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In the last years, liquid biopsy gained increasing clinical relevance for detecting and
monitoring several cancer types, being minimally invasive, highly informative and
replicable over time. This revolutionary approach can be complementary andmay,
in the future, replace tissue biopsy, which is still considered the gold standard for
cancer diagnosis. “Classical” tissue biopsy is invasive, often cannot provide
sufficient bioptic material for advanced screening, and can provide isolated
information about disease evolution and heterogeneity. Recent literature
highlighted how liquid biopsy is informative of proteomic, genomic, epigenetic,
and metabolic alterations. These biomarkers can be detected and investigated
using single-omic and, recently, in combination through multi-omic approaches.
This reviewwill provide an overview of themost suitable techniques to thoroughly
characterize tumor biomarkers and their potential clinical applications,
highlighting the importance of an integrated multi-omic, multi-analyte
approach. Personalized medical investigations will soon allow patients to
receive predictable prognostic evaluations, early disease diagnosis, and
subsequent ad hoc treatments.
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Introduction

In the last decades, the old “one-size-fits-all” approach in cancer treatment has been
replaced by a personalized model in which therapeutic strategy is based on biological features
of the patient’s disease (Gambardella et al., 2020; Kulavi et al., 2021). This approach, known
as personalized medicine, aims to identify patients who will respond to specific therapies by
reducing the risk of adverse effects as well as improving the sustainability of healthcare
systems (Biankin et al., 2015; Jameson and Longo, 2015; Hyman et al., 2017; Yates et al.,
2018). During the selection of “the right treatment for the right person,” the identification of
a new generation of biomarkers, that guide all aspects of cancer patient care, represents the
most urgent challenge today (Sawyers, 2008). Tissue-based biomarkers are currently used for
tumor diagnosis and therapy response prediction; however, they do not allow treatment real-
time monitoring and early identification of resistance mechanisms. In some cases, tissue
biopsy is invasive, expensive and time consuming, but above all, it is totally inappropriate in
capturing tumor heterogeneity. Indeed, we can identify only a fraction of tumor
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heterogeneity since serial sampling is not clinically practical and is
affected by the patient’s health status.

To overcome these limitations, a non-invasive sampling
approach known as liquid biopsy (LB) was developed (Lone
et al., 2022). Based on the study of circulating biomarkers in
biological fluids, it aims to circumvent the temporal and spatial
heterogeneity of the tumor by providing valuable information on
the onset and progression of the disease over time (Siravegna
et al., 2017; Ignatiadis et al., 2021). Besides blood, different
biofluids such as urine (Nuzzo et al., 2020; Xu et al., 2020),
stool (Diehl et al., 2008a), saliva/sputum (Wu et al., 2019),
pleural effusions (Li et al., 2019a), and cerebrospinal fluid
(CSF) (Miller et al., 2019) can be used to isolate circulating
tumor components for clinical applications (Figure 1).
Biologically, elements that can be analyzed using LB are
classified into two main categories: targets with cellular or
subcellular structures such as circulating tumor cells (CTCs)
(Zhang et al., 2015; Jordan et al., 2016; Guo et al., 2018; Zhou
et al., 2019), extracellular vesicles (EVs) (McKiernan et al., 2016;
Mannavola et al., 2019; Sun et al., 2020) and tumor-educated
platelets (TEPs) (Best et al., 2015); and molecules without
cellular structures such as cell-free (cf) nucleic acids (cfDNA
and cfRNA) (Diehl et al., 2008b; Comino-Mendez and Turner,
2017; Urabe et al., 2019; Quirico and Orso, 2020; Lo et al., 2021;
Wada et al., 2021; Joosse and Pantel, 2022) proteins (Martinez-

Garcia et al., 2017; Signore et al., 2021), metabolites (Lee et al.,
2020; Maslov et al., 2022) and lipids (Saito et al., 2021; Wolrab
et al., 2022). Over the past twoades, thanks to the great
advancement in sequencing technologies, a more genomic
approach has been used in clinical oncology. This brought an
improvement in personalized medicine in terms of prevention
and treatment, providing a wide range of information on the
mutational and molecular structure of many tumors (Jamal-
Hanjani et al., 2016; Scherer et al., 2016; Thompson et al., 2016).
The analysis of each component provides useful information on
cancer diagnosis, prognosis and treatment (Lone et al., 2022). In
the clinical setting, the detection of CTC above the cut-off value
has a negative prognostic value in metastatic patients
(Cristofanilli et al., 2004; Cohen et al., 2008) as well as the
identification of a specific mutation on the ctDNA can direct
therapeutic treatment or indicate drug resistance (Garlan et al.,
2017). However, the exclusive use of a single omic approach does
not have the power to establish all causal relationships between
molecular alterations and phenotypic manifestations.

To better understand the mechanisms underlying different
phenotypes during malignant transformation, investigating
different omics, e.g., transcriptomics, epigenomics, proteomics
and metabolomics, became necessary. Although LB represents a
promising tool to monitor the dynamic evolution of cancer in a
non-invasive way, its integration into clinical practice is

FIGURE 1
Clinical applications of liquid biopsies. Biomarkers released by primary tumors and metastasis can be detected in liquid biopsies and analyzed to
guide prognosis, diagnosis, and treatments in oncologic patients.
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hampered by the lack of reproducibility due to the absence of
standardization across workflows (Salvianti et al., 2020). The
main goal is to develop unique procedures for detection and
analysis of liquid components that are reproducible and have a
high degree of sensitivity and specificity.

In this review we are going to explore how the main single
omics are interrogated in LB, discussing multiple types of
cancers and clinical applications. At the same time, we will
explain how multidimensional analysis of different liquid
components and integration of omics will lead to new
biomarkers discovery for cancer management, and identification
of therapeutic targets linked to cancer-specific molecular
pathways.

Liquid biopsy elements

Circulating tumor cells

Described for the first time in 1869 by Ashworth, CTCs are
tumor cells that detach from the main tumor masses and travel
through the circulatory systems (Pantel and Speicher, 2016). It
took researchers more than a century to understand that they
represent the seed for metastasis (Nguyen et al., 2009; Eslami-S
et al., 2022). Epithelial to mesenchymal transition (EMT)
properties and stemness features allow their dissemination in
distant organs (Ye and Weinberg, 2015; Fares et al., 2020).
CTCs preserve tumor heterogeneity and mimic cancer
properties: for this reason, they can be used as clinical
biomarkers for disease screening, dynamic monitoring and
prognosis prediction (Pantel et al., 2013; Jamal-Hanjani et al.,
2015; Keller and Pantel, 2019).

CTCs are related to tumor stage (Ankeny et al., 2016;
Cristofanilli et al., 2019) but their clinical utility in cancer
screening and/or early detection is still under debate. CTCs
prognostic value has been amply proven, and their
enumeration in some metastatic tumors became an
independent prognostic factor (Cristofanilli et al., 2004; Cohen
et al., 2008). In addition, both the presence and the size of CTC
clusters can be associated with a worse clinical outcome than
single CTCs (Chang et al., 2016; Paoletti et al., 2019; Lim et al.,
2021).

CTCs molecular phenotype has also a strong prognostic value:
for instance patients with CTC expressing mesenchymal markers
(Armstrong et al., 2011), stemmarkers (Lecharpentier et al., 2011) or
antigens such as PD-L1 (Kong et al., 2021), HER2 (Müller et al.,
2021), CD47 (Agelaki et al., 2019) undergo reduced Progression Free
Survival (PFS) andOverall Survival (OS). Also CD44 and CD77 have
been lately proposed as prognostic markers of brain metastases
(Loreth et al., 2021).

