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Introduction: This paper proposes a five-layer fully connected neural network for
predicting radiation parameters in a radiation space based on detector readings.

Methods: The network is trained and tested using gamma flux values from
individual detector positions as input, and is used to predict the gamma
radiation field in 3D space under different source term distributions. The
method is evaluated using the mean percentage change error (PCT) for the
test set under different source term distributions.

Results: The results show that the neural network method can accurately predict
radiation parameters with an average PCT error range of 0.53% to 3.11%, within the
givenmeasurement input error range of ± 10%. Themethod also demonstrates its
ability to directly reconstruct the 3D radiation field with some simple source terms.

Discussion: The proposed method has practical value in real operations within
radiation spaces, and can be used to improve the accuracy and efficiency of
predicting radiation parameters. Further research could explore the use of more
complex source term distributions and the integration of other types of sensors for
improved accuracy.
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1 Introduction

To satisfy the current and ambitious goals with respect to climate change, a complete
transformation of the global energy system is required. Nuclear energy is a major source of
low-carbon electricity and plays a significant role in preventing greenhouse gas emissions.
Due to the radiation dose limits of personnel and the environment during the construction
and operation of nuclear power facilities, traditional nuclear technology that are
implemented in traditional nuclear power plants often lacks flexibility. Before workers
are allowed to enter a radiation operation space, the three-dimensional (3D) radiation field in
the entire work space is typically defined. The geometry model, combined with the
computer-calculated simulated worker dose exposure information, can then be used to
determine the radiation dose of the workers that can be quantitatively gained before the work
commences (Hughes, 1996). This is pertinent for reducing the radiation damage received by
the workers during the actual operation process to create a safe working environment. The
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typical focus of the above process is to establish a 3D radiation field
in the personnel operation area. Therefore, carrying out research on
the reconstruction method of the dose distribution of a 3D radiation
field can provide a more accurate and practical method for
optimizing workers’ protection equipment and measures against
radiation. This facilitates great improvement of the safety level of the
physical nuclear devices; furthermore, it can also more
comprehensively ensure the health of workers. Therefore,
research on the reconstruction method of radiation fields
supports broad applications in the whole life cycle of the
operation, including the inspection and eventual
decommissioning of nuclear equipment (Zhu et al., 2010; Liu
et al., 2011).

The methods for calculating radiation field parameters can be
divided into two categories: Direct calculation methods and reverse
reconstruction methods. By considering the geometric factors,
source terms, and material information of the computing space,
the direct calculation method uses a numerical basis to calculate the
radiation field parameters in the geometric space. At present, the
most commonly used direct calculation methods are the Monte
Carlo method, discrete coordinate method and point kernel
integration method. Although direct calculation methods can
accurately calculate the radiation parameters within the radiation
field, all three methods need to accurately describe the source term
information in the radiation field. This is not always feasible; in
practical application scenarios, the activity information of the source
term is often unknown, while other information of the source term,
such as the location of the source term and the geometric
information of the entire radiation field, is often available. In
practice, it is necessary to first invert the source term parameters
in the space, predict the source term parameters, and then calculate
the radiation field parameters for the whole space by a direct
calculation method.

As shown in Figure 1, the reverse reconstruction method is
mainly used to analyze and reconstruct the overall radiation field
from finite sampling points through interpolation algorithms and
artificial intelligence calculation methods. Much research has been
conducted on inverse reconstruction methods based on
interpolation algorithms. Wang and Cai, (2018) proposed a
method based on net function interpolation to the reciprocal of
the dose rate field. Sai et al. (2016) incorporated the interpolation

technique for multiple secondary scattering data into the
reconstruction process, and Zhu et al. (2021) proposed a method
based on the improved Cahn-Hilliard (C-H) equation to reconstruct
the 3D gamma dose rate field using arbitrarily located sparse
measurements. Although reverse reconstruction methods based
on interpolation algorithms have been extensively studied, these
methods often require a large number of uniform sampling points
located throughout space, and in reality, these are often unattainable
requirements.

