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Economics and Management, South China Agricultural University, Guangzhou, China
Introduction: Crop pests have a great impact on the quality and yield of crops.

The use of deep learning for the identification of crop pests is important for crop

precise management.

Methods: To address the lack of data set and poor classification accuracy in current

pest research, a large-scale pest data set named HQIP102 is built and the pest

identification model named MADN is proposed. There are some problems with the

IP102 large crop pest dataset, such as some pest categories are wrong and pest

subjects are missing from the images. In this study, the IP102 data set was carefully

filtered to obtain the HQIP102 data set, which contains 47,393 images of 102 pest

classes on eight crops. The MADNmodel improves the representation capability of

DenseNet in three aspects. Firstly, the Selective Kernel unit is introduced into the

DenseNet model, which can adaptively adjust the size of the receptive field

according to the input and capture target objects of different sizes more

effectively. Secondly, in order to make the features obey a stable distribution, the

Representative Batch Normalization module is used in the DenseNet model. In

addition, adaptive selection of whether to activate neurons can improve the

performance of the network, for which the ACON activation function is used in

the DenseNet model. Finally, the MADNmodel is constituted by ensemble learning.

Results: Experimental results show that MADN achieved an accuracy and F1Score

of 75.28% and 65.46% on theHQIP102 data set, an improvement of 5.17 percentage

points and 5.20 percentage points compared to the pre-improvement DenseNet-

121. Compared with ResNet-101, the accuracy and F1Score of MADN model

improved by 10.48 percentage points and 10.56 percentage points, while the

parameters size decreased by 35.37%. Deploying models to cloud servers with

mobile application provides help in securing crop yield and quality.

KEYWORDS

pest image classification, selective kernel unit, representative batch normalization,
DenseNet-121, ensemble learning
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1 Introduction

Agricultural pests have long posed a severe threat to the growth of

crops and the storage of agricultural products (Cheng et al., 2017). The

Food and Agriculture Organization (FAO) reported that these pests

cause between 20 and 40 percent loss of global crop production every

year. Because of relatively cheaper operational cost, farmers use a

variety of chemicals such as pesticides to control pests, which has a

negative impact on the agroecosystem (Geiger et al., 2010). If the

location, time and listing of species and populations of invertebrate in

the fields were available, instead of heavily relying upon pesticide,

integrated pest management would use the optimized combination of

mechanical, chemical, biological and genetic tools to mitigate harmful

effects and enhance beneficial effects (Liu et al., 2016). Timely and

accurate pest detection and classification are of great significance to its

prevention and control, and early detection is a prerequisite to making

an effective pest management plan and can reduce pollution.

Traditional crop pest classification relies mainly on manual

observation or expert guidance, which is slow, inefficient, costly,

and subjective. With the development of machine learning methods

and computer vision techniques, researchers are beginning to use

information technology to identify images of crop pests. The

traditional machine learning classification framework consists of

two main modules: the feature representation of the pest and the

classifier. The normal used hand-crafted features include GIST (Oliva

and Torralba, 2001), Scale Invariant Feature Transform (SIFT)

(Lowe, 2004), Speeded Up Robust Feature (SURF), etc. The main

classifiers commonly used include K-nearest neighbor classification

algorithms (KNN), Support Vector Machines (SVM), etc. It is

difficult to determine which of many features is optimal, and if the

feature extraction is not correct, the subsequent classifier will make

mistakes in identifying pests. With the advent of efficient learning

algorithms for deep learning, it has achieved significant

improvements in classification accuracy on many traditional

classification tasks (Krizhevsky et al., 2017). In particular,

convolutional neural networks (CNNs) are rapidly becoming the

method of choice for overcoming certain challenges (Barbedo, 2018).

Recently, smart agriculture has been introduced to apply

artificial intelligence (AI) technology, information and wireless

communication technology applications. In addition, crop health

monitoring is considered to be a major application of smart

agriculture (Ayaz et al., 2019). Researchers are gradually turning

their attention to designing mobile applications to identify pests.