To predict and monitor therapeutic responses, CTCs can be
used in combination with serum biomarkers and imaging, as
demonstrated by several clinical studies. For example, patients
with Castration-Resistant Prostate Cancer (CRPC) expressing
androgen receptor 7 splice variant (AR-V7) protein on CTCs had
a better survival rate after taxane chemotherapy (Graf et al.,
2020). Expression of PDL1 on CTC seems to be a promising
predictive biomarker of treatment response when using

immunotherapy in Non-Small Cell Lung Cancer (NSCLC)
(Kloten et al., 2019). CTC genomic aberrations and surface
protein alterations can be used for monitoring tumor
resistance to therapeutic regimen in breast (Gasch et al., 2016;
Jordan et al., 2016), lung (Maheswaran et al., 2008; Sundaresan
et al., 2016; Chang et al., 2021) and prostate cancer (Darshan
et al., 2011; de Bono et al., 2021).

CTCs are difficult to detect due to their low amount and the
paucity of standardized detection strategies (Table 1). To sort
out this issue, usage of CTC-derived xenograft (CDX) models
and CTC-derived ex vivo cultures have been suggested: these
models represent an opportunity to identify drug susceptibility
changes in patients as their tumors evolve (Hodgkinson et al.,
2014; Lee et al., 2015; Suvilesh et al., 2022), as well as to
understand the role of CTCs in metastatic process and
metastases organotropism (Klotz et al., 2020; Bowley and
Marchetti, 2022).

Circulating tumor DNA

Since its observation in human plasma in the late 1940s
(Mandel and Metais, 1948), cfDNA has received enormous
attention as a noninvasive disease biomarker. Unlike cfDNA,
circulating tumor DNA (ctDNA) is present in very low
concentrations, ranging from ≥ 5%–10% in late stage,
to ≤ 0.01%–0.1% in early stage cancers (Bettegowda et al.,
2014) and has a greater degree of fragmentation. Several
studies demonstrate how the length of the fragments can be
linked to the mechanism of release into the circulation. Indeed,
while short fragments (<200 bp) are released during apoptosis,
large fragments (>200 bp) originate during necrosis (Jiang and
Lo, 2016) or from viable cancer cells of primary tumors and/or
metastases.

By using ctDNA we can detect specific cancer-related
alterations, including point mutations, copy number variations
(CNVs), and methylation changes that provide valuable insight
into disease status. There is an open debate in the scientific
community about the use of ctDNA for early cancer detection
(Fiala and Diamandis, 2018). Grail is a company developing an
Artificial Intelligence (AI)-aided early cancer detection test based on
cfDNA analysis. In colon cancer (CC), the absence of ctDNA after
surgery has been shown to be associated with a better prognosis and
a low chance of recurrence (Schraa et al., 2022). Tracking alterations
in ctDNA also allow us to detect minimal residual disease and
predict recurrence several months in advance, as seen in patients
with colon (Schraa et al., 2022), breast (Coombes et al., 2019) lung
(Otsubo et al., 2019), ovarian (Lin et al., 2019) and prostate (Wyatt
et al., 2016) cancer.

Over the last decade, the Food and Drug Administration
(FDA) has approved a series of LB tests based on ctDNA. The
Cobas EGFR Mutation Test v2 (Roche, Basel, Switzerland) is a
diagnostic test for EGFR tyrosine kinase inhibitor therapies in
NSCLC, while Guardant360 CDx (Guardant Health, Lansdale,
PA, USA) and Liquid CDx (Foundation Medicine, Cambridge,
MA, USA), analyzing the complete tumor genomic profile, help
clinicians to understand responsiveness to checkpoint inhibitors
and targeted therapy. In the near future, it will be necessary to
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validate non-invasive methods to detect limited amounts of
ctDNA to guide personalized therapeuticisions.

Exosome

Exosome-based oncology research has recently achieved
impressive results by offering potential tools for the clinical
management of the disease. Initially considered a cellular waste
disposal system, they are important players in intercellular
communication (Maia et al., 2018).

They are small extracellular vesicles released from every type of
cell which circulate stably in most biological fluids such as blood,
urine, milk, saliva. They carry nucleic acids, proteins and lipids and
can reach very distant cells influencing their biological functions
(Zhang et al., 2019).

In cancer exosomes are involved in remodeling of the tumor
microenvironment (Huang et al., 2022a), formation of pre-
metastatic niches (Costa-Silva et al., 2015) and immune-escape
(Chen et al., 2018).

In liquid biopsy, for their unique features, exosomes have
complementary and potentially broader applications than CTCs
and ctDNA. Melo et al. (2015) found high levels of GPC1+-
circulating exosomes in Pancreatic Ductal Adenocarcinoma
(PDAC) patients compared to healthy controls, suggesting a
strong correlation between GPC-1 exosome and cancer. Other
recent studies suggested the prognostic role of circulating
exosomal microRNA (miRNA). In CRPC patients, high levels
of miR-1290 and -375 were significantly associated with poor OS
in the follow-up cohort (Huang et al., 2015a). Besides early
diagnosis and prognosis, exosomes also play a potential role in
treatment response assessment. In metastatic melanoma patients,

TABLE 1 Main technologies for detection of circulating tumor cells.

Principle Technology Enrichment Advantage Disadvantages Ref

Nucleic acid-
based

Targeted analysis (qPCR/NGS) None • High sensitivity • No morphological analysis Diehl et al. (2006)

• Small volume of sample
required

• Technical issues for RNA
degradation

García-Foncillas et al.
(2018)

Hashimshony et al.
(2016)

Protein-based Immunocytochemistry/
Immunofluorescent

• Membrane filtration • Quantification and
morphological analysis

• Subjective picture
evaluation

Liu et al. (2019b)

• Size-based enrichment
• Multi-markers evaluation • Time-consuming

Ruano et al. (2022)

• Immunomagnetic
enrichment

Brady et al. (2020)

Peeters et al. (2014)

Flow Cytometry None • Rapid • Low sensitivity Van Paemel et al.
(2021)• Multiparametric analysis • Large sample volume

requirement Gordevičius et al.
(2018)

• High specificity
• No morphological analysis

Vrba et al. (2020)
• Potential to sort CTCs for

subsequently analysis

Cell-Search System None • Automated • EPCAM-dependent

• Quantitative • Partial subjective picture
evaluation• High sensitivity

• No downstream analysis

Begum et al. (2011)

• Highly reproducible

Cohen et al. (2008)

• Moderate sample volume

Hulbert et al. (2017)

• FDA approval

Microfluidic-
based

DEPArray system • Immunomagnetic
enrichment

• Automated • Subjective picture
evaluation

• Size –based enrichment

• High sensitivity
• Time-consuming

Xu et al. (2019)

• Cell-Search system

• Morphological analysis
• High cell loss during

sample preparation

Huang et al. (2021)

• Single cell isolation

Garvin et al. (2015)

• Downstream genomic and
transcriptomic analyses

CTC Chip None • High sensitivity and specificity • EPCAM-dependent

• Quantitative • Subjective evaluation

Chang et al. (2021)

• Minimal manipulation of
sample

Chen et al. (2021)

• CTCs recover for further
analysis

Chiu et al. (2019)

Functional-
based

EPISPOT • Size-based enrichment • High specificity • Detect on CTCs viable

• Immunomagnetic
enrichment

• Quantitative • Marker dependent

Guo et al. (2023)

• Multiparameter analysis • Time consuming

Månsson et al. (2021)
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the increase in circulating exosomal PD-L1 during the early
stages of pembrolizumab treatment might reflect the presence
of successful antitumor immunity elicited by anti-PD-1 therapy
(Chen et al., 2018). Del Re and collaborators (Del Re et al., 2017)
proved that the presence of AR-V7 in exosomal RNA was
associated with shorter OS and resistance to hormone therapy
in CRPC patients. Despite the tangible therapeutic potential of
exosomes, the lack of standardized protocols and universally
accepted markers for quality control limits their use in the
preclinical setting.