For nuclear technology, artificial intelligence methods are
mainly used in equipment fault diagnosis and have achieved
good results (Zhong and Ban, 2022a; Zhong and Ban, 2022b;
Zhong et al., 2022). However, few studies have been performed
on artificial intelligence (AI)-based reverse reconstruction methods.
In the actual radiation field, the relationship between the measured
values of the radiation obtained by the scattered detector and the
radiation parameters in the whole space is often difficult to describe
with a determined mathematical model. Subsequently, the non-
linear method represented by the neural network is likely to become
an effective tool for radiation field reconstruction. Li et al. (2018)
proposed using a simple radial basis function (RBF) neural network
model that, when combined with the inverse distance weighting
method used to calculate difference values, can be used to obtain
whole space radiation parameters, as verified by a simple calculation.
Zhou et al. (2021) proposed an adaptive back propagation (BP)
neural network with learning rate attenuation, and its accuracy and
feasibility were verified. Although the two aforementioned
reconstruction methods have achieved positive results, they still
exhibit some shortcomings, which include (1) these two methods
have only been applied in the rapid reconstruction of the two-
dimensional radiation field and have not been verified in the three-
dimensional radiation field, (2) both methods require a large
amount of uniform sampling performed throughout the whole
space, which cannot be realized in the real radiation field
environment, and (3) the two methods only include a single
source term. In reality, the distribution of sources is not
constant. The influence of source term parameters on the
reconstruction of the radiation field needs further discussion.

In conclusion, based on the artificial intelligence method, it is
very important to solve the actual radiation protection problem and
study algorithms for 3D radiation field reconstruction from
individual sampling points considering source term parameters.
To solve the above problems, as shown in Figure 2, we propose
an algorithm to reconstruct the 3D gamma radiation field based on

FIGURE 1
Flowchart of the radiation field reconstruction algorithm.

FIGURE 2
Calculation flow chart of this paper.

Frontiers in Energy Research frontiersin.org02

Yisheng et al. 10.3389/fenrg.2023.1151364

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1151364


finite sampling values by using neural networks and then test
different distribution source terms by using common complex
geometric examples. The Monte Carlo method is used in this
paper to calculate the distribution of the 3D radiation field to
obtain a data set that is then used during the process training of
the neural network. Finally, the 3D gamma radiation field is
reconstructed.

2 3D Radiation field reconstruction
methods and processes

Neural networks are common machine learning models
within the field of artificial intelligence and are used mostly
in supervised learning methods. The purpose of supervised
learning is to train a model so that any input value can be
used in the model, which outputs a predicted value. Ideally, the
predicted value is close to the real value, reflecting the good “fit”
of the mapping relationship between the input value and the
output value. If a neural network method is used to reconstruct
the flux distribution of the whole 3D space from the values
obtained with a limited number of detectors, rapid
reconstruction of the 3D radiation field can be realized,
which is of great significance to actual radiation shielding
(Mahdavi et al., 2019; Zhou et al., 2021).

As shown in Figure 3, we develop a five-layer multilayer
perceptron (MLP) neural network to accurately reconstruct the
gamma radiation field studied in this paper. An MLP, also
known as a fully connected neural network, is a neural network
composed of a single perceptron with full connections, which is one
of the most traditional neural networks. AnMLP network consists of
an initial input layer, an intermediate hidden layer, and a final
output layer. The nodes of the input layer correspond to the photon
flux value at the detector in the radiation space. To simulate the
measurement errors that may occur during the actual measurement
process, the input layer data are superimposed with a certain range
of fluctuation error terms. The nodes of the output layer correspond
to the division of mesh grids in the X, Y, and Z directions. Then, the
radiation source terms in the radiation field space are changed to
obtain different data sets for neural network training and

verification of the model. The three points should be noted as
follows:

(1) The input received by the neural network is the numerical value
of the detector, and the result of the fluctuation error term of the
random range (± 10%) is superimposed, which is the
measurement error of the detector itself under simulated
practical conditions.

