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Introduction: Research has revealed that the tumor microenvironment (TME) is
associated with the progression of malignancy. The combination of meaningful
prognostic biomarkers related to the TME is expected to be a reliable direction for
improving the diagnosis and treatment of non-small cell lung cancer (NSCLC).

Method and Result: Therefore, to better understand the connection between the
TME and survival outcomes of NSCLC, we used the “DESeq2” R package to mine
the differentially expressed genes (DEGs) of two groups of NSCLC samples
according to the optimal cutoff value of the immune score through the
ESTIMATE algorithm. A total of 978 up-DEGs and 828 down-DEGs were
eventually identified. A fifteen-gene prognostic signature was established via
LASSO and Cox regression analysis and further divided the patients into two
risk sets. The survival outcome of high-risk patients was significantly worse than
that of low-risk patients in both the TCGA and two external validation sets
(p-value < 0.05). The gene signature showed high predictive accuracy in TCGA
(1-year area under the time-dependent ROC curve (AUC) = 0.722, 2-year AUC =
0.708, 3-year AUC = 0.686). The nomogram comprised of the risk score and
related clinicopathological information was constructed, and calibration plots and
ROC curves were applied, KEGG and GSEA analyses showed that the epithelial-
mesenchymal transition (EMT) pathway, E2F target pathway and immune-
associated pathway were mainly involved in the high-risk group. Further
somatic mutation and immune analyses were conducted to compare the
differences between the two groups. Drug sensitivity provides a potential
treatment basis for clinical treatment. Finally, EREG and ADH1C were selected
as the key prognostic genes of the two overlapping results from PPI and multiple
Cox analyses. They were verified by comparing the mRNA expression in cell lines
and protein expression in the HPA database, and clinical validation further
confirmed the effectiveness of key genes.

Conclusion: In conclusion, we obtained an immune-related fifteen-gene
prognostic signature and potential mechanism and sensitive drugs underling
the prognosis model, which may provide accurate prognosis prediction and
available strategies for NSCLC.
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Introduction

Lung cancer remains one of the most threatening malignancies
to human health worldwide with relatively high incidence and
mortality (Sung et al., 2021). NSCLC is the predominant
histological subtype, comprising approximately 85% of lung
cancer (Travis et al., 2015). Surgical resection is recommended
for early-stage NSCLC, and adjuvant platinum-based
chemotherapy confers a 5-year survival benefit rate, which
increased by 5% for stage II-IIIA disease (Arriagada et al., 2010).
Because of the concealed pathogenesis, approximately 60% of
patients with NSCLC have locally advanced or metastatic disease,
and conventional chemoradiotherapy has become the optimal
treatment (Osmani et al., 2018). However, with a high recurrence
rate after pulmonary resection, there was a significant sensitivity
difference and clear toxic effects of chemoradiotherapy. Owing to
the molecular heterogeneity of NSCLC, patients show various
responses to conventional therapies, and even standard therapy
according to the guidelines has major limitations. Therefore, precise
individualized medicine gradually replaced the traditional one-size-
fits-all toxic treatment (Herbst et al., 2018).

Over the past decade, molecularly targeted therapies targeting
driver gene abnormalities have dramatically changed the treatment
strategy for NSCLC; however, these new targeted drugs also present
insufficient therapy due to the development of tumor resistance
(Denisenko et al., 2018). Anti-PD-1/PD-L1 immunotherapy
demonstrates an overall survival benefit in advanced NSCLC, but
only 20% of patients benefit from immune checkpoint inhibitors
(Huang et al., 2018). In conclusion, although substantial and
promising achievements have been made in the therapeutic
strategy of NSCLC, the prevention, early detection and treatment
of NSCLC are still challenging. Therefore, it is particularly crucial to
continue to identify new target genes and therapies to improve the
curative effect and outcomes of NSCLC patients.

Malignant solid tumor tissue consists of not only cancer cells but
also the TME, which contains extracellular matrix, stromal cells, and
immune cells (Binnewies et al., 2018). Studies have certified that the
TME influences the gene expression of tumor tissues in a variety of
ways and then facilitates the occurrence, progression and metastasis
of tumors (Hu and Polyak, 2008). Immune cells and adaptive
immune cells in the TME act directly on cancer cells or through
cytokine and chemokine signaling to influence tumor behavior and
therapeutic reactions (Schulz et al., 2019). By taking advantage of the
negative regulatory mechanism in the human immune system,
malignant tumor cells can generate wholescale immune
suppression in the TME to counteract the body’s antitumor
immune effect (Teng et al., 2015). The difference in individual
efficacy in tumor immunotherapy is strongly associated with
immunosuppression in the TME (Anari et al., 2018). Therefore,
exploring new biomarkers related to the tumor microenvironment
opens up new avenues for precise individualized therapy of NSCLC.

To understand the impact of the tumor genetic genome on
clinical prognosis, comprehensive whole genome gene expression
collections have been established (Blum et al., 2018). In addition, to

predict the infiltration of non-tumor cells in tumor tissues,
ESTIMATE algorithms have been designed to premeasure tumor
purity utilizing gene expression information from The Cancer
Genome Atlas (TCGA) database (Yoshihara et al., 2013). This
algorithm was soon applied to ovarian cancer (Hornburg et al.,
2021), renal cell carcinoma (Xu et al., 2019), and diffuse large B-cell
lymphoma (Lou et al., 2022). Therefore, bioinformatics analysis
based on TME-related prognostic signatures has become possible. In
this study, the ESTIMATE algorithm and CIBERSORT algorithm in
R language were utilized to explore the tumor microenvironment of
patients with NSCLC in the TCGA database. First, we identified
differentially expressed genes with prognostic and therapeutic value
in the tumor microenvironment and predicted their regulatory
network. Furthermore, we developed an innovative prognostic
signature for risk stratification based on prognostic genes, and
the potential biological mechanism and therapeutic drugs based
on the prediction model were evaluated. This result provides
additional prospective therapeutic interventions and personalized
treatment strategies for NSCLC patients.