During exosome analysis, the real challenge to overcome is
discriminating tumor exosomes from non-tumor extracellular
vesicles still. A possible solution could be using highly specific
analytical techniques such as mass spectrometry (MS),
Flow Cytometry (FC) and High Throughput Sequencing
(HTS). Big data analysis would then be capable of
distinguishing tumor exosomes from the physiological
material (Nguyen et al., 2019).

microRNA

To date, the majority of circulating nucleic acid studies in
oncology concern ctDNA. However the spotlight has turned on
cfRNA which has promised to improve cancer diagnosis and
treatment (Anfossi et al., 2018). Like exosomes, cfRNA can
derive from cancerous cells, but also from non-tumor
components such as stroma and the immune system. The
analysis of cfRNA dynamically reflects the changes that occur
in the tumor microenvironment, revealing important
intercellular signaling that can be exploited in clinical
practice (Anfossi et al., 2018). In the field of cfRNA
biomarkers, most studies have focused on miRNAs for their
greater stability in biological fluids (Glinge et al., 2017).
miRNAs are a family of small non-coding RNAs that
regulate a wide array of biological processes including
carcinogenesis (Lu et al., 2005). They circulate in the blood
carried by exosomes, apoptotic bodies or protein-miRNA
complexes, functioning as either oncogenes or tumor
suppressors depending on the conditions (Bartel, 2004).

In the last years, several studies demonstrated that miRNA
expression is dysregulated in cancer, and its signatures could be
used for diagnosis, prognosis and therapeutic management of
cancer (Bartel, 2004; Reda El Sayed et al., 2021). Recently, more
miRNAs have been investigated such as early diagnostic and
prognosis markers for lung cancer often associated with
biomarkers such as CEA and Cyfra 21-1 (Liu et al., 2021a).
miRNAs may also be used to evaluate therapeutic outcomes.
An example the chemotherapy increases the serologic
concentration of miRNAs in colon cancer patients (Hansen
et al., 2015). However, what emerges from all the studies is a
high variability as more miRNAs can be associated with the same
tumor with a different sensitivity and specificity. This can be
partly explained by the differences in the samples tested, in terms
of ethnicity of the courts, the use of endogenous controls, the
biofluid analyzed, but above all on the detection method used.
Consequently, standardization of procedures is needed to take

full advantage of miRNAs as cancer biomarkers (Cabús et al.,
2022).

Tumor-educated platelets

The interaction between tumors and platelets was first observed
in 1868 when Trousseau noted that spontaneous coagulation was
common in cancer patients. A decade later, Billroth described that
these clots contained cancer cells and for this reason could be agents
of metastasis (Billroth, 1871). Today we know that platelets, besides
carrying out protein synthesis in the absence of a nucleus,
continuously exchange nucleic acids and circulating proteins with
the tumor and its microenvironment (In ’t Veld and Wurdinger,
2019). TEPs are the result of this exchange which can be achieved by
the direct recruitment of tumor components or indirectly by post-
transcriptional splicing (Roweth and Battinelli, 2021). Thus far, the
preliminary data strongly suggest that TEP-derived mRNA onco-
signatures may be harnessed for cancer diagnostics, with many
potential applications (Best et al., 2018). Best et al. compared TEPs
derived from healthy donors and both treated and untreated patients
with early, localized, or advanced metastatic cancer. They reported
that molecular interrogation of blood platelet mRNA can offer
valuable diagnostics information for all cancer patients
analyzed—spanning six different tumor types. Platelets may be
employable as an all-in-one biosource to broadly search
molecular traces of cancer and provide a strong indication on
tumor type and molecular subclass (Best et al., 2015). Their
involvement in metastasis generation has been recently studied:
TEPs seem to contribute to the survival of CTCs by protecting them
from immune attacks and shear stress, promoting CTC intravenous
extravasation (Liu et al., 2021b; Pereira-Veiga et al., 2022).

All in all, several liquid biopsy markers have been characterized
for their clinical relevance in informing about disease biology,
treatment response and progression. Each of those makers has
specific strengths and limitations, and it is apparent that their
combined use could be instrumental in obtaining a
comprehensive description of tumor features.

For example, CTCs are informative of the tumor phenotype and
genotype, representing a source of information about tumor
heterogeneity and presence of molecular targets for therapy.

CTC analysis anyway poses some limitations mostly related to
their difficulty to be isolated due to their limiting number in the
bloodstream. On the contrary, ctDNA is informative of tumor
genotype, and also of its epigenetic profile (e.g., fragmentation
profile, methylation status) and is therefore useful to assess
mutational profile, clonality, and tissue-of-origin. Anyway, some
limits in sensitivity and specificity due to presence of other cfDNA
sources and limited ctDNA quantities are still present.

Relatively new markers such as exosomes and platelets are a
great promise for liquid biopsy as they hold information about
relevant tumor biomolecules (nucleic acids, proteins) instrumental
to retrieve information about tumor biology andmicroenvironment.
Their combined analysis with more established markers such as
CTC and ctDNA can help in obtaining a more comprehensive
picture of tumor of origin, with clinical impact in diagnosis and
monitoring.
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Genomics

Genomic analysis

Tumor genetic profile is assessed in the clinical routine by
molecular characterization of biopsy specimens. Due to the
invasive nature of the procedure, limitations in longitudinal
monitoring and intrinsic sampling biases, LB represents a
valuable alternative tool to investigate the genomic landscape
of tumors during time (Crowley et al., 2013). The two main
sources of DNA to be evaluated in LB are ctDNA and CTCs. They
both give a snapshot of the tumor mutational profile at a defined
moment of the disease history. Specifically, CTCs and ctDNA can
inform about point mutations, CNVs and genomic
rearrangement (Tan et al., 2016). The degree of fragmentation
of ctDNA and the scarce amount of genomic material contained
in CTCs are factors influencing the method of choice for the
downstream genomic analysis, in order to avoid bias-related
amplification and to retain biological information.

Available techniques to assess the genomic profile of ctDNA and
CTCs can be divided into targeted and whole-genome, targeted
approaches analyze the mutational profile of a subset of genes that
have been linked to the pathogenesis of disease and include clinically
actionable genes of interest. Such analysis can be performed using
droplet digital PCR (ddPCR) (Hindson et al., 2013) or Next
Generation Sequencing (NGS)-based approaches based on
amplicon sequencing such as in Tagged-Amplicon Deep
Sequencing (TAm-Seq) (Forshew et al., 2012), Next Generation-
Targeted Amplicon Sequencing (NG-TAS) (Gao et al., 2019) or
hybridization-based capturing as in Cancer Personalized Profiling
by Deep Sequencing (CAPP-Seq) (Table 2). Several commercially
available panels are focused on specific gene sets and can be either
specific for a tumor type or pan-cancer, covering up to hundreds of

regions. A more comprehensive targeted analysis can be focused on
the entire set of expressed genes by Whole-Exome
Sequencing (WES).