(2) Preprocessing is performed for the training data set x, y, where x
represents the photon flux at finite points in the three-
dimensional space detected by the detectors, which is the
input of the neural network. y represents the reconstructed
radiation field of the whole space, which is the ground truth.
Since the value of photon flux has a small order of magnitude,
roughly on the order of 10−5 − 10−7, to improve the convergence
rate during neural network training, the network performs the
normalization treatment of linear transformation for the input
data to (xi, yi), specifically, which artificially presets the sample
mean and variance of x to be 3.38E-06 and 3.78E-06 and presets
the sample mean and variance of y to be 2.80E-06 and 2.75E-06,
respectively. Then, the following standardization operation is
performed:

z′i � zi − �z( )/σ z( ) (1)

where zi � xi oryi.

(3) The evaluation of the network can be divided into two steps, in
which the percentage change error (PCT) is used. In the first
step, we use the output value of the model o′i to calculate the
predicted value of the radiation field o using oi � o′i · σ(y) + �y,
where σ(y) represents the preset variance of the ground truth
when performing regularization, and �y represents the preset
mean of the ground truth during regularization. In the second
step, we calculate the PCT by the following formula:

PCT � oi − yi

∣∣∣∣
∣∣∣∣/yi (2)

This paper utilized a five-layer MLP neural network to
reconstruct the three-dimensional dose distribution in space for
different types of neutron sources with varying numbers, shapes,

FIGURE 3
Schematic diagram of the five-layer MLP network.
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and distributions. Following the principle of simplicity to
complexity in exploration experiments, this study sequentially
validated the calculations for five scenarios: A monoenergetic
neutron point source, a neutron point source with a Maxwellian
energy distribution, a dual neutron source with one discrete neutron
energy spectrum and one Maxwellian continuous neutron energy
spectrum, a neutron surface source, and a neutron volume source.

3 Description of calculation examples

3.1 Geometric description

The 3D model used in this paper is shown in Figure 4. A 3D
model room is simulated, and the X, Y, and Z directions correspond
to the three dimensions of the length, width, and height of the room,
with values of 5.00 m, 3.00 m, and 3.00 m, respectively; the room is
separated by a wall, with a thickness of 0.10 m; the thickness of the
outer wall is 0.20 m, and a door is opened in a portion of its X-Z
plane, with a width of 0.80 m and a height of 2.00 m. The position of
the radiation source is located at the coordinates (1.00 m, 1.50 m,
and 1.50 m) and placed in the inward space of the room. The source
is used as the default radiation source. Moreover, a cylindrical beam
is added to the inner room, with the beam position at Y = 2.00 m, Z =
2.00 m, radius R = 0.20 m, above the side of the radiation source.

3.2 Material description

In this example, the outer wall of the house is made of boron-
containing concrete with a thickness of 20.00 cm; the walls inside the
house consist of two layers of material: One layer is boron-containing
polyethylene with a thickness of 5.00 cm, and the other layer is carbon
steel with a thickness of 5.00 cm, which combined constitute the
thickness of the interior wall of 10.00 cm. The cylindrical beams in
the inner room are also made of carbon steel, with a radius of 0.20 m.
The materials used above are the most commonly used shielding
materials in nuclear facilities. The source term used in this paper is a

neutron source of 0.00253 eV–2.00 MeV; in this energy interval, the
reaction cross-section of different nuclides (n, γ) varies tremendously,
which greatly increases the complexity of the gamma radiation field in
the room. The information on materials above is found in the dedicated
manual, and the specific data are shown in Table 1:

3.3 Statistical description

As shown in Figure 5, the following is an example of an initially
set single-energy neutron source radiation field. The source term is
an isotropic radiation source placed in the middle of the inner room
(X = 1.00 m, Y = 1.50 m, Z = 1.50 m), with a direction angle of 4 .
The energy of monoenergetic neutrons is set from 0.00253 eV for
thermal neutrons to 2.00 MeV for fast neutrons. The statistics in this
example are primarily divided into the following 2 V

(1) Neutron and photon fluxes are counted by detectors placed at
27 selected positions in the room. The upper, middle, and lower
layers are placed in the room. Nine spherical detectors are
placed in the same position for each layer. The default radius of
the detector is 5.00 cm. The calculated flux of neutrons and
photons is the flux data in the sphere with a given radius, with
the detector position located at the center of the sphere.