Karar et al. (2021) designed a mobile application using technologies

such as Apache Cordova framework and Flask Web, and achieved

good results in pest identification using deep learning techniques,

but it used a relatively small dataset and identified only five

categories of pests. Deep learning-based pest detection requires a

large number of pest samples for supervised learning (Liu and

Wang, 2021), and building an application that can identify multiple

classes of pests in common crops is also in urgent need of

development. It is well known that the ImageNet Large Scale

Visual Classification Challenge (ILSVRC) (Deng et al., 2009)

marks the beginning of the rapid development of deep learning,

demonstrating that large-scale image data set play a key role in
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driving deep learning progress. However, most deep learning

methods on insect pests are limited to small data set, and most

public data set are collected indoor, which does not meet the needs

of insect pest classification in field conditions. The IP102 large pest

data set (Wu et al., 2019), which contains 75,222 images with a total

of 102 classes from 8 crops, has alleviated this problem to some

extent. However, the data set suffers from poor screening and

misplaced pest categories, with a reported classification accuracy

of only 49.4%. To address this issue, we invited agricultural experts

and volunteers to further screen the IP102 data set. The new data set

is of Higher Quality compared to IP102 and is named HQIP102.

The context of pest images in real environments is complex and

suffers from large intra-class variation and small inter-class variation

of pests. Existing models such as Densenet and ResNet do not work

well on large pest datasets. To better identify larger pest data set, the

DenseNet network (Huang et al., 2017), which performed well in the

ImageNet task, is used as the base network. To improve the pest

classification accuracy, we propose the MADN convolutional neural

network model, which improves DenseNet-121 in three aspects:

channel attention mechanism, input information feature

enhancement and adaptive activation function. These improvements

can improve the model’s pest classification performance.

The goal and objectives of our study are summarized as follows:
·Two criteria are used to further filter the IP102 large pest data

set and improve the overall quality of the original data set,

named HQIP102.

·Several techniques and the MADN convolutional neural

network model are proposed to improve the representation

capability of the DenseNet-121 network and improve its

classification accuracy on large pest data set.
2 Related work

Research on crop pest classification based on computer vision

has been a hot topic. In recent years, many computer-aided insect

pest classification systems (Rani and Amsini, 2016; ; Alfarisy et al.,

2018) are presented in the vision community. The methods

involved mainly include machine learning and deep learning.

Machine learning often uses hand-crafted features such as SIFT,

HOG (Dalal and Triggs, 2005), etc. Hand-crafted feature-based

methods are the primary solutions for insect pest classification

traditionally (Wu et al., 2019). Bisgin et al. (2018) used SVM to

classify feature information such as size, color, basic pattern and

texture extracted from 15 classes of food beetles, ultimately obtaining

good classification results on a data set of 6900 images. Ebrahimi et al.

(2017) designed an SVM structure with difference kernel function for

thrips detection using the ratio of major diameter to minor diameter as

region index as well as Hue, Saturation and Intensify as color indexes

with a mean error of less than 2.25% for the best classification. Xiao

et al. (2018) used SIFT image descriptor as well as SVM classifier to

identify four important vegetable pests Whiteflies, Phyllotreta Striolata,

Plutella Xylostella and Thrips with an average accuracy of 91.56% on 80
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experimental images. Traditional machine learning algorithms rely on

complex image processing techniques and handcrafted features, which

often have limited robustness and generalization on large data set.

The successful application of deep learning in other fields has

led to an increasing interest in agriculture, which is currently the

most cutting-edge, modern, and promising technology (Kamilaris

and Prenafeta-Boldú, 2018). Tetila et al. (2020) used transfer

learning strategy to fine-tune Inception-v3, Resnet-50, VGG-16,

VGG-19 and Xception to identify a data set containing 5000

soybean pest images. It has better performance compared to

traditional feature extraction methods such as SIFT and SURF.

Liu and Chahl (2021) used a novel approach to generate a virtual

database that was successfully used to train a deep residual CNN

with 97.8% accuracy in detecting four pests in agricultural

environments. Khanramaki et al. (2021) proposed an ensemble

classifier of deep convolutional neural networks to identify three

common citrus pests with 99.04% accuracy on a data set containing

1774 images of citrus leaves. Ayan et al. (2020) used a weighted

voting method to ensemble the pre-trained Inception-V3, Xception

and MobileNet, which was named GAEnsemble, and its

classification accuracy on the IP102 data set was 67.13%. Unlike

Ayan et al. (2020), which used a fine-tuning strategy to combine

existing models, this paper improves the DenseNet network and

uses ensemble learning to combine the improved models.
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Existing studies have shown that small datasets containing only

a few pest classes have higher identification accuracy, while

classification accuracy is low on the large data set IP102. To

address the problem of misplacing pest categories in the IP102

data set, we built a Higher Quality pest data set named HQIP102.