DDPCR is particularly indicated for rare mutation detection or
to perform CNVs analysis (Li et al., 2019b). It is highly sensitive for
detecting and quantifying low levels of ctDNA (Hindson et al., 2013)
even when starting from a very limited amount of input DNA or
searching for residual disease. A derivation of ddPRC, Beads,
Emulsion, Amplification, Magnetics (BEAMing) (Diehl et al.,
2008b) exploits emulsion PCR combined with flow cytometry to
identify and quantify specific somatic mutations present in cfDNA.
Basically, target DNA regions are amplified by specific primers, then
encapsulated in droplets where each single fragment gets amplified
by primers covalently attached to a magnetic bead. These DNA-
coated beads are purified and labeled with fluorescent probes (one
for mutant, the other one for wild-type) and finally analyzed by flow
cytometry (Vessies et al., 2020).

As for the NGS-based approaches, CAPP-Seq was first time
reported to study ctDNA in NSCLC by Newman et al., proving high
sensitivity and subsequently applied to other cancer types (Newman
et al., 2014; Nikanjam et al., 2022). This approach exploits
bioinformatically designed biotinylated oligonucleotides called
“selectors” to specifically target exons of recurrent mutated driver
genes of specific tumors. The method shows the advantage of
analyzing many regions at the same time, compared to ddPCR.
CAPP-seq can not only be applied to study point mutations, but also
CNVs while presenting limitations in fusion detections (Newman
et al., 2014; Nikanjam et al., 2022).

TAm-Seq allows the amplification of specific regions of interest
through the generation of short and overlapping fragments of about
150–200 bases, then indexed singularly and deep sequenced. This
technique is particularly indicated for the detection of cancer
mutations with an allele frequency up to 2%. Due to the short

TABLE 2 Overview of techniques for point mutations and CNVs detection in liquid biopsy.

Assay Biomarker Principle Technology Mutation Advantages Limitations References

ddPCR;
BEAMing

cfDNA CTCs;
cfDNA

water-oil emulsion
droplet based

amplification; beads
emulsion amplification

Droplet-based
Digital PCR

point
mutations
CNVs

low input required
absolute quantification

limited number of
assays

Tucci et al. (2020);
Diehl et al. (2006);

García-Foncillas et al.
(2018)

TAm-Seq cfDNA short, overlapping
amplicon based
amplification

NGS-based targeted
deep sequencing

low frequency
point

mutations

low input required
highly fragmented

input

less comprehensive
compared to other
NGS-based methods

Forshew et al. (2012);
Nikanjam et al. (2022)

CAPP-Seq cfDNA biotinylated
oligonucleotides-based
target amplification

NGS-based targeted
deep sequencing

point
mutations
CNAs

low input required
multiple assays high

sensitivity

inefficient fusions
detection

Nikanjam et al. (2022);
Newman et al. (2014)

DOP-PCR CTCs degenerate
oligonucleotide-primed
based amplification

low-pass whole
genome

amplification
(LP-WGA)

CNVs very low input optimal
for pre-amplification

low uniformity of
coverage higher

amplification-related
errors

Telenius et al. (1992)

MDA CTCs multiple displacement
amplification

low-pass whole
genome

amplification
(LP-WGA)

CNVs low input required
high efficiency and
fidelity of φ29DNA

polymerase

allelic dropout,
preferential
amplification

Dean et al. (2001)

MALBAC CTCs multiple annealing and
looping based
amplification

low-pass whole
genome

amplification
(LP-WGA)

CNVs low false positive rate
low chimera rate

lower polymerase
fidelity

Zong et al. (2012)
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length of amplicons generated, the method is suitable for the analysis
of highly fragmented ctDNA (Forshew et al., 2012; Li et al., 2019b;
Nikanjam et al., 2022). The latest version of TAm-seq, Enhanced
TAm-Seq (Gale et al., 2018; Xiao et al., 2023) leverages on
multiplexed PCR and reduced the detection limit to 0.02% Allele
Frequency (AF) with high per-base specificity (99.9%) using as low
as 6.6 ng input cfDNA. Whole genome sequencing (WGS)
approaches provide a more comprehensive view of genome
aberration than targeted or WES since it includes all intronic
sequences, including non-coding variations. This increased
resolution over the genome requires a great amount of
sequencing, making WGS the most expensive of all the described
approaches. The advantage of targeted approaches is indeed the
great depth of information for a fraction of the cost, which is relevant
in clinical diagnosis setting.

For CTCs analysis, due to the low input single cell DNA
amount, whole genome amplification (WGA) is necessary to
achieve enough genomic material suitable for library
preparation and sequencing. The main WGA techniques utilized
are: Degenerate Oligonucleotide-Primed (DOP-PCR) (Telenius
et al., 1992), Multiple Displacement Amplification (MDA)
(Dean et al., 2001), Multiple Annealing and Looping Based
Amplification Cycles (MALBAC) (Zong et al., 2012) (Table 2).
Those techniques differ in the approach used for amplification and
therefore have specific advantages and limitations. The DOP-PCR
method consists of a two-step exponential amplification with
random primers; this approach suffers from low uniformity of
genome coverage and amplification. This limit is overcome in
MDA and MALBAC (Huang et al., 2015b). MDA exploits high-
fidelity polymerase Φ29 to perform displacement amplification
with hexamer random primers (Spits et al., 2006) and performs
better in terms of false positive rate and chimera rate compared to
MALBAC and DOP-PCR, thus being the preferable method for
structural variation detection (Huang et al., 2015b). On the
contrary, MALBAC uses quasi-random primers to perform
quasi-linear amplification, thus avoiding amplification related
bias, reducing allele dropout and increasing coverage uniformity
(Huang et al., 2015b; Zhou et al., 2020). For this reason, MALBAC
is the better method to perform CNV analysis (Huang et al.,
2015b). After WGA, libraries are often sequenced at low
coverage (low pass; e.g., from 0,1X coverage) to profile CNVs at
a fraction of the price for high coverage. To perform mutational
analysis and complex structural variant analysis a higher coverage
is needed.

Depending on the type of genomic alteration to be analyzed, e.g.,
CNVs, Insertion–deletion (indel) or single nucleotide variants
(SNV), different metrics are required. For example, CNVs
analysis requires high coverage uniformity, while for indels and
SNV detection, low rate of amplification errors and allele dropout
are particularly critical (Lu et al., 2020).

Clinical applications

Until now, most clinically validated LB tests are based on the
assessment of actionable genomic alterations with the aim of
supporting decisions about targeted cancer therapy and
monitoring treatment response (Ou et al., 2018). However, with

the advancement of sequencing platforms that enable more sensitive
detection of different classes of mutations, genomic approaches on
circulating biomarkers are expanding the range of potential
applications in cancer management.

Currently, the most promising application of LB is cancer
screening and early detection. Compared to metastatic setting,
cancer in early stage releases a low amount of circulating tumor
material and thus their detection requires highly sensitive and
specific techniques. Moreover, recent reports of somatic
mutations accumulating both in solid tissues and in the
hematopoietic system as a function of age are reported
(Genovese et al., 2014; Alexandrov et al., 2015). In this regard,
the company GRAIL, Inc., (https://grail.com) is developing a
ctDNA-based multi-cancer screening test using advanced NGS
approaches and Machine Learning (ML) (Aravanis et al., 2017).
Its first multi-center clinical study, the Circulating Cell-free Genome
Atlas (CCGA) will analyze samples from 10,000 participants
between cancer and in healthy donors with the aim of identifying
a specific genomic signature that distinguishes healthy from sick at
an earlier stage of disease. From earliest data, SNV and somatic copy
number alteration (SCNA) showed statistically worse sensitivity
than WG methylation (Jamshidi et al., 2022). On the contrary, in
another study, Manier et al. performed Low-passWGS (LP-WGS) to
study SCNAs in CTCs and ctDNA to uncover the genomic profile of
multiple myeloma patients in early stages of disease. Combining the
analysis of both analytes, they obtained a higher fraction of patients
providing different yet complementary information regarding clonal
heterogeneity (Manier et al., 2018).