Materials and methods

Chip data acquisition and processing

We downloaded the gene expression data of NSCLC patients
and related clinical materials meeting the study criteria from the
TCGA databases (https://portal.gdc.cancer.gov/). Patients were
enrolled when they met the following criteria: a) pathologically
confirmed NSCLC; b) available detailed prognostic information; and
c) complete mRNA expression data. A total of 955 NSCLC patients
with stage I-IV disease were included through screening. The clinical
information of patients included age, sex, survival status, overall
survival, last follow-up time, T stage, N stage, M stage and clinical
stage. The TCGA-NSCLC cohort was used as a training set to
construct an immune score prognostic model. For further
verification of the performance of immune scores in predicting
survival, transcriptome sequencing profiles and corresponding
clinical data of two other cohorts of NSCLC patients were
obtained from the Gene Expression Omnibus (GEO) datasets
(https://www.ncbi.nlm.nih.gov/), namely, GSE31210 and
GSE37745. GSE31210 comprised 226 early-stage NSCLC patients,
and GSE37745 included 196 NSCLC samples. GSE31210 and
GSE37745 were downloaded based on Affymetrix U133 Plus 2.0.

ESTIMATE algorithm and identification of
stromal and immune groups

Based on R statistical software (version 4.1.0; https://www.r-
project.org/), the proportion of stromal and immune cells in each
tumor tissue sample was calculated by the ESTIMATE algorithm,
and the ratio was represented in the form of immune, stromal and
ESTIMATE scores. The stromal score represented the percentage of
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stromal cells in the TME, the immune score was used to assess the
ratio of immune cells, and the ESTIMATE score represented the
comprehensive level of the immune and matrix score. The Surv_
cutpoint function was used to find the best cutoff values for the
immune, stromal and ESTIMATE scores. NSCLC patients were
categorized into high- and low-score groups based on the optimal
cutoff value of the related score. The “survival” and “survminer”
packages were utilized to evaluate the overall survival of NSCLC
patients on the basis of the high-low score, which included the
immune, stromal and ESTIMATE scores. Associations of the
abovementioned scores with clinicopathologic characteristics were
also further assessed by unpaired t-tests.

DEGs screening and functional enrichment
analysis

The DEG screening between the high and low immune score
groups was constructed through the “DESeq2” R package
(version 4.1.0), and a false discovery rate (FDR) < 0.05 and |
log2-fold change| (|log2FC|) ≥ 1 were set up to screen DEGs. A
higher gene expression value was selected if multiple probes
measured the same gene. The selected DEGs were visualized
through the “ggplot2” package of R to generate scatter plots and
heatmaps.

Functional enrichment analyses, including molecular function
(MF), cell component (CC), and biological process (BP), were
performed for the DEGs using the “cluster-Profiler” package. The
“cluster-Profiler” package was used to analyze the Kyoto
Encyclopedia of Genes and Genomes (KEGG), which was used to
identify the crucial signal pathways between upregulated and
downregulated DEGs. Terms were identified as statistically
significantly enriched with the threshold of p-value < 0.05 for
gene ontology (GO) and KEGG. In addition, GO and KEGG
analyses were evaluated by fold enrichment scores to determine
which genetic functions and cell signaling pathways may be relevant
to DEGs.

Prognostic DEGs screening

First, univariate Cox analysis using the “survival” package was
employed to screen prognostic DEGs that were significantly relevant
to the overall survival (OS) of 936 NSCLC patients in the TCGA
cohort. The candidate prognostic DEGs with p-value < 0.01 were
used for the subsequent analysis. Subsequently, the candidate
prognostic DEGs underwent least absolute shrinkage selection
operator (LASSO) analysis. Eventually, multivariate Cox
regression analysis was conducted to calculate the hazard ratios
(HRs) with a 95% confidence interval (95% CI) and determine
prognostic genes.

Establishment and evaluation of prognostic
signature

Each NSCLC patient’s survival risk score in the TCGA cohort
was calculated according to the mRNA expression of optimal

prognostic genes multiplied by the corresponding regression
coefficients.

The computational formula is as follows: risk score

� ∑
j

n�1Coef jpXj

Coef j is the regression coefficient determined through
multivariate Cox analysis, and Xj refers to the normalized
mRNA expression level of optimal genes. NSCLC patients in the
TCGA were separated into high- and low-risk subtypes according to
the median threshold of the risk score.

The OS between the two risk groups was evaluated by Kaplan-
Meier analysis with the log-rank test. In addition, external
validation of the GSE31210 and GSE37745 datasets was
performed to predict the accuracy of the prognostic DEG
signature. The Time-dependent ROC curves were performed
for confirmingthe prognostic DEG signatur e’s prognosis
capability by calculating the AUC of the 1-, 2-, and 3-year OS
of NSCLC patients in TCGA. Finally, the GSE31210 and
GSE37745 datasets were used for external validation to
corroborate the results.

Construction of predictive nomogram

First, univariate and multivariate Cox regression analyses
were utilized to evaluate the individual covariates, the risk score
calculated above and the associated clinicopathological
parameters, which clearly impacted the patient’s survival
outcome. A p-value < 0.05 was considered to be the
significance threshold. Then, the nomogram was constructed
through calibration plots to predict 1-, 3- and 5-year overall
survival, using the concordance index (C-index) to test internal
validation. The predictive value of the nomogram, risk score and
other clinical parameters were compared by ROC curves.

Pathway enrichment analysis

KEGG was performed to explore signal pathways between
the high- and low-risk groups. DEGs underwent gene set
enrichment analysis (GSEA), which aimed to better confirm
the molecular and biological mechanisms between the two
groups.

The pathway enrichment of differences underlying gene sets in
two risk score subgroups was calculated by the annotation file
“hallmark gene sets” of the Molecular Signatures Database
(MSigDB) (https://www.gseamsigdb.org/gsea/msigdb/).

