is presumed susceptible to SARS-
CoV-2 attack. However, podocyte injury is seen in an array of 
glomerulopathies including diabetes, a condition with increased risk 
for COVID infection. Silva-Aguiar has reported that the SARS-CoV-2 
spike protein inhibits Megalin-mediated albumin endocytosis (31). 
Thus, PTC injury could account for a component of the albuminuria.

In the kidney, ACE2 is strongly expressed in the brush border of 
proximal tubular cells and some in parietal epithelial cells and 
podocytes, whereas ACE2 staining is weak or negative in glomerular 
endothelial cells and mesangial cells. SARS-CoV-2 infections seem to 
be more frequently associated with AKI compared with SARS-CoV-1. 
The increased binding affinity of SARS-CoV-2 to ACE2 may explain 
this phenomenon, as it would allow for greater renal infectivity. More 
detailed mechanism of SARS-CoV-2 effects on various components 
of the renin angiotensin axis is described elsewhere and is beyond the 
scope of this hypothesis.

Viral invasion and/or secondary inflammation may injure the 
PTC’s endocytotic pathway (18). We  know from loss of function 
mutations affecting renal endocytosis that pathology results. A notable 
example is the mutations in Megalin and Cubilin which form the 
master effector of renal endocytosis. Their disruption causes low 
molecular weight proteinuria, including protein carriers of thyroid 
hormones, vitamin B12 and vitamins A and D. These vitamins are 
normally stored by the body so symptomatic depletion would not 
be  immediate, but if persistent loss occurs, symptoms will appear 
months after the acute COVID and thus manifest during the Long 
COVID phase. However, an earlier onset of symptoms should 

FIGURE 2

Glomerular functions.
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be expected in those with prior nutritional compromise. Deficiencies 
of the fat-soluble vitamins A and D give rise to cutaneous, visual and 
immune symptoms as well as disruption of calcium homeostasis. 
Deficiency of vitamin B12 causes changes in sensation, proprioception 
and balance that can lead to ataxia, cognitive challenges and severe 
anemia (32). In fact, in the inherited defect of Cubilin, despite chronic 
proteinuria, the long-term kidney excretory function is preserved but 
those affected have significant risk of neurologic and hematologic 
sequelae, possibly related to those seen in Long COVID.

4. Mechanism III: COVID specific PTC 
injury-a tryptophan paradigm

Direct SARS-CoV-2 viral infection of the renal parenchyma has been 
documented (17, 18, 33). The viral spike protein binds to the copious 
ACE2 receptors of the proximal tubule. This is followed by proteolytic 
cleavage by one of several enzymes. The function of the proteases is to 
facilitate the viral endocytotic odyssey to the lysosome and ultimate 
release of RNA to be replicated by the host’s machinery (Figure 3).

SARS-CoV-2 infection of the renal PTC not only abrogates the 
function of ACE2, but also alters the function of the ACE2 homolog, 
Collectrin (34). Collectrin, although lacking the catalytic function in 
ACE2, apparently has chaperoning function for other membrane 
proteins including B(0)AT1, the Hartnup transporter of neutral amino 
acids, in both the kidney and intestine. The intestine is the organ richest 
in ACE2 receptors and COVID can result in altered B(0)AT1 transport 
in the gut as well. In the gut, B(0)AT1 membrane trafficking is 
independent of Collectrin and the chaperone function is accomplished 
directly by ACE2 (35). The disruption of renal and intestinal transport 
of neutral amino acids is a known cause of medical syndromes, with 
Hartnup’s disease being the genetic prototype (36). An instructive 
example of neutral amino acid deficiency is that of defective Tryptophan 
transport. This emphasis is not to deny the involvement of other neutral 

amino acids, for example branch chain amino acids, a dearth of which 
could contribute to decreased muscle performance.

Depletion of Tryptophan disrupts critical biochemical pathways. 
Tryptophan has multiple metabolic fates. Best known of these is the 
pathway to Serotonin utilized by neural tissue and gut and the further 
metabolism to produce Melatonin via the “night reaction” in the 
pineal gland (37). Low Serotonin levels are associated with multiple 
neuro-psychiatric afflictions (38) and loss of Melatonin is implicated 
in dysregulation of sleep (39) as is a catabolite and photo-product of 
Tryptophan abbreviated FICZ [6-formylindolo(3,2-b)carbazole], 
which informs the neural systems that control circadian rhythms (40). 
Derangement of these processes could explain some of the neuro-
cognitive symptoms evident in Long COVID.

Although the Serotonin pathway is most widely recognized, the vast 
majority of Tryptophan is metabolized via the Kynurenine Pathway (KP) 
(41). The initial biochemical step in the committed KP is catalyzed by 
three dioxygenase enzymes, IDO-1, IDO-2, and TDO. These enzymes 
are even accelerated during acute disease as IDO-1 and IDO-2 are 
stimulated by inflammatory cytokines (IL-1, IL-6, and TNF-alpha) and 
TDO is stimulated by the stress hormone cortisol and, perhaps, the 
COVID therapeutic, Dexamethasone (41). Kynurenine is further 
metabolized to neuro-modulatory compounds and to nicotinamide 
adenine dinucleotide (NAD+). NAD+ is a ubiquitous cofactor in cellular 
bioenergetics and precursor to NADP, the phosphorylated derivative of 
NAD+, which is essential in biosynthetic and redox reactions. 
Deprivation of NAD+ leads to pellagra which manifests as photosensitive 
dermatitis, diarrhea, and cognitive dysfunction.