Different studies exploit genomic approaches for the prognostic
validation of circulating biomarkers. A large meta-study suggests
that the presence of ctDNA KRAS mutations was associated with
shorter OS in NSCLC (Zhang et al., 2019\). In another study, a high
number of CTCs (≥20 CTC/10 mL of blood) with mesenchymal
phenotype, identified with V600E mutation in BRAF, were
correlated with a poor prognosis of the melanoma patients
(Tucci et al., 2020). To date, the real strength of LB-based patient
management is the ability to track tumor evolution for predicting
and monitoring treatment response and resistance mechanisms.
Recently, it has been demonstrated that the evaluation of the
genomic profile of advanced BC in cfDNA can identify subclonal
resistance mutations not appreciable on by single site metastatic
tumor biopsies. The cfDNA analyzed with a clinical panel of
74 tumor-associated genes revealed diverse subclonal resistance
mutations in specific breast subtype such as HER2 mutations in
HER2 + disease, PIK3CA mutations in HR + disease or mutual
exclusivity of ESR1mutations andMAPK pathway alterations in HR
+ HER2 − BC subtype (Turner et al., 2020; Kingston et al., 2021).
With the advent of immunotherapy, many studies have attempted to
establish a reliable predictor of response to immune checkpoint
blockade. In addition to PD-L1, Tumor mutational burden (TMB)
of tumor tissue has been shown to correlate with response to
immune checkpoint therapy (Goodman et al., 2017; Klempner
et al., 2020; Li et al., 2021). However, some patients lack a high-
quality tissue biopsy suitable for biomarker analyses.

To address these challenges, Foundation Medicine has
developed a new test based on circulating TMB which has
already demonstrated clinical validity. Data published in Nature
Medicine demonstrated that the blood-TMB (bTMB) test could

Frontiers in Genetics frontiersin.org07

Di Sario et al. 10.3389/fgene.2023.1152470

https://grail.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1152470


predict response to atezolizumab in patients with previously treated
NSCLC. Furthermore, the results show that bTMB may be an
independent predictor of response compared to PD-L1
expression, as assessed by immunohistochemistry in patients who
also had a tissue biopsy available (Gandara et al., 2018). In other
work, Georgiadis et al. developed an approach for detection of
Microsatellite Instability (MSI) and TMB in the cfDNA of late
stage-cancer patients treated with PD-1 blockade. Patients with
MSI and TMB-Hight tumors had improved PFS and OS
(Georgiadis et al., 2019).

The use of genomic approach on ctDNA to identify resistance
alterations to treatment still represents the only validated
application in clinical practice. The ctDNA analysis of T790M-
mutant NSCLC patients, resistant to first line EGFR Tyrosine Kinase
Inhibitor (TKI) therapy, revealed different patterns of genetic
alterations in patients with innate versus acquired resistance to
Osimertinib (Kato et al., 2021). BRCA reversion mutations detected
in cfDNA of platinum-resistant high-grade ovarian carcinoma (OC)
patients were associated with decreased clinical benefit from enzyme
poly ADP ribose polymerase (PARP) inhibitor rucaparib. Besides,
ctDNA analysis identified multiple BRCA reversion mutations,
indicating the ability to capture multiclonal heterogeneity of this
tumor (Georgiadis et al., 2019). Several key studies have further
highlighted the transformative impact of LB for Minimal Residual
Disease (MRD) detection, illustrating the future clinical potential
and real-world impact (Tie et al., 2016; Schøler et al., 2017; Coombes
et al., 2019). A recent paper by Parikh et al. evaluated the feasibility
of MRD detection with a plasma ctDNA assay in CC patients with
stage I–IV undergoing curative-intent surgery (Parikh et al., 2021).
Of 70 patients with eligible plasma for testing, 17 of 70 patients
(24%) were ctDNA positive after completion of therapy and 15 of
these patients recurred while standard serum carcinoembryonic
antigen levels were not predictive of any recurrence.

Transcriptomics

Transcriptomic analysis

Transcriptome analysis (both coding and non-coding RNAs) in
LB represent a valuable source of biomarker for precocious
identification, stratification and prediction of tumor outcomes
(Cuzick et al., 2011). In particular, miRNA, other than their
biological role as post-transcriptional regulators, have been found
to be dysregulated in several cancer types (Lu et al., 2005; Fernandez-
Mercado et al., 2015). miRNAs are protectively released by tumor
mass in association with RNA-binding proteins or included in
microvesicles and are involved in oncogenesis and tumor
progression through their ability to regulate expression of specific
genes (Pinzani et al., 2021). Their increased stability and resistance
to degradation, compared to mRNA, allow easier analysis of miRNA
in body fluids (Mitchell et al., 2008). The analysis of mRNA from
plasma is particularly challenging due to its limited stability and
quantity. Extracellular mRNA is indeed highly fragmented by
ribonucleases. This is reflected in few transcriptome-wide studies
(Li et al., 2022) and more targeted approaches intended to capture
selected miRNA or mRNAs (Qu et al., 2017). Reverse transcription
associated with PCR (e.g.,.ddPCR or qPCR) is actually the method of

choice to interrogate circulating tumor RNAs (Pinzani et al., 2021;
ruyenaere et al., 2021). For instance, the application is suitable for
the analysis of specific cancer mutated genes such as PD-L1 whose
expression is evaluated in many tumor types (Ishiba et al., 2018;
Pinzani et al., 2021).

A more comprehensive view of circulating and CTC RNAs is
provided by NGS-based approaches.

Indeed, it is possible to profile mRNAs using methods that
enrich poly(A) RNAs, or selectively reverse transcribe them. In case
of non-coding RNAs, sequencing libraries can be obtained from
total RNA as well as after enrichment for short transcripts.

To profile the reduced quantity of RNA present in CTCs, several
single cell analysis methods have been developed, e.g., Smart-Seq
(Picelli et al., 2013), CEL-seq (Hashimshony et al., 2012) and STRT-
Seq (Islam et al., 2011) (Table 3). The Smart-seq technology is
considered the gold standard for single cell RNA-seq thanks to its
higher sensitivity, accuracy and lower costs. In comparison with
CEL-seq technology, Smart-seq shows higher sensitivity for the
detection of higher number of genes per cell and lower dropout
rate (Ziegenhain et al., 2017).

Clinical applications

Over time, it became clear that direct analysis of circulating
RNAs could help better understand the evolutionary dynamics of
cancer, by providing useful insights for developing personalized
approaches for tumor diagnosis and therapy (Supplitt et al., 2021).
Several studies demonstrate that miRNAs alone or in combination
with other biomarkers improve the diagnostic and prognostic power
of different tumors (Chan et al., 2013; Hou et al., 2016; Roman-
Canal et al., 2019; Zhang et al., 2022). An interesting study
performed cell-free RNA and exosome-RNA analysis on 44 early-
stage PDAC patients, identifying 13 upregulated miRNA in PDAC
patients compared to healthy controls. A combinatorial analysis of
cell-free and exosomal miRNA identifies a particular signature able
to detect patients at an early stage of the disease, thus evidencing the
diagnostic power of the test (Nakamura et al., 2022).