Immune infiltration assessment

The CIBERSORT algorithm was applied to evaluate the relative
infiltration abundance of various types of tumor-infiltrating
immune cells. We utilized CIBERSORT through an online R
script in the local R environment, and the algorithm was iterated
with 1,000 permutations and based on the LM22 gene signature.
Related results were filtered with a p-value < 0.05. Twenty-two
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subtypes of immune cells between the two risk groups were
subsequently compared. As supplementary, the mRNA
expression of typical immune checkpoints between the two
groups was further compared.

Mutation analysis and prediction of the
sensitive drugs

Mutation information of NSCLC was retrieved from the TCGA
database. The Mutation Annotation Format (MAF) form was used
to reserve somatic variant data. Maftools of the R package was used
to identify the top 30 most frequently mutated genes between the
two risk cohorts. The “pRRophetic” R package was utilized to
estimate the IC50 of common drugs between the patients in the
two groups using the Wilcoxon signed-rank test to predict the drug
sensitivity of the groups.

Exploration of hub genes in prognosis
signature and experimental validation

We first built a protein-protein interaction (PPI) network to
examine the interplay between the prognostic DEGs obtained from
univariate Cox regression analysis. Then, the DEGs were uploaded
to String (https://string-db.org/), and the PPI network was
constructed and further visualized and analyzed by Cytoscape
software (version 3.8.0).

Molecular Complex Detection (MCODE) screened the
modules of the subnetwork, and the cutoff criterion was
degree cutoff = 2, node score cutoff = 0.2, k-core = 2 and max
depth = 100. The common gene, overlapping result from PPI and
multiple cox analysis, was selected as the key prognosis gene.
First, the protein expression levels of tumor or normal tissue were
confirmed based on the HPA (The Human Protein Atlas)
database (https://www.proteinatlas.org). The “Survival”
package was used to assess the prognosis among the
normalized mRNA expression of the prognostic hub genes.
Kaplan-Meier analysis was used for evaluating the impact of
quantities of gene expression on patient survival according to
individual mRNA expression of particular prognostic genes (high
versus low expression). Finally, PCR experiments were
conducted to determine the mRNA expression of hub genes in
normal lung epithelial cells and NSCLC cell lines.

Real-time RT-PCR

The total RNA of relative cell lines was extracted using the
RNeasy mini kit following the manufacturer’s protocol (Qiagen).
RNA was eluted in 30 μL of RNase-free water and stored at −80℃.
RNA (500 ng) was reverse-transcribed using the PrimeScript™ RT
reagent kit (Takara Bio, Inc., Otsu, Japan). Then, PCR amplification
of the cDNA was performed using TB Green® Premix Ex Taq™ II
(Takara Bio, Inc.) according to the manufacturer’s instructions. The
sample volume was 10 μL, and the following reaction conditions
were used: 95°C for 30 s (predenaturation), then 40 cycles at 95°C for

10 s (denaturation), 55°C for 30 s (annealing), 72°C for 30 s
(extension) and the ultimate extension at 72°C. Relative mRNA
expression levels were acquired by the 2−ΔΔCq method.

Gene primer sequences were acquired from Generay
Biotechnology (Shanghai, China). Table 1 describes the detailed
sequences.

Statistical analysis

The distributional differences in clinical variables between the
two risk sets were analyzed by the chi-square test. Univariate and
multivariate Cox regression analyses were adopted to assess
independent prognostic parameters, and HRs and 95% CIs were
evaluated at the same time. The Kaplan-Meier method was applied
to generate survival curves for prognosis analyses, and the log-rank
test was used to define the significance of differences. Statistical
analyses in the study were conducted by R software (version 4.1.0),
IBM SPSS Statistics (version 25.0) or GraphPad Prism (version 8.0).
If not mentioned above, a threshold of p-value < 0.05 was defined as
statistical significance.

Results

Flow of data collection and analysis

In our research, we utilized ESTIMATE algorithms to
calculate the immune, stromal and ESTIMATE scores in
NSCLC patients after obtaining mRNA expression profiles and
corresponding clinical characteristics from the TCGA cohort. By
comparing the relationship between each score and survival
outcome together with clinicopathological parameters, the
immune score was shown to play a vital role in the prognosis
of NSCLC patients. We identified the immune-related DEGs
based on high- and low-immune score subtypes and predicted
their potential biological functions and pathways. The DEGs
associated with OS were analyzed and screened by univariate
Cox analysis, and the genes with p-value ≤ 0.01 were further
analyzed by LASSO analysis and subsequent multivariate Cox
analysis. A 15-gene prognostic signature was developed. A gene-
based classifier was generated, and NSCLC samples in our study
were classified into two risk cohorts based on the median risk
score obtained from the risk score computational formula. OS

TABLE 1 Primers sequences corresponding to prognostic genes and GAPDH.

Genes name (5′to3′)

ADH1C Forward primer CTCGCCCCTGGAGAAAGTC

Reverse primer GGCCCCCAACTCTTTAGCC

EREG Forward primer GTGATTCCATCATGTATCCCAGG

Reverse primer GTGATTCCATCATGTATCCCAGG

GAPDH Forward primer GGAGCGAGATCCCTCCAAAAT

Reverse primer GGCTGTTGTCATACTTCTCATGG
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was evaluated by Kaplan-Meier analysis between the two groups.
The nomogram integrated risk score and related clinical
information, and calibration plots and ROC curves were
applied to verify prognosis accuracy. The GSE31210 and
GSE37745 datasets, as external validations, also confirmed the
high predictive efficiency of the 15-gene diagnostic model
described above. KEGG and GSEA were performed to explore
the molecular and biological differences, and further mutation
and drug sensitivity analyses were also conducted between the
patients in the two risk groups. In addition, immune-related
analysis was performed to compare the proportions of immune
cells in the high- and low-risk groups. Finally, the common gene,
selected as the key prognostic gene of two overlapping results
from PPI and multiple Cox analyses, was verified by comparing
the mRNA expression of normal lung epithelial and NSCLC cell

lines and protein expression in the HPA database. The clinical
validation of the TCGA database further confirmed the
effectiveness of key genes. Details are described in Figure 1.