Kynurenine (KYN) and Kynurenic Acid (KynA) are important 
metabolites with several critical realms of function. Kynurenine is 
active in the brain as evidenced by specific brain transporters and that 
60–80% of the brain Kynurenine is imported from other tissues (41). 
The impact of altered KP on COVID associated cognitive defects is 
speculative. The downstream metabolites of Tryptophan (called TRY 
CATS) are involved in a multiplicity of cerebral functions. The 

FIGURE 3

Tryptophan/kynurenine pathway.
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enzyme kynurenine aminotransferase (KAT) converts KYN to KynA 
and both are known modulators of neuroprotection, attenuators of 
glutamate stimulation and down regulators of the alpha7 nicotinic 
receptor component of the parasympathetic nervous system. KynA 
also attenuates aspects of the sympathetic branch of the autonomic 
nervous and regulates astrocytes by activation of the GPR35 
membrane receptor. This activation also reduces inflammation (41). 
As inflammation may be a significant factor in brain fog and muscle 
fatigue, it must be noted that Kynurenine and KynA are primary 
ligands for the Aryl hydrocarbon receptor (AhR) (42), an ancient 
suppressor of the innate immune system (41, 43). Absence of effective 
innate immune suppression is a putative contributor to cytokine 
storm which is a major pathogenic factor in severe acute 
COVID. AhR, which is widely expressed in the central nervous 
system, may augment neuroprotection via its recently described 
activity as a transcription factor for Neprilysin, an important 
endopeptidase involved in the degradation of amyloid (44). KynA, as 
an AhR agonist, has been shown to increase Neprilysin activity in 
human neuroblastoma cells (44).

Assessing the ultimate effect of altered Tryptophan and TRY 
CATS on mental function and muscle fatigue is perilous. The panoply 
of TRY CATS, their membrane receptors and transporters and 
associated interactants confounds any simplistic paradigm for 
predicting clinical syndromes. This is exemplified in the analysis of 
muscle fatigue. Investigators delineate two modes of muscle fatigue: a 
“peripheral” form that arises from intrinsic myocyte bioenergetics and 
a “central” form due to the neurology of the perception of effort (45). 
Within this categorization, TRY CATS may have opposing influences. 
Tryptophan and metabolites may be beneficial to the muscle cell, 
while in the CNS excess conversion of Tryptophan to Serotonin is a 
putative cause of central fatigue (45). Although we have emphasized 
mechanisms that limit the amount of Tryptophan, during muscular 
exercise, the displacement of Tryptophan from its protein binding sites 
by mobilized free fatty acids would cause an abrupt increase in the free 
level (45) which promotes Tryptophan entry into the myocyte.

More detail on the Tryptophan/KP in acute COVID is provided 
from the University of Colorado COVIDome Project (46) and in 
collaboration with Columbia University and the University of Virginia 
(47). This is a multi-omics analysis of blood from hospitalized patients 
with severe COVID with comparison made to convalescent donors and 
COVID negative hospitalized patients. The data was additionally 
stratified according to IL-6 level, as IL-6 is a marker of cytokine release. 
Tryptophan metabolism was the most affected pathway and changes 
were greatest in patients with the highest Il-6 concentrations. Tryptophan 
mono-oxygenation pathway was significantly depressed with low levels 
of Tryptophan, Serotonin, Indoleacetates and Indolepyruvates. The KP 
pathway was hyper-activated as is consistent with the known stimulus of 
IDO and TDO by inflammatory and stress mediators. The COVIDome 
reported preliminary sequential data on two patients hospitalized with 
severe COVID. One patient survived and one succumbed to the disease. 
In the survivor there was a robust Kynurenine production which was 
temporally associated with Il-6 declining while in the deceased patient 
there was a very attenuated production of Kynurenine and sustained 
elevation of IL-6 and other inflammatory markers. Although this pattern 
must be confirmed in many additional patients, it is consistent with the 
proposition that Kynurenine or KynA induced activation of the Aryl 
hydrocarbon receptor is a component of the suppression of the 
hyperimmune response.

As previously mentioned, attenuation of the small intestinal B(0)
AT1 transporter also can occur in COVID infections as the intestine 
has one of the highest concentrations of ACE2. Researchers have 
documented positive stool PCR for COVID virus in Long COVID 
sufferers (48, 49). A disruption of dietary neutral amino acid 
absorption would exacerbate the deficiencies caused by renal 
tubulopathy. Malabsorbed Tryptophan enters the colon where the 
colonic microbes degrade Tryptophan to toxic products. The best 
studied of these has been indoxyl sulfate, a proposed uremic toxin, 
with the ability to displace hormones, medications and fatty acids 
from their binding sites on albumin. This fact could disrupt 
intermediary metabolism and enhance drug toxicity (50). Myriad 
other degradation products from other unabsorbed amino acids are 
likely as well. In analogous gut-derived toxidromes (e.g., auto-
brewery syndrome and d-lactic acidosis), patients suffer weakness, 
cognitive deficits, and prolonged illness (51).

We have utilized altered Tryptophan metabolism as a model for 
the pathophysiology that could occur with COVID induced 
abrogation of neutral amino acid transport. Parallel disturbances of 
physiology may accrue from the loss of the other neutral amino acids; 
the potential physiologic perturbations are beyond the scope 
this paper.

5. Discussion

The above proposed pathogenesis invokes a narrow focus on less 
widely emphasized biochemistry. This nephro-centric theory/hypothesis 
is in no way intended to account for the majority of Long COVID 
symptoms. This is not an attempt to diminish the contributions of other 
organ systems. In fact, it is our fervent hope that as pathogenetic 
paradigms continue to emerge from all COVID affected systems, a more 
complete understanding of Long COVID will eventuate. We  have 
proposed three potential mechanisms by which some metabolic 
disturbances caused by COVID could translate into several manifestation 
of the ambiguously defined Long COVID syndrome.
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