We also proposed the MADN convolutional neural network model

for improving classification accuracy of existing models.
3 Materials and methods

3.1 Data set construction

Since IP102 contains more than 70,000 images of 102

categories, it inevitably has problems such as misplacement of

some pest categories and lack of detailed screening.

To obtain a higher quality pest data set, we invited agricultural

experts and volunteers to further screen the IP102 data set according

to the following two criteria. (1) obviously misplaced categories; (2)

basically background, does not contain any target objects. The new

data set is of higher quality and is named HQIP102. Low quality

images are removed directly from the data set, Then the HQIP102

contains 102 pest categories for eight crops, including rice and wheat

etc. Some of the pest image samples are shown in Figure 1.
A B D

E F G

I

H

J K L

C

FIGURE 1

Sample images of some pests (A) rice leaf roller; (B) rice leaf caterpillar; (C) paddy stem maggot; (D) rice water weevil; (E) rice leafhopper; (F) grain
spreader thrips; (G) yellow cutworm; (H) red spider; (I) corn borer; (J) wheat blossom midge; (K) penthaleus major; (L) longlegged spider mite;.
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As can be seen in Figure 1, the pest background in the HQIP102

data set is complex, the main part of the pest is small, and the

similarity between some pest categories is high, which increases the

overall classification difficulty. HQIP102 was filtered for each

category of pests in IP102, with fewer images remaining for low

quality pest categories, and the final HQIP102 pest data set

contained 47,393 images. A comparison of HQIP102 with IP102

on eight crops corresponding to the pest category as well as the

number of pests is shown in Table 1.

As can be seen from Table 1, HQIP102 filtered out more images

on Rice, Corn, Beet, and Alfalfa, while fewer pest images were

removed on theWheat, Vitis, Citrus, and Mango categories. Among

Rice crops, the rice leaf roller and asiatic rice borer categories have a

higher number of deletions. In Corn crops, the corn borer and

aphids categories removed more images. There are more images

deleted from the beet army worm class in the Beet crop. In Alfalfa

crops, alfalfa plant bug and blister beetle classes have more

images deleted.
3.2 Data set split and dynamic
data augmentation

The data set is divided into training set, validation set and test set

according to the ratio of 7.5:1:1.5. The number of samples for certain

pests in the data set is insufficient, and the use of data augmentation

can increase the amount of data available for training, thus improving

the generalization ability of the model. After splitting the data set, a

dynamic data expansion method based on the number of pests in

each class is proposed in this paper in order to solve the data

imbalance problem in the HQIP102 training set, see Eq.1.

N =

12N,0< N ≤ 30

7N,30< N ≤ 60

4N,60< N ≤ 100

3N,100< N ≤ 150

2N,150< N ≤ 200

8>>>>>>>><
>>>>>>>>:

(1)
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Where Ndenotes the number of images in the training set for a

particular type of pest. Nis determined based on the average

number of images of the pest category in the data set. The

average number of images per pest category in the IP102 dataset

is 460. And the specific pest image increase multiplier in the Eq.1 is

adjusted manually, in which the range of the parameter N and the

number of additional images are obtained by manual setting, to

achieve the right amount of supplementary pest image data. With

dynamic data augmentation, the data imbalance can be mitigated

with a small amount of additional data, which is the basis for the

parameter determination in Eq.1.

The data augmentation methods used were mainly a

combination of center cropping, brightness contrast saturation

adjustment, random horizontal flip, and random vertical flip.

Specifically, the image is cropped to a size of 224 × 224 and has a

50% probability of random horizontal flipping and random vertical

flipping. The probability of brightness and contrast adjustment is

also 50%. The images are then saved to the original dataset after

using data augmentation.

Using dynamic data enhancement, the total number of

HQIP102 pest data set increased from 47,393 to 62,060 images,

with the training set increasing from 35,607 to 50,274 and the

validation and test sets remaining unchanged with 4734 and 7052.