Immune score was connected with the
prognosis of NSCLC patients

Among 955 NSCLC cases enrolled in our study in the TCGA
cohort, 489 were LUAD and 466 were LUSC patients. According
to the ESTIMATE algorithm, the generated immune, stromal and
ESTIMATE scores were utilized in the Kaplan–Meier survival
analysis. The best demarcation values of the abovementioned
thresholds for subsequent survival analysis were
698.1, −802.72 and 2,296.17, respectively (Figures 2A–C). The

FIGURE 1
Flow chart of data collection and analysis.
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FIGURE 2
Relationship between clinical characteristics and immune, stromal and ESTIMATE scores (A–C). The optimal cutoff values of the immune, stromal
and ESTIMATE scores. (D–F). (K–M) analysis of immune, stromal and ESTIMATE scores. (G–I). Distribution of the three scores among patients with
different statuses (J–L). Distribution of immune, stromal and ESTIMATE scores among NSCLC stages (M–O). Distribution of three scores between
M-stage of NSCLC.
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results in our research demonstrated that a higher immune and
ESTIMATE score was associated with a better prognosis (p <
0.05) (Figures 2D, F); however, there was no significant

correlation with the stromal score (p = 0.24) (Figure 2E). The
three scores were subsequently analyzed to evaluate the
relationship with clinicopathologic characteristics (Figures

FIGURE 3
Heatmap, volcano plot and enrichment analysis of GO and KEGG for DEGs (A). Heatmap of DEGs in TCGA (B). Volcano plot of DEGs in TCGA (C). Top
5 enriched biological processes, molecular functions, and cellular components of upregulated co-DEGs and (D) downregulated co-DEGs (E). Top
10 KEGG pathways of upregulated co-DEGs and (F) downregulated co-DEGs.
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2G–O), showing that living NSCLC patients had notably higher
immune and ESTIMATE scores (p < 0.05), and the immune score
declined along with the progression of stage and M stage
classification despite no striking difference. In contrast, the
stromal score was not associated with the abovementioned
clinical features. These findings clarified that the immune and
ESTIMATE scores played a crucial role in the progression of
NSCLC. Since the ESTIMATE score represents a combination of
immune and stromal scores, the immune score seemed to be a
better indicator of prognosis in NSCLC patients.

DEG screening and functional analysis
between low- and high-immune score
groups

To determine the global gene expression profiles in the high and
low immune score groups, DEG analysis was further conducted. As a
result, 1806 DEGs containing 978 upregulated and 828 downregulated
genes were determined. The expression distribution of DEGs was
visualized by volcano plots (Figure 3B), and the top 50 DEGs of the
two groups are illustrated in the heatmap (Figure 3A). Moreover,

FIGURE 4
Development of the prognostic signature in the TCGA cohort (A). Diagnostic model construction using a LASSO regression model (B). Coefficient
distribution plots to select the optimum lambda value (C). Results of multivariate Cox regression analysis of OS in the TCGA cohort.
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potential biological function analysis was conducted, and the top 5 GO
annotations (BP, CC, MF) of up- and downregulated DEGs are
described in the circle plot of Figures 3C, D. As shown, the
upregulated DEGs were primarily linked to immune functions,
including T cell activation, immune receptor activity and

lymphocyte activation regulation, while pattern specification process,
epidermis development and DNA-binding transcription activator
activity were enriched in downregulated DEGs. Furthermore, KEGG
analysis demonstrated that the upregulated DEGs were significantly
associated with cytokine-cytokine receptor interactions, cell adhesion

FIGURE 5
Prognostic value of the 15-gene prognostic model in the TCGA and validation cohorts (A–C). Heatmap of fifteen genes between the two groups in
the TCGA and validation sets (D–F). Risk score scatter plot. Red dots indicate dead patients, and blue dots indicate alive patients (G–I). Risk score curve
plot. The dotted line indicates the individual distribution of the risk score, and the patients are categorized into low-risk (blue) and high-risk (red) groups
(J–L). Survival status and time of patients between the two groups in the TCGA and validation sets, respectively (M–O). The time-dependent ROC
curve of patients between the two groups in the TCGA and validation sets.
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molecules and chemokine signaling pathways (Figure 3E). However, the
downregulated DEGs were enriched in neuroactive ligand-receptor
interactions and chemical carcinogenesis-receptor activation
(Figure 3F).

Screening of independent prognostic
feature DEGs

In the beginning, univariate Cox analysis was utilized to analyze the
1806 DEGs selected from this study, and genes with a p-value <
0.01 were incorporated in survival-related analysis and used for
subsequent LASSO and further multivariate Cox analysis. Twenty-
six DEGs were screened through LASSO analysis and were significantly
correlated with survival outcome (Figures 4A, B). After subsequent
screening, the results of multivariate Cox analysis revealed that a
prognostic signature of 15 genes was independently related to OS,
including alcohol dehydrogenase 1C (ADH1C), complexin2 (CPLX2),
casein alpha s1 (CSN1S1), neurotensin receptor 1 (NTSR1), caudal type
homeobox 2 (CDX2), ATP binding cassette subfamily C member 8
(ABCC8), photoreceptor cilium actin regulator (PCARE), troponin C2,
fast skeletal type (TNNC2), epiregulin (EREG), mucolipin TRP cation
channel 2 (MCOLN2), CD70molecule (CD70), galactosidase beta 1 like
3 (GLB1L3), CD200 receptor 1 (CD200R1), defensin alpha 3 (DEFA3),
and ADP ribosylation factor like GTPase 14 effector protein like
(ARL14EPL). These genes were represented by a forest map
(Figure 4C). Supplementary information is described in
Supplementary Table S1.