Furthermore, Sabato and colleagues recently identified specific
upregulated and downregulated circulating plasma EV linked to
microRNA expression in metastatic melanoma patients compared
to healthy donors. They bioinformatically identified 4 pEV-
microRNAs able to distinguish metastatic patients from healthy
controls with a high diagnostic potential (Sabato et al., 2022). In
addition to early diagnosis and prognosis, miRNAs have also been
tested for predictive ability to patients’ therapeutic response and
cancer resistance in a broad category of tumor types (Hon et al.,
2018; Niwa et al., 2019; Tian et al., 2019). In a study of 43 BC
patients, the authors identified a clear association of four pEV
miRNA with a pathological response to neoadjuvant therapy
while no correlation between the miRNA transcriptional profile
performed on plasma compared to tissue biopsy one (Baldasici et al.,
2022). In a recent study, exosomal miRNAs were shown to
participate in osimertinib resistance through abnormal activation
of the RAS-MAPK and PI3K pathways. Particularly the expression
of miR-184 and miR-3913-5p in the peripheral blood of NSCLC
patients could be used as biomarkers to indicate osimertinib
resistance (Giallombardo et al., 2016). RNA-seq of single prostate
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CTCs from patients resistant to Androgen Receptor (AR) inhibitor
showed activation of noncanonical Wnt signaling and low
glucocorticoid receptor expression compared with untreated cases
(Miyamoto et al., 2015). Furthermore, the transcriptomic profile of
CTCs was analyzed to identify a specific subpopulation involved in
the metastatic spread and organotropism of different cancer types
(Giuliano et al., 2014; Castro-Giner and Aceto, 2020; Schuster et al.,
2021; Yu et al., 2021).

It has been shown that CTC-derived cell cultures and xenograft
models could more accurately define cell clones with an initial
metastatic long-term potential (Vishnoi et al., 2019; Brungs et al.,
2020; Felici et al., 2022). Analyzing CTCs isolated from breast
patients, Boral et al. identified a specific signature associated with
brain metastases (Boral et al., 2017). An interesting work studied the
spatiotemporal transcriptional dynamics of CTCs during
hematogenous dissemination in patients affected by
hepatocellular carcinoma. The authors identified specific CTC
phenotypes in different vascular compartments involved in liver
tumor dissemination. They observed an overexpression of
chemokine CCL5 involved in CTC immune escape and
metastatic seeding mediated by recruitment of regulatory T cells
(Tregs). These findings open the way to directly block CTC
dissemination through the inhibition of CCL5, with the
possibility to extend the target to other driver genes involved in
immune evasion (Sun et al., 2021).

Elsewhere, CTCs isolated from metastatic gastric cancer (GC)
patients presented upregulation of genes involved in platelet
adhesion. The transcriptomic profile of CTCs demonstrated the
important contribution of platelets in EMT progression and
acquisition of chemoresistance (Negishi et al., 2022). Taken
together, these results represent an important step in developing
effective strategies against CTCs to prevent cancer dissemination
and immune evasion.

Epigenomics

Epigenomic analysis

Epigenetic alterations include DNA methylation, histone
modification and chromatin accessibility to transcription factors.

By determining gene expression patterns, those modifications shape
cellular phenotype. Alterations resulting in an overly permissive or
overly restrictive epigenetic regulation can lead to the generation of
malignant subclones responsible for tumor progression and
therapeutic resistance (Ponnusamy et al., 2019; Fujimura et al.,
2020; Chen and Yan, 2021). For this reason, epigenetic
alterations have been proposed as potential diagnostic, prognostic
and predictive biomarkers in cancer management (Heyn and
Esteller, 2012). Detection of epigenetic modifications of cfDNA
and CTC using LB can reveal the epigenetic aberration of cancer.

DNA methylation is the most studied epigenetic modification.
Silencing of tumor suppressor genes by extensive promoter
hypermethylation has been observed in several cancers (Greger
et al., 1989; Herman and Baylin, 2003; Chen et al., 2014). DNA
methylation analysis can be performed using three experimental
approaches: bisulfite conversion, digestion with methylation-
sensitive restriction enzymes and affinity enrichment (Table 4)
(Galardi et al., 2020).

The bisulfite conversion is the gold standard in 5-metil-cytosine
(5 mC) detection and it’s based on chemical modification of
unmethylated cytosines. Comparison of bisulfite-converted and
reference unconverted sequences allows the identification of
methylated cytosine with a single base resolution. Bisulfite
conversion can be exploited for targeted analysis, when followed
by Methylation-Specific PCR (MSP) or genome-wide
characterization by means of Whole-Genome Bisulfite
Sequencing (WGBS-seq), Reduced-Representation Bisulfite
Sequencing (RRBS-seq) (Meissner et al., 2005; Gu et al., 2011)
methylation arrays and Methylated CpG Tandems Amplification
and Sequencing (MCTA-seq). Although WGBS offers a
comprehensive profiling of GpC methylation status at a single
base resolution, it is not applicable to large cohort analysis due
to high costs of whole genome sequencing. RRBS instead profiles
approx. 4 million of cytosines in CpG dense regions for a fraction of
WGBS cost (Gu et al., 2011). Human methylation arrays such as
Infinium MethylationEPIC BeadChip Kit (Illumina) instead probes
850,000 functionally relevant methylation sites at single-nucleotide
resolution but requires a quite high input material (200–300 ng),
thus reducing applicability to liquid biopsy studies. To overcome
this limitation, pooling approaches to methylation array strategy
(Gallego-Fabrega et al., 2015) have been applied to profile cfDNA of

TABLE 3 Overview of techniques to study gene expression changes in liquid biopsy.

Assay Biomarker Principle Advantages Limitations References

Smart-Seq CTCs polyA enrichment, no UMI, full
length by template switch

high sensitivity low allele dropout applicable to
polyadenylated RNA

Picelli et al. (2013)

CEL-seq,
CEL-seq2

CTCs polyA enrichment, UMI, 3′ counting low input, sample pooling and barcoding
to process single cell in a time

3′ related bias, preferentially
amplified transcripts

Hashimshony et al.
(2012)

Hashimshony et al.
(2016)

STRT-Seq CTCs polyA enrichment,UMI, 5′ tag
counting

sample pooling and barcoding to process
single cell in a time

amplification related errors Islam et al. (2011)

small
RNA-seq

CTC, cfRNA two adaptor-ligation; polyadenylation
and template switching

none high background Roman-Canal et al.
(2019)
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CC patients (Gallardo-Gómez et al., 2018). To apply bisulfite
analysis on CTCs, single cell-RRBS (Guo et al., 2015), PCR-based
and target bisulfite sequencing methods can be exploited.

As a general limitation associated with use of bisulfite is the
damaging effect of chemical treatment on DNA, which is associated
with material loss and requirement of moderately high starting

TABLE 4 Overview of techniques to study epigenetic alterations in liquid biopsy.