After using data augmentation, the ratio of training set, test set and

validation set is about 8:1:1.
3.3 Dense convolutional
network (DenseNet)

DenseNets (DenseNet-121, DenseNet-169, DenseNet-201, and

DenseNet-264) alleviate the vanishing-gradient problem,

strengthen feature propagation, encourage feature reuse, and

reduces the number of parameters to some extent. In addition,

the structure used by DenseNets shows good performance on large

ImageNet datasets. For each layer, the feature-maps of all preceding

layers are used as inputs, and its own feature maps are used as

inputs into all subsequent layers. As shown in Figure 2, the network
TABLE 1 Comparison of HQIP102 and IP102 on 8 crops.

Crop Category Number of pest categories IP102 Total HQIP102 Total

Rice 14 8417 3006

Corn 13 14015 6373

Wheat 9 3418 2110

Beet 8 4420 1942

Alfalfa 13 10390 5611

Vitis 16 17551 14555

Citrus 19 7272 5173

Mango 10 9739 8623

Total 102 75222 47393
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structure of DenseNet consists mainly of Dense Block

and Transition.

In Dense Block, each layer has the same feature map size and

can be concatenated in the channel dimension. All layers in the

Dense Block output kfeature maps after convolution, where the

hyperparameter kis called the growth rate. We refer to each layer in

a Dense Block as its substructure. Assuming that the number of

channels in the feature map of the input layer is k0, then the number

of channels in the input of layer lis k0 + k(l − 1).

The Dense Block inside the DenseNet-B structure uses

bottleneck layers to reduce the amount of computation.

Transition layer, is mainly used to connect two adjacent Dense

Blocks, and to reduce the size of the feature map. Its structure is

Batch Normalization (BatchNorm) + ReLU + 1×1 Convolution +

2×2 AvgPooling. The Transition layer of the DenseNet-C structure

also introduces a compression factor q(<1), which reduces the

number of features in the output. When using bottleneck layers as

well as transition layers with q(<1), such a model is called

DenseNet-BC.
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3.4 MADN convolutional neural network

The MADN model focuses on improving the Dense Block

structure in DenseNet in three ways, while the rest of the model

is consistent with DenseNet. It introduces the Selective Kernel Unit

(MADN-SK), the Representative Batch Normalization (MADN-

RBN) module, and the ACON activation function (MADN-ACON)

into the DenseNet. It is worth noting that MADN is not an end-to-

end model, but combines 3 improved DenseNet models.

Specifically, Using DenseNet-121 as the base network, MADN-

SK, MADN-RBN and MADN-ACON are combined through

ensemble learning to form the entire MADN model as shown in

Figure 3. A detailed architectural comparison of DenseNet-121 with

MADN-SK, MADN-RBN and MADN-ACON is shown in Table 2.

Sections 3.4.1 to 3.4.3 are the improvements of three aspects of

DenseNet-121 in this study, each individual improvement is a

complete model, and the final three models named MADN-SK,

MADN-RBN, and MADN-ACON are obtained. Section 3.4.4 is an

introduction to the ensemble learning used in this paper.
FIGURE 2

Structure of DenseNet with three dense blocks.
FIGURE 3

Structure of the MADN network model. The dense connection lines are omitted from the diagram, and the connections are made in the same way
as the original DenseNet.
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3.4.1 MADN-SK
Li et al. (2019) proposes a dynamic selection mechanism in

CNNs that allows each neuron to adaptively adjust its receptive field

size based on multiple scales of input information. Figure 4 shows

the building blocks of the Selective Kernel (SK) unit.

In this building block, multiple branches with different kernel

sizes are fused with softmax attention guided by information from

these branches. The MADN-SK network is capable of adaptively

adjusting the size of the receptive field according to the input to

effectively capture target objects of different sizes, and its improved

Dense Block substructure is shown in Figure 4.
Frontiers in Plant Science 06
3.4.2 MADN-RBN
The BatchNorm module is widely used as it allows for more

stable training of models. However, its centralization and scaling

steps need to rely on the variance obtained from the sample

statistics, ignoring the representation differences among

instances. Gao et al. (2021) propose to add a simple yet

effective feature calibration scheme into the centering and

scaling operations of BatchNorm, namely Representative

BatchNorm (RBN). The RBN is also divided into two steps:

centering calibration and scaling calibration. For the entire

process, see Eq.2.
TABLE 2 Structural comparison of DenseNet-121 and modified models.