Establishment and validation of prognostic
model

The prognostic signature was identified, and the risk score of
each NSCLC patient was calculated using the following formula:

The risk score = (−0.08672) × ExpADH1C + (0.14913) × Exp
CPLX2 + (0.17786) × ExpCSN1S1 + (0.17628) × ExpNTSR1 +
(0.21064) × ExpCDX2 + (−0.9561) × Exp ABCC8 + (−0.83455) ×
ExpPCARE + (−0.10013) × ExpTNNC2 + (0.08950) × Exp EREG +
(−0.24566) × ExpMCOLN2 + (0.11454) × ExpCD70 + (−0.10665) ×
Exp GLB1L3 + (−0.27673) × Exp CD200R1 + (0.63454) × Exp
DEFA3 + (0.35913) × Exp ARL14EPL.

Based on the demarcation point of the risk score, the NSCLC
samples were divided into high- or low-risk categories. The mRNA
expression of 15 genes in the two risk subtypes was presented in the
form of a heatmap (Figure 5A). The patients had a higher risk of
death with increasing risk score, as shown in the risk score curve and
scatter plot (Figures 5D, G). Subsequently, the K-M analysis revealed
that the prognosis of NSCLC samples in the low-risk subgroup was
remarkably better than that in the high-risk subgroup (p < 0.05)
(Figure 5J). For completeness, the time-dependent ROC curves
predicted the OS of NSCLC patients (AUC of 1-year = 0.722, 2-
year = 0.708, 3-year = 0.686) (Figure 5M).

To validate the reliability of our prognostic signature constructed
from the TCGA cohort, the risk score was further calculated with the
abovementioned formula for each patient in GSE31210 (226 LUADs)
and GSE37745 (n = 196, 106 LUADs, 24 LCLCs, 66 LUSCs). Patients
were also split into high- and low-risk subtypes according to the cutoff

point of the risk score. The heatmap shows the expression of
15 prognostic genes in the two risk groups (Figures 5B, C). Similar
to the results of TCGA, patients tended to have a higher probability of
death in the high-risk group than in the low-risk group (Figures 5E, F, H,
I). As a supplementary, we evaluated the prognostic value of prognostic
features in LUAD and LUSC, validation in the NSCLC subtypes also
demonstrated the similar result (Supplementary Figure S1). We also
observed a significant OS difference in GSE31210 and GSE37745, which
also implied the prognostic value of the gene signature (p< 0.05) (Figures
5K, L). As shown in Figures 5N, O, ROC curves also reached preferable
AUC values in the two validation sets, demonstrating the potent
capability of the 15-gene prognostic model.

Relationship between the risk score and
clinical parameters

A total of 936 NSCLC patients (475 LUADs and 461 LUSCs)
with complete clinical information were enrolled in our clinical
prognostic analysis. Table 2 shows the association between the two
risk groups and clinical factors, including age, sex, stage, T stage,
smoking index, status and tumor type. Our study revealed that the
high-risk group had a higher rate of males and LUSC patients and
more advanced cases, while other clinical variables were not
significantly associated with risk scores.

Similarly, as external validation, the results of
GSE31210 indicated that the risk score was remarkably associated
with EGFR mutation and had no association with other clinical
parameters (Supplementary Table S2). In addition, GSE37745, also
used for external validation, showed that the risk score was not
associated with clinical parameters except tumor type (details are
described in Supplementary Table S3).

Screening of independent prognostic
parameters and establishment of nomogram

To assess whether the risk score and which clinical parameters
could serve as independent predictive factors, subsequently, univariate
and multivariate Cox analyses were conducted. A total of 936 NSCLC
samples were enrolled from the TCGA cohort, as shown in Figures 6A,
B. From the results of univariate Cox analysis, the stage (p< 0.0001) and
risk score (p < 0.0001) were observably related to OS. We further chose
the variable with a p-value < 0.1 for the multivariate Cox test, and the
obtained results showed that the risk score (HR = 2.178; 95% CI,
1.760–2.697; p < 0.0001) remained significant for overall survival in
NSCLC patients. In addition, stage (HR = 1.880; 95% CI, 1.496–2.363;
p < 0.0001) and age (HR = 1.326; 95% CI, 1.075–1.637; p = 0.009) were
also significant predictors of prognosis.

To demonstrate the accurate prediction efficiency of the
prognostic signature that we established, univariate and
multivariate Cox analyses were also performed in GSE31210 and
GSE37745. The obtained results also indicated that the risk score
(HR = 2.333; 95% CI, 1.156–4.708; p = 0.018) was correlated with
survival in GSE31210 and could also be a good predictor in
GSE37745 (HR = 1.571; 95% CI, 1.129–2.185; p = 0.007). The
details are described in Figures 6C–F. Moreover, we constructed
a nomogram based on three independent prognostic indices (age,
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stage and risk score) from TCGA (Figure 6G). The calibration curve,
which evaluated the conformance of the nomogram, displayed high
consistency between the nomogram-predicted probability and
actual 1-, 3-, and 5-year OS (Figures 6I–K). The ROC curve
showed prediction efficiency of the prognostic model (AUC =
0.693), and the risk score displayed better predictive efficiency
than other clinical parameters (Figure 6H).

Pathway enrichment analysis based on the
prognosis model

To further understand the relevant pathway mechanism
between the two subgroups. KEGG pathway analysis and GSEA
were performed on the DEGs of the high-risk groups, and the
obtained results suggested that the signaling pathways of the high-
risk subgroup were primarily enriched in the cytokine–cytokine
receptor interaction pathway, IL-17 signaling pathway, PPAR
signaling pathway and so on (Figure 7A). Additionally, GSEA
indicated that the top 5 enriched pathways were epithelial
mesenchymal transition (P adjust < 0.0001), E2F targets (P
adjust < 0.0001), G2M checkpoint (P adjust < 0.0001), MYC
targets (P adjust < 0.0001) and TNF-α signaling via NFKB (P
adjust < 0.0001); details are presented in Figure 7B.