(2) The entire 3D space is divided into MESH grids to calculate the
radiation field parameters. The specific process is to evenly
divide 10 segments at 0.00 m–2.00 m and 10 segments at
2.00 m–5.00 m in the X direction, 10 segments at
0.00 m–3.00 m in the Y direction, and 10 segments at
0.00 m–3.00 m in the Z direction. Therefore, the 3D space of
the whole radiation field is divided into 20 × 10 × 10, equaling
2000 3D meshes, so that the neutron flux and photon flux in
each mesh space can be calculated. Figure 6 shows the diagram
of the mesh grid division. Figure 7 shows the typical calculation
results of the photon flux distribution under a neutron source.

Both neutron and photon radiation parameters are important
physical quantities to consider in radiation protection. The aim of
this paper is to verify the effectiveness of neural networks in
predicting radiation fields. The physical process of photon
production from neutrons is an indirect process, making the
prediction more complex. Therefore, this study focuses on
verifying the effectiveness of neural network methods in
predicting photon radiation fields.

4 3D Radiation field reconstruction
results and discussion

In this paper, simulation and training are carried out for five
cases, resulting in new prediction examples from the obtained neural
network. Figures 8, 9, Figures 10, 11, Figure 12 show the top views
(Z = 1500) of the calculated value, predicted value, statistical error,
and relative error of the 3D radiation field photon flux under these
five source terms.

The neural network used in this study has an input layer with
27 nodes and an output layer with 2000 nodes, with three hidden
layers of 8, 64, and 512 nodes to reduce the feature dimensions. The

FIGURE 4
Geometric presentation of the studied 3D space.
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mean squared error (MSE) function was chosen as the loss function,
and the rectified linear unit (ReLU) function was selected as the
activation function, with PCT used to evaluate the training
performance. The data set was divided into a training set,
validation set, and testing set of 3825, 1026, and 553 samples,
respectively, with a ratio of 7:2:1. The calculation results are
presented below.

4.1 Reconstruction results of the five source
terms

(1) Single Energy Point Source

When the radiation source is a single energy neutron point source,
the neutron energy range is 0.00253 eV–2.00MeV, the average PCT
value of the test set is 0.53%, and the maximum PCT value between
different batches is 1.12%. The average statistical error of the Monte
Carlo calculation of the photon flux is 1.86%. The average relative
deviation in the whole space MESH grid is 5.23%, and the average
relative deviation in the MESH grid on the left side of the wall is 2.49%.

(2) Maxwell Fission Spectrum Point Source

When the radiation source follows the Maxwell fission spectrum
distribution, the average PCT value on the test set is 3.11%, and the
maximum PCT value between different batches is 3.66%. The
average statistical error of the Monte Carlo calculation of the
photon flux is 1.82%. The average relative deviation in the whole
space MESH grid is 32.67%, and the average relative deviation in the
MESH grid on the left side of the wall is 19.78%.

(3) Double-Point Source

When the radiation source is a double-point source, which uses
a discrete neutron distribution, the other source utilizes a neutron
distribution from the Maxwell fission spectrum. In the test set, the
average PCT value was 0.80%, and the maximum PCT value
between different batches was 1.43%. The average statistical error
of the Monte Carlo calculation of the photon flux is 1.57%. The
average relative deviation in the whole space MESH grid is 7.21%,
and the average relative deviation in the MESH grid on the left side
of the wall is 6.71%.

TABLE 1 Nuclide and density parameter information of the studied material.