Layers Output
Size DenseNet121 MADN_SK MADN_RBN MADN_ACON

Convolution 112×112 BN-ReLU-7×7 conv, stride 2

Pooling 56×56 3×3 max pool, stride 2

Dense Block(1) 56×56
BNReLU conv1;
BN ReLu conv2
(6x)

ReLu BN conv1;
ReLu BN SK;
ReLu BN conv2
(6x)

ReLU RBN conv1; ReLu RBN conv2
(6x)

ACON BN conv1; ReLu BN conv2
(6x)

Transition Layer
(1)

56×56 BN-ReLU-1×1 conv

28×28 2×2 average pool, stride 2

Dense Block(2) 28×28
BN ReLU conv1;
BN ReLu conv2
(12x)

ReLu BN conv1;
ReLu BN SK;
ReLu BN conv2
(12x)

ReLU RBN conv1; ReLu RBN conv2
(12x)

ACON BN conv1; ReLu BN conv2
(12x)

Transition Layer
(2)

28×28 BN-ReLU-1×1 conv

14×14 2×2 average pool, stride 2

Dense Block(3) 14×14
BN ReLU conv1;
BN ReLu conv2
(24x)

ReLu BN conv1;
ReLu BN SK;
ReLu BN conv2
(24x)

ReLU RBN conv1; ReLu RBN conv2
(24x)

ACON BN conv1; ReLu BN conv2
(24x)

Transition Layer
(3)

14×14 BN-ReLU-1×1 conv

7×7 2×2 average pool, stride 2

Dense Block(4) 7×7
BN ReLU conv1;
BN ReLu conv2
(16x)

ReLu BN conv1;
ReLu BN SK;
ReLu BN conv2
(16x)

ReLU RBN conv1; ReLu RBN conv2
(16x)

ACON BN conv1; ReLu BN conv2
(16x)

Classification
Layer

1×1 7×7 global average pool

102D fully-connected, softmax
where conv1 denotes a 1×1 convolution, and conv2 denotes a 3×3 convolution. MADN_SK, MADN_RBN, and MADN_ACON are the structures of the above modified DenseNet.
FIGURE 4

SK unit construction.
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Centering Calibration:

Xcm = X + wmKm ;

Centering:

Xm = Xcm − E(Xcm) ;

Scaling:

Xs =
Xmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Xcm) + ϵ
p ; (2)

Scaling Calibration:

Xcs = XsR(wvKs + wb) ;

Affine:

Y = Xcsg + b

Where the input features X ∈ RN�C�H�W , wm, wv , wbare the

learnable weight vector. Km, Ksrepresent the statistics of feature of

each instance, which can be obtained using global average pooling.

R()is a restriction function, often using sigmoid. E(X)and Var(X)

denote the mean and variance and are used for centering and

scaling. g and bare learned scale and bias factors for affine

transformation, and ϵ  is used to avoid zero variance.

The use of RBN to replace BN in DenseNet-121 allows better

identification of crop pests, and experiments were conducted to

verify this.

3.4.3 MADN-ACON
Ma et al. (2021) propose a simple, effective, and general

activation function ActivateOrNot (ACON), which learns to

activate the neurons or not. ACON-C, see Eq. 3. ACON-C is one

of the better-performing activation functions in ACON.

(p1 − p2)x · s(b(p1 − p2)x) + p2x (3)

where b , p1and p2are learnable parameters and are channel-

wise, the parameters are initialised randomly. We introduce ACON

into the MADN model, which can improve the performance of the

whole network.