Tumor immune related and mutation
analysis of two subgroups

According to the results of KEGG and GSEA, we found that
the risk score was linked to immunity; thus, the tumor immune

microenvironment in the two risk categories was compared. The
obtained results revealed a lower immune score (p < 0.001),
stromal score (p = 0.021), and ESTIMATE score (p < 0.001) and a
higher tumor purity (p < 0.001) in the high-risk group based on
the ESTIMATE algorithm (Figures 8A–D). Additionally, the
distribution of 22 infiltrating immune cells in the two risk
groups was evaluated based on the CIBERSORT algorithm
(Figure 8E), and it indicated a higher proportion of
CD4 memory-activated T cells, NK cells, M0 and
M1 macrophages and neutrophils in the high-risk group,
whereas B cells, CD4 memory resting T cells, and Tregs
accounted for more cells in the low-risk group (Figure 8G).
We also compared the differential expression of immune
checkpoint genes between the two cohorts (Figure 8F), such as
PDCD1, TIGIT, CTLA4, and BTLA, which demonstrated
remarkably lower mRNA expression in the high-risk
group. Furthermore, we explored the top 20 mutated gene
mutation profiles between the high- and low-risk groups, as
presented in Figures 8H, I. The genetic alteration rate in the
high-risk group was higher than that in the low-risk subtype
(96.35% vs. 92.01%), and we also found that TP53 had a higher
mutation frequency in the high-risk group (71% vs. 61%).
TP53 and TTN remained the top two genetic alterations in
each group. Missense mutations were the most common form
of mutation in the two groups.

Drug sensitivity with prognostic signature

To explore the potential application of personalized drug
treatment based on our prognostic model, we investigated the

TABLE 2 Relationship between risk score and clinical characteristics of 936 patients in TCGA cohort.

Characteristics Total n = 936 (%) High-risk group n = 468 (%) Low-risk group n = 468 (%) χ2 p-value

Age, year 0.852 0.356

≤ 65 408 (43.6%) 211 (45.1%) 197 (42.1%)

>65 528 (56.4%) 257 (54.9%) 271 (57.9%)

Gender 36.84 <0.001

Male 561 (59.9%) 326 (69.7%) 235 (50.2%)

Female 375 (40.1%) 142 (30.3%) 233 (49.8%)

Stage 6.816 0.009

Stage I/II 748 (79.9%) 358 (76.5%) 390 (83.3%)

Stage III/IV 188 (20.1%) 110 (23.5%) 78 (16.7%)

Smoking index 1.551 0.213

High 455 (48.6%) 369 (78.8%) 353 (75.4%)

Low 481 (51.4%) 99 (21.2%) 115 (24.6%)

Tumor type 33.86 <0.001

LUAD 475 (50.9%) 193 (41.2%) 282 (60.3%)

LUSC 461 (49.3%) 275 (58.8%) 186 (39.7%)

Abbreviations: n, number.
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IC50 values of different drugs between the two sets. Drug sensitivity
tests showed lower IC50 values of cisplatin, doxorubicin, docetaxel,
paclitaxel, vinblastine and so on in the high-risk group, which
indicated that the medication described above may be effective in
high-risk patients. The IC50 values of nilotinib, tipifarnib,
rapamycin and metformin were lower in the low-risk group,
implying that patients in the low-risk group may benefit from
these therapies. Details are shown in Figure 9.

Experimental and clinical validation

First, we used the PPI network of the prognostic DEGs from
univariate Cox analysis and further visualized it by Cytoscape
software (Figure 10A). A total of 7 modules were obtained using
MCODE in the PPI network, and two hub genes (EREG and
ADH1C) were recognized from two overlapping results between
genes of modules and 15 DEGs (Figures 10B, C). Additionally, the

FIGURE 6
Univariate and multivariate Cox regression analyses in the TCGA and validation cohorts and establishment of the nomogram (A, B). Univariate and
multivariate Cox regression analyses in TCGA (C, D). Univariate and multivariate Cox regression analyses in GSE31210 (E, F). Univariate, multivariate Cox
regression analysis in GSE37745 (G). Establishment of a nomogrampredictingOS based on the independent prognostic factors in TCGA (H). ROC curve of
the nomogram, risk score and other relevant clinical parameters in TCGA (I–K). Calibration curves of the nomogram prediction of 1-, 3-, and 5-year
survival in TCGA.
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variability in survival status and stage was evaluated with differences
in hub gene expression. There was a statistically significant higher
rate of EREG expression in dead NSCLC patients (p-value = 0.042),
while a trend toward more ADH1C expression was discovered in
surviving patients (Figures 10D1, E1). We also found that EREG was
directly proportional to the stage of NSCLC, while the mRNA
expression of ADH1C seemed negatively related to the staging
system (Figures 10D2, E2). Subsequently, the results of survival
analysis showed that EREG was associated with shorter OS and that
higher expression of ADHIC was beneficial to survival (p-value <
0.05) (Figures 10D3, E3). Similarly, in other datasets ADHIC was
related to better survival (p-value < 0.05) and the high expression of
EREG tends to be worse OS (Supplementary Figure S2).

Moreover, we demonstrated that there was less protein
expression of ADH1C in lung tumors than in normal lung tissue
based on the HPA database (Figure 10F).

Eventually, PCR experiments were utilized to directly
compare the difference in mRNA expression in lung epithelial
cells and NSCLC cell lines. EREG demonstrated higher RNA
expression in NSCLC than in normal lung epithelial cells, while
there was little difference in ADH1C between normal and tumor
lung cells, which needs additional experiments for validation
(Figures 10G, H).