Assay Biomarker Principle Technology Alteration Limitations Advantage References

WGBS,
LCM–µWGBS

ctDNA, CTC Bisulfite conversion and
sequencing Laser capture

microdissection and
BS-seq

Whole genome, single
base resolution

DNA methylation
(CpG sites)

Sequencing cost,
high input

required. Does
not discriminate
hmeC form meC

Work with limited
input quantities

Hai et al. (2022)

Gkountela et al.
(2019)

Zhao et al. (2021)

RRBS, cfRRBS ctDNA Bisulfite conversion,
enzymatic digestion to
enrich CCGG sites

CpG rich regions,
single base resolution

DNA methylation Only probes high
density CpG

regions. Does not
discriminate

hmeC form meC

Reduced cost Meissner et al.
(2005)

Van Paemel et al.
(2021)

Methylation
array

ctDNA Bisulfite conversion and
hybridization on array

Bisulfite conversion,
single base resolution

DNA methylation High input
required. Does
not discriminate
hmeC form meC

Targeted on
functionally
relevant sites;

simplified readout

Gallardo-Gómez
et al. (2018)

Gordevičius et al.
(2018)

methylation-
specific

PCR (MSP)

ctDNA Bisulfite conversion,
targeted amplification
followed by qPCR/real-
time PCR quantification

or NGS

Targeted, single base
resolution

DNA methylation Probe design,
input quantity.

Does not
discriminate

hmeC form meC

Easiest approach
for a limited target

number

Vrba et al. (2020)

Begum et al.
(2011)

Hulbert et al.
(2017)

meDIP-seq;
cfMeDIP-seq

ctDNA Enrichment by antibody Affinity-based
enrichment, low

resolution

DNA methylation Input material,
recovery of low
density CpG

regions

More conservative
than bisulfite
conversion,
cheaper than

WGBS.
Discriminate meC

from hmeC

Zavridou et al.
(2020)

Xu et al. (2019)

MBD-seq;
cfMBD-seq

ctDNA Enrichment by methyl
binding protein

Affinity-based
enrichment, low

resolution

DNA methylation Input material,
recovery of low
density CpG

regions

More conservative
than bisulfite
conversion,
cheaper than

WGBS.
Discriminate meC

from hmeC

Huang et al.
(2021)

Huang et al.
(2022b)

hMe-Seal ctDNA Enzymatic conversion,
whole genome, works with

low input

Hydroxycytosine
analysis

DNA methylation Does not
probe meC

Low input required Song et al. (2011)

Song et al. (2017)

Chen et al. (2021)

Chiu et al. (2019)

EM-seq ctDNA TET2 and APOBEC3A to
convert unmethylated

cytosines

Enzymatic
conversion, whole

genome

DNA methylation Sequencing cost Comprehensive
coverage of hmeC

and meC

Vaisvila et al.
(2021)

Guo et al. (2023)

cfChIP-seq ctDNA Immunoprecipitation of
cell-free nucleosomes

carrying active chromatin
modifications followed by

sequencing. Can be
combined with qPCR

(targeted)

Chromatin
immunoprecipitation

Chromatin:
accessible/active

promoters
(H3K4me3 or
H3K4me2),
enhancers

(H3K4me2 or
H3K4me1) and
gene body of

actively
transcribed genes
(H3K36me3)

Probe histones
modifications on
limited input

Sadeh et al.
(2021)

Månsson et al.
(2021)
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material (Grunau et al., 2001), bisulfite-free methods for epigenomic
profiling have been recently developed. For example, Methylation
Restriction Enzymes method (MREs) uses methylation sensitive
restriction enzymes that recognize and cut only unmethylated DNA.
Quantitative analysis of methylation status after digestion can be
performed using various technologies based on real-time PCR
(Hashimoto et al., 2007; Pulverer et al., 2021), sequencing (Oda
et al., 2009) and microarray (Hatt et al., 2015).

Other bisulfite-free assays are based on affinity enrichment
either using anti-methylcytosine antibodies (meDIP-seq) (Taiwo
et al., 2012) and low input, cfDNA compatible cfMeDIP-seq (Shen
et al., 2019) or Methyl-Binding Domain (MBD) of methyl-CpG
binding proteins to capture the methylated genomic regions (Serre
et al., 2010) optimized for cfDNA (Huang et al., 2022b).

In addition to 5mC, 5-hydroxymethylcytosine (5hmC) has
recently proven to be a regulatory modification associated with
transcriptional activation (Song et al., 2011) and several studies
identified 5hmC as putative marker in cancer (Vasanthakumar and
Godley, 2015) detectable in ctDNA samples (Song et al., 2017).
Standard bisulfite methods cannot discriminate between cytosine
modifications, and enrichment methods often require high input
material. A recently developed technology called Enzymatic Methyl-
seq (EM-seq) allows the identification of both 5mC and 5hmC
starting from picograms of material exploiting two sequential
enzymatic reactions (Vaisvila et al., 2021). Another innovative
method for studying genome-wide 5hmC is 5hmC-Seal (Song
et al., 2011) which uses a selective chemical labeling on low levels
of DNA with high sensitivity.

Finally, a recently developed technological approach for
detecting cancer-specific methylation and cancer-associated
fragmentation signatures, without disrupting bisulfite
conversion, is native Nanopore sequencing (Katsman et al.,
2022; Lau et al., 2022). In this assay, PCR-free libraries are
read at a single molecule level by passing through nanopores
generating an alteration of electric signal which is recorded by the
sequencer. This alteration is specific to the DNA modification
and is different between methylated and unmethylated CpGs. By
abolishing PCR, the biases in molecule quantification are strongly
reduced. With this approach it is possible to cover many
informative cfDNA CpG sites, even with a shallow coverage,
still obtaining significant discrimination on aberrant methylation
state (Lau et al., 2022) and retain cell-of-origin information
(Katsman et al., 2022).

Aside from DNA methylation, chromatin accessibility and
histone modifications are becoming increasingly studied in
parallel with the development of new technologies for their
detection in the context of liquid biopsy. Open chromatin
regions undergo higher fragmentation than compacted portions
which are protected by nucleosomes. Those accessible regions are
associated with transcription and have been associated with a typical
fragmentation pattern related to the tissue-of-origin (Snyder et al.,
2016; Moss et al., 2018).

As reference chromatin accessibility profiles for many cancer
types are now available (Corces et al., 2018), computational
identification of key disease features to be targeted in liquid
biopsies is possible, allowing computational imputation of cfDNA
tissue derivation (Cristiano et al., 2019; Sun et al., 2019). That
information can be integrated in panel design to prioritize

coverage of marker regions with highest detection probability
(Taklifi et al., 2022).

It has been observed that cancer-derived cfDNAbe more
variable in length than cfDNA from non-cancer cells, due to the
altered chromatin accessibility and associated nucleosome
positioning. This feature of cfDNA has been exploited in the
combined detection of fragmentation patterns and genetic
markers resulting in improved sensitivity in cfDNA analysis
(Peneder et al., 2021). This approach can additionally benefit
from enrichment in short (50–150 bp) plasma derived fragments
in combination with LP-WGS (Mouliere et al., 2018).

Cell-free chromatin in plasma can be further analyzed to detect
nucleosomes and associated Post-Translational Modifications
(PTM). Immunoprecipitation of cell-free fragments followed by
low-depth NGS sequencing (cfChIP-seq) has been shown to
inform about cell type and program-specific expression patterns
(Table 4) (Sadeh et al., 2021). In CC patients, plasma detected levels
of H3K9me3 and LINE, detected by immunoprecipitation followed
by sequencing, were found to be significatively associated with
disease (Gezer et al., 2013). Finally, a database of nucleosome
positioning in vivo and of cell-free DNA nucleosomes
(NucPosDB) has been recently released (Shtumpf et al., 2022). It
has been built from published in vivo nucleosome positioning
datasets together with datasets of sequenced cfDNA. This type of
data represents an invaluable resource for model training especially
for association of cfDNA nucleosomes to the tissue and cell of origin,
and to set comparison between different conditions.

Clinical application

Alteration of epigenetic markers in liquid biopsy has shown to
be clinically meaningful although it is still affected by limited
availability of standardized tests (Palanca-Ballester et al., 2021).