3.4.4 Ensemble learning
In the area of decision and risk analysis, information from

several experts is aggregated by the decision maker, which can

improve the accuracy of forecasts. For the ensemble of MADN-SK,

MADN-RBN, MADN-ACON we considered the outputs of their

classification layers, which determined the confidence values for

each pest category. We used the sum of the normalized confidence

values for each pest category on these three models as the final

measure, see Eq.4.

p
0
i =

o
m

j=1
pij

o
n

i=1
o
m

j=1
pij

, i = 1,…, n (4)
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Where pijdenotes the confidence value of the j-th network

output for the i-th type of pest (in this paper m = 3, n = 102). p
0
i

denotes the normalized value of the combined three network

confidence values. The i-th pest label corresponding to the largest

p
0
iis chosen as the final prediction.
3.5 Experiment settings

To ensure fairness in the experimental comparisons, all

experiments were built under the same conditions. The

experiments were conducted on Ubuntu 18.04 with Intel(R)

Core (TM) i9-10900K CPU and NVIDIA RTX3090 GPU with

24G memory. The RAM used is 32GB of DDR4, the deep

learning tool is Pytorch 1.8, and the CUDA version is 11.4.The

size of the input image was fixed at 224 ×224 and the optimizers

were all used Adam (Adaptive momentum) (Kingma and Ba,

2014), the batch size was set to 64, the number of iterations was

set to 50, and the learning rate was initialized to 0.001.

The learning rate was reduced to half of the original rate if the

model showed an increase in loss on the validation set

during training.
3.6 Evaluation metrics

To better measure the classification performance of different

models on the HQIP102 dataset, we chose Accuracy, Precision,

Recall and F1Score as the evaluation metrics of the models.

Accuracy (Acc): The proportion of results predicted to be

correct to the total sample, see Eq.5.

Acc =
TP + TN

TP + TN + FP + FN
� 100% (5)

Precision (Pre): The probability that all samples with a positive

prediction are actually positive, see Eq.6.

Pr e =
TP

TP + FP
� 100% (6)

Recall (Rec): The probability of all samples that are actually

positive being predicted to be positive, see Eq.7.

Re c =
TP

TP + FP
� 100% (7)

F1Score (F1): The harmonic mean of precision and recall, see

Eq.8.

F1 =
2� Pr e� Re c
Pr e + Re c

� 100% (8)

In equations (5-7), TP indicates a true positive: the predicted is

a positive sample and the actual is also a positive sample. TN

indicates true negative: predicted negative sample, actual negative

sample. FP indicates false positive: predicted positive sample, actual

negative sample. FN indicates false negative: predicted negative

sample, actual positive sample.
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In addition, the model parameters, the GPU memory occupied

during training, and the total training time were also used to

measure the overall performance of the model. In particular, use

the nvidia command in ubuntu to view the model’s GPU memory

occupation, and the torch summary package in Pytorch to view the

model’s parameters. Also, the inference time of each model for a

single pest image is taken into account.
4 Results and discussion

4.1 Dynamic data
augmentation experiments

On the training set of the original HQIP102 data set, we

performed dynamic data augmentation based on the number of

images of each type of pest. Using DenseNet-121 as the base

network, the experimental results on the test set are shown in

Table 3, keeping all factors consistent except for the different

training data. As can be seen from Table 3, compared to the

original data set, the DenseNet-121 network improved

the accuracy by 0.41% and the F1 by 1.46%, the MADN network

improved the accuracy by 1.15% and the F1 by 1.81%.Experiments

show that the use of dynamic data augmentation techniques

alleviates the problems caused by data imbalance to some extent

with a small increase in the number of training samples.
4.2 Ablation experiments and
comparative analysis

Ablation experiments were conducted to demonstrate the

effectiveness of a series of improvements to the DenseNet-121
Frontiers in Plant Science 08
model. Accuracy and F1Score on the test set were used as metrics.

The ablation experiments include the effect of using only SK

units, RBN modules, ACON activation function and the final

model after using ensemble learning. The Dense Block of

DenseNet has been modified. When the SK unit is introduced,

the model is named MADN-SK; when the RBN module is used,

the model is named MADN-RBN, and when the ACON

activation function is used to replace ReLU, the model is

named MADN-ACON. Using ensemble learning to combine

the advantages of the three modified models, the final model is

named MADN. The results of the ablation experiments on the

test set are shown in Table 4.