Discussion

NSCLC diagnosis and treatment have made breakthroughs in
the past few decades due to the ongoing discovery of genomic and
TME changes in the pathogenesis of lung cancer. The approach has
gradually shifted from chemotherapy drugs that broadly attack
tumors toward targeted immunotherapy for precision therapy.
Further exploration of the tumor immune microenvironment and
identification of meaningful biomarkers are expected to provide a
new direction for better patient diagnosis and treatment. In our
study, through the ESTIMATE algorithm, we first found that the
immune score was connected with the survival of NSCLC patients.
Then, we divided the patients into two sets based on the optimum
critical point of the immune score and mined the differential genes

by the “DESeq2” R package. The prognostic gene signature was
established by a series of statistical analyses. The external validation
of GSE37745 and GSE31210 illustrated the accuracy of our
prognostic model. In addition, relative GSEA, tumor immune,
mutation and drug sensitivity analyses were performed between
the two risk groups. The experimental validation of the hub gene
strengthened our results. In general, the results of our research had a
certain constructive impact on the predicted prognosis of NSCLC
from the perspective of the tumor immune microenvironment
(TIME).

The TIME, containing immune-promoting and
immunosuppressive cells and molecules, plays a crucial role in
the progression and prognosis of tumors. The immune system
undergoes three major changes during the development of
tumors: immune surveillance, immune balance and immune
destruction (Dunn et al., 2004). It presents the characteristic of
the two sides; the immune cells originally presented natural
antitumor properties in tumor invasion while uncharacteristically
changed into a promoting tumor phenotype during tumor
progression, which contributes to immune escape and distant
metastasis of malignancy. Currently, the characteristics of the
TIME, listed as one of ten tumor characteristics (Hanahan and
Weinberg, 2011), play a certain role in predicting both clinical
prognosis and the efficacy of chemoradiotherapy (Josefowicz et al.,
2012). Therefore, it makes significant sense to analyze the types and
distribution of immune cells in the TME and generate an efficient
immune evaluation system. Previous studies on the TME of
pancarcinoma (mainly gastric cancer) have discovered that
patients with high TME scores showed a stronger antitumor
immune response, were more likely to benefit from
immunotherapy and had better survival outcomes (Fatima et al.,
2013). In lung cancer, tumor-infiltrating CD4+ T cells play a crucial
role in the immune response by allowing CD8+ T cells to enter tumor
sites and infect mucous membranes to kill tumors; moreover, they
are necessary to inhibit tumor angiogenesis (Borst et al., 2018).
Other studies have shown that tumor-associated macrophages
(TAMs) in the TME are involved in angiogenesis, tumor
migration and metastasis and the antitumor immune response,
which is related to tumor progression (Qian and Pollard, 2010).

FIGURE 7
(A) KEGG pathways in high-risk group (B). Top 5 Gene Set Enrichment Analysis of gene set of high-risk in TCGA cohort.
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Our study applied the ESTIMATE algorithm to NSCLC and found
that a high immune score was associated with a better prognosis,
which was consistent with previous research.

The gene expression profiles of the two groups with high and low
NSCLC immune scores were analyzed and compared, and
1806 DEGs were screened. Subsequently, a 15-gene signature was

FIGURE 8
(A–D) Immune score, stroma score, ESTIMATE score and tumor purity of the high- and low-risk groups (E). Distribution of infiltration of 22 immune
cell types in the two risk groups (F) The expression of immune checkpoint genes between the two cohorts (G). The proportions of different immune cells
in the high- and low-risk groups (H, I). Mutated gene mutation profiles between the high- and low-risk groups.

Frontiers in Pharmacology frontiersin.org14

Zhou et al. 10.3389/fphar.2023.1153565

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1153565


established through LASSO and Cox analyses, and the risk score of
every patient was calculated. To date, a number of gene signatures
have been established to predict the survival of NSCLC patients. The
research in 2017 identified a tumor immune-associated prognostic
gene signature with a precise prediction (AUC = 0.7) in early-stage

NSCLC (Li et al., 2017). Liu et al. established a prognostic model that
combined molecular biomarkers (TPX2 and MMP12) and several
meaningful clinical features and exhibited a higher survival
prediction performance (AUC = 0.771) than TNM staging
systems in postoperative NSCLC patients (Liu et al., 2018).

FIGURE 9
Drugs sensitivity in the high and low-risk group.
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FIGURE 10
Screening and validation of hub genes (A). PPI network among prognostic genes. (B, C) Twomodules containedmany genes in the PPI network (D).
The relationship between survival state, stage and mRNA expression levels of EREG, Kaplan–Meier curves of EREG in OS (E). The relationship between
survival state, stage and mRNA expression levels of ADH1C, Kaplan–Meier curves of ADH1C in OS (F). ADH1C protein levels in normal lung and NSCLC
were visualized by IHC in HPA. (G, H)Quantitative real-time PCR analysis of themRNA expression levels of EREG and ADH1C in NSCLC cell lines and
normal lung epithelial cells.
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However, they rarely translated into medical practice, which may
be due to the following three reasons: 1) the gene signature was trained
in a cohort with high variance, 2) mRNA microarray data may be
measured using diverse experimental methods, and 3) most gene
signatures consist of few typical genes andmay neglect other potential
reasons that seriously reduce their prediction stability and may result
in overfitting. Our study found that a high immune score was
associated with a better prognosis in NSCLC, and the subsequently
constructed immune-related gene signature showed superior
prognostic classification ability than other clinical parameters and
was further verified in two other GEO datasets. Our study provides an
alternative idea for the development of new targeted drugs. The
nomogram, a practical tool for assessing the prognosis of
malignant patients, has been recognized to be more effective than
traditional TNM staging (Diao et al., 2019). Therefore, we combined
the risk score and several clinical parameters to draw a nomogram
that predicted 1-, 3-, and 5-year survival and exhibited relatively
reliable prediction efficiency. It is worth considering that there were
more stage I-III NSCLC patients than advanced stage NSCLC patients
in the TCGA cohort. Early-stage NSCLC patients tended to have a
good prognosis after surgical treatment, and there were more factors
related to prognosis. To a certain extent, the lack of specific treatment,
clinical characteristics, laboratory indices, and imaging materials in
the databases could influence the model accuracy.