Material Concrete (2.30 g/cm3)

Nuclide H (%) C (%) Na (%) Mg (%) Al (%) Si (%) K (%) Ca (%) Fe (%) B (%)

Mass Percentage 30.40 0.20 0.90 0.10 1.00 15.10 0.70 1.50 0.20 10.00

Material Polyethylene (0.93 g/cm3) Steel (7.82 g/cm3) Air (0.001205 g/cm3)

Nuclide H (%) C (%) B (%) C (%) Fe (%) C (%) N (%) O (%) Ar (%)

Mass Percentage 61.70 28.30 10.00 2.30 97.70 0.01 75.50 23.20 1.30

FIGURE 5
Schematic diagram of the Detector’s location.

FIGURE 6
Schematic diagram of mesh distribution in the room.
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(4) 2D Surface Source

When the radiation source is in a 2D surface source
distribution, the radioactive sources are distributed on the
circular surface. In the test set, the average value of PCT is
0.92%, and the maximum value of PCT between different
batches is 1.46%. The average statistical error of the Monte
Carlo calculation of the photon flux is 1.66%. The average
relative deviation in the whole space MESH grid is 36.75%,

and the average relative deviation in the MESH grid on the
left side of the wall is 17.69%.

(5) 3D Cylindrical Source

When the radiation source is in a 3D cylindrical source
distribution, the radioactive sources are distributed in the
cylinder, with the weight related to the radius. In the test set, the
average PCT value was 1.98%, and the maximum PCT value

FIGURE 7
Schematic diagram of the photon flux distribution under a neutron source.

FIGURE 8
Reconstruction results of the single energy source term.
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between batches was 2.79%. The average statistical error of the
Monte Carlo calculation of the photon flux is 2.02%. The average
relative deviation in the whole space MESH grid is 56.22%, and the
average relative deviation in the MESH grid on the left side of the
wall is 42.59%.

4.2 Comparison and discussion of
reconstruction results

In summary, the reconstruction results of the MLP network for
photon flux distribution in radiation field space under different source

FIGURE 9
Reconstruction results of the maxwell source term.

FIGURE 10
Reconstruction results of the double-point source term.
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intensities are shown in Table 2. The mean PCT of the test set ranges
from 0.53%–3.11%, and the maximum value is 3.66%, which is less than
the error range of the given input measured value (±10.00%). For simple
source items, this method can obtain acceptable radiation field prediction
values. However, for more complex source items, the relative deviation of

the predicted value of the radiation field is larger. This result shows that
this method can be used to predict the simple gamma radiation field.

From the results summarized in Table 2, it can be found that the
radiation field prediction using a single-energy neutron source and a
double-point source has better performance than the other three

FIGURE 11
Reconstruction results of the 2D surface source term.

FIGURE 12
Reconstruction results of the 3D cylindrical source term.
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methods. As the energy spectrum parameters and spatial
distribution of the source term become more complex, the
prediction results of the neural network become more general.
The specific analyses are as follows:

(1) The results demonstrate that when the source parameters are
relatively simple, both PCT and calculated values exhibit small
relative deviations from the predicted values. However, under
complex source parameters, although the PCT is low, the
relative error is high and does not match the predicted
values. This can be attributed to the fact that the MLP neural
network employed in this study is relatively simple, thereby
making it difficult to adapt to the extensive spatial distribution
and energy spectrum parameter changes of complex source
items. Moreover, the generalization capability of the MLP
neural network model is limited, and while it performs well
on the training set, it does not provide satisfactory prediction
results for data outside it. Furthermore, the neural network used
in this study exhibits overfitting problems for complex source
items, which can be mitigated by increasing the data volume and
using dropout and other techniques. Thus, to improve the
accuracy of the predictions, one must consider employing a
more sophisticated neural network model that is capable of
adapting to complex source parameters.

(2) The single-energy neutron source term emits neutrons with
equal energy, while the influence of the 3D radiation field is
relatively uniform. Therefore, there is a relatively fixed
relationship between the sampling value of the detector
sampling point and the radiation field of the whole space.
When the parameters of the source term become more
complex, the neutrons emitted by the source term need to be
sampled according to energy, position and angle, and the
complexity is greatly increased. Therefore, the relationship
between the sampling value of the detector sampling point
and the whole space radiation field becomes more
complicated, which eventually leads to relatively poor
prediction results of the neural network.