As can be seen in Table 4, the improved MADN-SK, MADN-

RBN, MADN-ACON and MADN all show better accuracy and

F1Score compared to the DenseNet-121 model. MADN-SK

obtained by introducing the Selective Kernel unit, which

improved the accuracy on the test set by 1.94 percentage points

and the F1Score by 2.1 percentage points compared to the pre-

modified DenseNet-121 ;MADN-RBN, obta ined us ing

Representative BatchNorm, improved the accuracy and F1Score

on the test set by 1.03 percentage points and 0.74 percentage points

respectively; The MADN-ACON using the ACON activation

function showed an accuracy improvement of 1.32 percentage

points and an F1Score improvement of 0.8 percentage points on

the test set. The MADN model using ensemble learning improved

better, with accuracy and F1Score improvements of 4.76 and 4.34

percentage points respectively. As can be seen in Figure 5, During

50 iterations of training, the accuracy of the model gradually

smoothed out on the validation set. And the improved MADN-

SK, MADN-RBN and MADN-ACON have higher accuracy on the

validation set compared to the original DenseNet-121 as the

number of training iterations increases. From the experimental

results in Table 4, it can be concluded that the improved MADN-
TABLE 3 Dynamic data augmentation comparison experiments.

Data set Method Acc (%) Pre (%) Rec (%) F1 (%)

HQIP102 DenseNet-121 70.11 61.43 58.96 59.66

HQIP102* DenseNet-121 70.52 63.21 60.09 61.12

HQIP102 MADN 74.13 67.94 60.78 63.65

HQIP102* MADN 75.28 69.56 62.91 65.46
front
HQIP102* indicates the HQIP102 data set after using dynamic data augmentation. The bold values indicate the best values in this experiment.
TABLE 4 Results of ablation experiments on the HQIP102 test set.

Model
Improvement method

Acc (%) F1 (%)
Selective Kernel unit Representative BatchNorm ACON activation

DenseNet-121 70.52 61.12

MADN_SK √ 72.46 63.22

MADN_RBN √ 71.55 61.86

MADN_ACON √ 71.84 61.92

MADN √ √ √ 75.28 65.46
MADN is composed by ensemble learning. The bold values indicate the best values in this experiment.
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SK, MADN-RBN, MADN-ACON and MADN are valid in

improving the accuracy and F1Score compared to the origin

DenseNet-121.

We compare the accuracy and training time of the DenseNet-

121 as well as the improved classification model in Figure 5.

As can be seen in Figure 5, the improved MADN-RBN, MADN-

ACON, and MADN-SK have improved accuracy on the test set at

the expense of training time. MADN uses an ensemble learning

strategy that requires pre-training of the MADN-RBN, MADN-

ACON and MADN-SK models, so it requires more training time,
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but also higher accuracy on the test set. Although the training phase

of a CNN model is usually time-consuming, it does not matter for

the classification task, since the classifier is trained offline.
4.3 Comparison experiments with
other models

To better evaluate the performance of the improved MADN-

SK, MADN-RBN, MADN-ACON, and MADN in this paper,
FIGURE 5

Comparison of training time and test set accuracy for DenseNet-121 and improved models.
FIGURE 6

Classification accuracy of the model for each iteration on the validation set.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1133060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Peng et al. 10.3389/fpls.2023.1133060
accuracy, precision, recall, F1Score, GPU memory, training time,

and parameters of the model were used as measures against ResNet-

101 (He et al., 2016), GoogLeNet (Szegedy et al., 2015), MobileNet

V2 (Sandler et al., 2018) for comparison experiments. The accuracy

of each iteration on the validation set during training is shown in

Figure 6, and the final experimental results on the test set are shown

in Table 5.

As can be seen in Figure 6, the performance of each model on

the validation set tends to stabilize as the iterations progress.

Compared to the ResNet-101 and GoogLeNet models, MobileNet

V2 performed relatively poorly. And compared to the other models,

the improved MADN-SK, MADN-RBN and MADN-ACON show

higher classification accuracy on the validation set.