The prognostic model established in our research consisted of
15 prognostic DEGs. Furthermore, we selected key prognostic genes
from two overlapping results from PPI and 15 DEGs. Two hub genes
(EREG and ADH1C) were recognized. Patients with high mRNA
expression of EREG tended to have a poor prognosis, while ADH1C
was associated with better survival in TCGA. EREG and ADH1C
were further verified through RT‒PCR experiments of normal lung
epithelium and NSCLC cell lines. Altogether, we determined that
EREG and ADH1C likely play significant roles in the process of
NSCLC through validation of the TCGA database and RT‒PCR
assay.

Epiregulin (EREG), a member of the epidermal growth factor
family, combines with ErbB receptors and further contributes to
proliferation, inflammation and anti-apoptosis in tumor cells (Riese
andCullum, 2014). Additionally, it promotes the progression of various
cancers. Research has revealed that patients with positive EREG are
associated with a worse prognosis than those with negative EREG in
NSCLC (Zhang et al., 2008). Moreover, Chen et al. (Chen et al., 2019)
discovered that acquired resistance to 5-FU in colon cancer can be
reversed by inhibiting the miR-215-5p-EREG/TYMS axis. A study
(Zhang et al., 2022) in 2022 found that EREG enhanced resistance to
chemotherapy in NSCLC by increasing the expression of stemness-
associated genes. Notably, the expression of EREG in stromal cells is
upregulated and activates several downstream signaling pathways,
including the MAPK AKT/mTOR and JAK/STAT pathways, in
cancer cells by paracrine signaling, promoting their malignant
phenotype and accelerating the progression of cancer (Wang et al.,
2022). This discovery reinforces our conclusion that EREG plays a
crucial role in NSCLC progression by influencing the TIME.

ADH1C is a member of the ADH family that catalyzes the
oxidation of ethyl alcohol to acetaldehyde (a carcinogenic
metabolite) and plays a crucial role in the etiology of various
cancers. The polymorphism of ADH1C may be a crucial factor
in the etiology of oral cancer and genetically determine an

individual’s susceptibility (Brocic et al., 2011). A previous study
indicated that patients with positive ADH1C have an increased risk
of head and neck cancer (Visapaa et al., 2004). In addition, further
studies suggested that ADH1C was not linked to HNC (Peters and
McClean, 2005). Similar differences were found for colorectal and
breast cancer. Bongaerts et al. (2011) considered that the ADH1C
genotype and excessive alcohol intake were associated with an
increased risk of CRC, while some researchers have suggested
that ADH1C expression is reduced during the progression of
CRC from early to advanced stages. ADH1C allele mutations
were related to an increased breast cancer risk due to alcohol
consumption by comparing postmenopausal breast cancer
samples with controls (Benzon Larsen et al., 2010). However, one
study suggests that ADH1C polymorphisms may not be connected
with breast cancer in Caucasians (Wang et al., 2012). The
abovementioned inconsistent conclusions regarding the effect of
ADH1C on cancer suggested that the mechanisms related to
ADH1C may be complex and remain unclear. A recent study
showed that the prognosis of NSCLC patients with high ADH1C
expression was associated with longer OS. Our research found that
ADH1C may be an antitumor factor whose higher expression is
associated with a better prognosis. However, reverse protein and
mRNA expression requires further experimental verification.

We further explored the potential pathway mechanism between
the two subtypes. It is worth noting that the proliferation,
differentiation, metastasis of tumor cells and pathways in cytokines
and inflammation were enriched in the high-risk group. For example,
epithelial-mesenchymal transition (EMT) indicates the malignant
process of tumors, allows tumor cells to invade and metastasize,
and promotes chemotherapy resistance (Jolly et al., 2019). E2F is
essential to cellular homeostasis and plays a role beyond cell cycle
regulation, and its dysregulation may lead to cancer progression,
including processes such as apoptosis, metabolism and angiogenesis
(Kent and Leone, 2019). Tumor necrosis factor-α (TNF-α) is a
proinflammatory cytokine involved in normal inflammatory and
immune responses. TNF-α receptors exist on various cell surfaces
and are divided into two types (TNFR I and TNFR II). The
combination of TNF-α and TNFR usually causes inflammation
and the occurrence of tumors (Frances, 2009). TNF-α, as a key
regulator of the TME, is well-recognized (Wu and Zhou, 2010).
Cytokine interactions accounted for a high proportion in GSEA.
Cytokines were the key signaling proteins in the TME. TNF and IL-6
can cause disordered cytokine regulation and promote tumor
inflammation. IL-10, IL-4, and TGFβ lead to immunosuppression
(Propper and Balkwill, 2022). Cytokines and their receptors have been
widely studied as tumor targets or therapeutic strategies. These tumor-
related pathways were enriched in the set of high-risk patients, and
these pathways were closely related to tumor progression and further
verified the accuracy of our study.

The establishment of an immune-related prognostic model in
our study was validated frommultiangle andmultiple databases, and
the prognostic gene signature demonstrated good prospects in
predicting the prognosis of NSCLC patients. Our study further
analyzed mutations and drug sensitivity differences between the
two risk groups. The results of differentially mutated genes were
convenient for subsequent basic experimental research, and the
finding of drug sensitivity had potential guiding meaning for the
choice of clinical drug. However, there are still some limitations in
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our research. First, the incomplete and lack of specific treatment,
clinical characteristics, laboratory indices, and imaging materials in
the TCGA databases could influence the model accuracy, and we
could not explore the influence of these factors on NSCLC patients.
In addition, we believe that functional experiments should be
conducted to confirm the molecular mechanism of the hub
genes. Finally, it would be best if the prognostic model was
verified in prospective or retrospective clinical trials.

Conclusion

In conclusion, we have identified an immune-related 15-gene-
based prognostic model that presented an accurate prognostic
predictive ability in NSCLC patients. The potential mechanisms
and chemotherapy-sensitive analyses were also evaluated between
the two risk groups, which could provide the basis for subsequent
basic and clinical trials.
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