(3) The scattering term in the radiation field greatly increases the
complexity of the radiation field. Since a wall divides the
geometric space into two parts, neutrons can only reach the
space on the right side of the wall through multiple scattering.
The complex relationship of the sampling value and photon
radiation field in the space on the right side of the wall is greatly

increased, ultimately leading to relatively poor prediction results
of the neural network. Therefore, the prediction effect of the
space on the left side of the wall is much better than that of the
space on the right side of the wall.

In conclusion, the neural network method has a certain
application in the reconstruction of 3D radiation fields, but its
predictive performance is affected by factors such as the source
item energy spectrum distribution, source item spatial distribution,
and scattering terms. In the test scenarios of this study, satisfactory
radiation field prediction results were only achieved under the
conditions of a single-point source and double-point source. Due
to the numerous influencing factors, there is no neural network
structure that can effectively solve all radiation field reconstruction
problems. Therefore, further investigation is required to explore the
effectiveness of the neural network method for radiation field
reconstruction under complex source item conditions. In
addition, the effects of different neural network types, structures,
and hyperparameters on the reconstruction of 3D radiation fields
also need to be compared and verified in future studies.

5 Conclusion

In this paper, to solve the common problem of radiation field
reconstruction in practice, the reconstruction algorithm of the 3D
gamma radiation field from individual sampling points under the
source term parameters is studied. We then propose an algorithm for
reconstructing the 3D gamma radiation field based on finite sampling
values using neural networks, and different distributed source terms are
then tested using common complex geometric examples that exist in real
use. During the process of neural network training, the Monte Carlo
method is used to calculate the distribution of the 3D radiation field used
in this paper. To obtain the data set required for training, a five-layer
MLP neural network is trained that then identifies the reconstruction
function of the 3D gamma radiation field. By testing different
distribution source terms, the mean PCT is identified as 0.53%–
3.11%, and the maximum value is 3.66%, which is less than the error
range (±10%) of the given input measured value, verifying the feasibility
and accuracy of the proposed method for the prediction of the gamma
radiation field.

The above research results provide positive benefits, as they have
broad application prospects for strengthening the radiation protection of

TABLE 2 Summary of reconstruction of radiation field by MLP neural network.

Setting of
radiation source

Average PCT on
test set (%)

Maximum PCT on
test set (%)

Average
statistical
error (%)

Mean relative
deviation on full

space (%)

Mean relative
deviation on left

space (%)

Single energy point
source

0.53 1.12 1.86 5.23 4.29

Maxwell fission
spectrum point source

3.11 3.66 1.82 32.67 19.78

Double-point source 0.80 1.43 1.57 7.21 6.71

2D Surface source 0.92 1.46 1.66 36.75 17.69

3D Cylindrical source 1.98 2.79 2.02 56.22 42.59
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on-site operators of nuclear devices, reducing the radiation damage
suffered by operators, more accurately evaluating the spatial dose
distribution of nuclear facilities that are to be decommissioned, and
reducing the collective dose absorbed throughout the life cycle of nuclear
facilities. In addition, with the in-depth application of machine learning
in recent years, the reconstruction of the radiation field using neural
networks may become the next research focus in the field of radiation
protection, which is of exploratory significance for the optimization of
sites emitting radiation.

Furthermore, research can be continued from the following
three aspects. (1) The neural network model used in this paper is
relatively basic. Thus, it is necessary to test and study the application
of other neural network models in complex radiation dose fields in
the future. (2) The 3D model established in this paper is relatively
simple, while the reactor geometry and source terms in practice are
more complex. In the future, it is also necessary to explore the
influence of the number and distribution of different sampling
points on the radiation field reconstruction method. (3) In this
paper, only the reconstruction of the photon radiation field is
verified, and the reconstruction method of the neutron radiation
field can be explored in the future.
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