As can be seen in Table 5, the lightweight model MobileNet V2

is optimal in terms of GPU capacity, training time and number of

parameters, but performs poorly in terms of accuracy and F1Score

on the test set; And compared to ResNet-101, GoogLeNet has a

somewhat better overall performance; Although the improved

MADN require more GPU memory and longer training time for

training, they have better accuracy and F1Score compared to other

models, and fewer number of parameters compared to the ResNet-

101 model, which is more suitable for the practical needs of

identifying pests and more suitable for deployment to cloud

servers. Although the inference time of the MADN proposed in

this paper is longer for a single pest image compared to other

models, the application scenario of this study is to deploy the model

to a cloud server, and the network transmission on the cloud server

is inherently delayed, so the focus task of this study is to achieve

better pest identification accuracy.
4.4 Experimental comparison of MADN and
DenseNet-121 at the crop level

Considering the need for pest classification at the specific crop

level, the test set accuracy of the improved MADN and DenseNet-

121 models were compared on eight crops, as shown in Table 6.

From Table 6 we can see that the MADN network has

improved accuracy for all eight crops, with classification

accuracy exceeding 80% for both Vitis and Mango crops, an

respective improvement of 3.91% and 5.2% compared to the

pre-improvement DenseNet-121. Accuracy improvements were

greater on Alfalfa and Wheat at 6.23% and 6.09% respectively. The
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accuracy of the model on different crops may be related to the size

of the main part of the pest in different crops and the influence of

background disturbances.
5 Conclusion

In this study, we filtered the IP102 data set and proposed a

higher quality HQIP102 data set for pest classification, which

includes 102 pest categories from eight crops with more than

40,000 images. To address the data imbalance, a dynamic data

augmentation method is proposed, and the effectiveness of the

method is experimentally demonstrated. The accuracy of the

DenseNet-121 and MADN models on the HQIP102 dataset was

improved by 0.41 and 1.15 percentage points, respectively, after

using the data augmentation method. To resolve the issue of low

classification accuracy of existing deep learning models on large

pest data set, the DenseNet-121 was selected as the base network to

be improved. In details, the DenseNet-121 was improved in three

ways, i.e., MADN-SK, MADN-RBN and MADN-ACON networks.

Also, such networks were combined to propose the MADN

network. Validation experiments results showed the effectiveness

of these improved methods was potential via increased accuracy,

precision, recall and F1Score. Compared with the original

DenseNet-121, the accuracy and F1Score of the MADN model on
TABLE 5 Performance of the model on the test set.

Model
Test set Training phase Parameters

size
(MB)

Inference time
(ms)Acc (%) Pre (%) Rec (%) F1(%) GPU Memory (MB) Training time(h)

ResNet-101 64.8 56.88 54.19 54.9 11157 9.65 162.92 82.34

GoogLeNet 67.68 59.66 57.39 57.88 5687 2.85 21.76 17.67

MobileNet V2 63.63 55.65 53.79 54.25 6133 2.44 8.98 13.41

MADN 75.28 69.56 62.91 65.46 – 53.82 105.29 290.75
Since MADN is not an end-to-end network, it comes from combining 3 improved DenseNet networks by ensemble learning. Therefore, MADN cannot be trained alone, so “-” is used to indicate
that the item does not exist. The bold values indicate the best values in this experiment.
TABLE 6 Experimental results of MADN and DenseNet-121 on eight
crops test set.

Crop-Class
DenseNet-121 MADN

Test set Acc

Rice 59.68 63.51

Corn 70.54 75.82

Wheat 47.44 53.53

Beet 58.19 64.11

Alfalfa 61.08 67.31

Vitis 78.75 82.66

Citrus 68.54 72.98

Mango 75.37 80.57
front
The bold values indicate the best values in this experiment.
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the HQIP102 dataset improved by 4.76 and 4.34 percentage points,

respectively. We also carried out analysis at the crop species level,

and experiments showed that the MADN network was more

accurate for pest classification in Vitis and Mango, which could

also be useful for related crop studies. Overall, the proposed deep

networks will be helpful for crop pest precise management.

MADN is a combination of 3 improved DenseNet-121 models

by ensemble learning, which cannot be trained end-to-end, and

needs to train MADN-SK, MADN-ACON and MADN-RBN

models first, so the consumption of inference time and training

time are larger. In future work, we consider using end-to-end

lightweight networks to reduce the training and inference time in

scenarios with high requirements for recognition speed.

There are several possible reasons why MADN networks do not

significantly improve prediction accuracy.

1. the HQIP102 dataset contains a large number of pest

categories, and the similarity between different categories is large.

2. the background interference of pests is large, and the improved

method can only improve the classification accuracy to a certain extent.
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