Most promising diagnostic applications are based on cfDNA
methylation analysis, especially with custom panels, which better
balance sensitivity and test cost. The PanSeer assay was developed
for interrogation of cancer-specific DNA methylation signatures
from peripheral blood (Chen et al., 2020). This assay targets more
than 10,000 CpG sites across the genome, panel is tissue-of-origin
(TOO) independent and was able to detect cancer-related aberration
up to 5 years before in asymptomatic patients. Similarly, a
100,000 regions classifier based on methylation status was
developed by the TCGA consortium to provide for cancer
detection and TOO identification (Liu et al., 2020) in >50 cancer
types. This assay has been validated on a case-control cohort and
showed a >99% specificity which increases with cancer stage, and a
TOO detection accurate in 90% of cases. Furthermore, recent studies
have shown that the cfDNA hydroxymethylation pattern is
associated with cancer type and can change in a stage-dependent
manner (Song et al., 2017).

Beside those pan-cancer panels, several tumor-specific
methylation patterns have been identified such as in BC in which
the analysis of cfDNA methylation signature improves early
detection of BC compared to mammography (Zhang et al., 2021).
Whereas in glioma, the mere identification of the methylation status
of the MGMT promoter in CSF rather than plasma provides a
promising clinical tool for early diagnosis (Wang et al., 2015). Such
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targeted approach benefit from improved sensitivity when
integrated with other cfDNA parameters such as fragment size
analysis (Shin et al., 2022) and/or cfDNA plasma concentration
to differentially methylated regions analysis (Panagopoulou et al.,
2019; Bagley et al., 2021). A very recent study proposed a
hydroxymethylation classifier for early stages CC in cfDNA
plasma which can be expanded to DNA fragment size and
abundance to increase sensitivity (Walker et al., 2022).
Integration of haplotype blocks methylation analysis represents
an add-on to single CpG loci analysis. Those are genomic
segments of strictly related CpG sites whose methylation status is
informative of tumor load and tissue-of-origin mapping (Guo et al.,
2017). A haplotype load metric has been correlated with tumor load
and tissue-of-origin mapping in cfDNA of lung or CC patients (Guo
et al., 2017) thus representing a promising analysis tool for
deconvolution and disease identification.

Epigenetic markers monitoring has also proven useful for
outcome prediction and longitudinal monitoring of minimal
residual disease in different cancer types. Interrogation of a panel
of ctDNA methylation markers in post-surgery colon cancer
patients has been shown to be predictive of recurrence with good
accuracy (Jin et al., 2021). Similarly, methylation levels of specific
marker USP44 has been associated with disease-free survival in
prostate adenocarcinoma patients (Londra et al., 2021).
Interestingly, WGBS approach has been used to assess the
methylation profile of single CTCs and CTC clusters in BC
patients, revealing specific hypomethylation of proliferation and
stemness regulators binding sites only in CTC clusters. Moreover,
PFS analysis showed that those regions hypomethylated in CTC
clusters are associated with poor prognosis (Gkountela et al., 2019).

Methylation markers are not only significant for prognosis, but
also for predicting therapeutic response. Indeed, in patients with
NSCLC, increased RARB2 methylation in cfDNA after
chemotherapy and tumor resection was associated with disease
recurrence at 9 months (Ponomaryova et al., 2013) as well as
decreased levels of plasma SHOX2 methylation was associated
with response to platinum-based chemo/radiotherapy (Schmidt
et al., 2015). In metastatic CRPC, methylation changes in specific
genes were predictive of response to AR treatment (Peter et al., 2020;
Peter et al., 2022). In early stage NSCLC patients, Markou et al.
recently showed correlation between relapse incidence and
promoter methylation status of at least one of a five selected
genes panel (APC, RASSFIA1, FOXA1, SLFN11, SHOX2) in CTC
or plasma-cfDNA (Markou et al., 2022). In the analyzed cohort there
was no correlation between CTCs and primary tumor methylation
profile.

Paired analysis of another nine-gene promoter methylation
panel in ctDNA and CTC of a different NSCLC cohort, analyzed
before osimertinib treatment and during progression, revealed
inconsistency between CTC and ctDNA profiles. However, in
both cases Progression Disease (PD) was associated with
increased methylation levels with respect to baseline samples.
Kaplan-Meier analysis revealed correlation between earlier PD
and methylation status of at least one panel gene (Ntzifa et al.,
2021). As those data were obtained on small CTC bulks by real-time
methylation specific PCR assays, this can suggest the relevance of
performing additional single cell analysis to deconvolve potential
heterogeneity.

Proteomics

Proteomic analysis

Proteomic analysis of LB represents a minimally invasive
and repeatable way to accomplish a broad range of milestones
such as: identification of targets to direct new treatments,
development and validation of biomarkers to allow early
detection of diseases, design of proteomic signatures as
predictive models for cancer diagnosis and prognosis (Kim
et al., 2016). Using the appropriate technique to investigate
proteomic signatures is becoming as important as studying
more than one specimen from the same patient, to achieve a
deeper level of molecular complexity.

A traditional method to validate protein biomarkers is using
enzyme linked immunosorbent assays (ELISA), but this approach is
time consuming, expensive and depends on the availability of
existent antibodies pairs for every target protein. A method
which does not rely on existing validated antibodies is MS (Kim
et al., 2016). To analyze complex protein mixtures ensuring high
sensitivity, MS is often coupled with gas or liquid chromatography,
capillary electrophoresis, or Ultra-Performance Liquid
Chromatography (UPLC). Based on the identification of the ratio
of mass to charge (m/z) of a molecule and/or its fragments, the initial
chromatographic step increases the isobaric species’ resolution,
gaining a better detection of less abundant proteins. However,
the use of chromatography increases the processing times and
therefore limits the number of samples to be tested daily
(Ardrey, 2003). When applicable, biofluids could be injected
directly in the mass spectrometer: this method, called flow-
injection MS, even if characterized by reduced sensitivity, could
be advantageous for initial screenings aimed at having a general
picture of the total protein amount of the sample (Sarvin et al.,
2020).

A complementary analysis of both plasma and urine from the
same patient allows a thorough examination since urine is a filtrate
product of blood (Chinello et al., 2019). As a recent work
demonstrates, label-free liquid chromatography−tandem mass
spectrometry (LC−MS/MS) approach, through which liquid
chromatography was coupled to tandem MS to fragment selected
peptides, was used to compare soluble protein signatures of urine
and plasma from patients affected by renal cell carcinoma. Some
differentially expressed proteins were shared between the two
biofluids such as immunoglobulin, complement factors, activators
of the complement cascade, modulators of the acute response, innate
immune system, and platelet degranulation. However, urine and
blood carried specific biofluid functional signatures (Chinello et al.,
2019).

Although extremely informative, MS results are often validated
using more conventional techniques such as ELISA and Western
Blotting (WB), which can be still useful to identify a few target
proteins in low abundance, but without giving information about
the protein expression levels (Lequin, 2005; Kurien and Scofield,
2015). Nevertheless, even these techniques are evolving into more
precise and accurate methods to quantify circulating proteins and
interrogate proteomic signatures at a single-cell level: multiplex
ELISA and single-cell (sc)-WB (scWB) can serve as a model
(Velez et al., 2021).
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Differently to standard ELISA, multiplex ELISA can detect and
process up to 1,000 human proteins, allowing us to develop a
multiplex bioassay and add more candidate proteins into a panel
of interest (Song et al., 2019). However the performance of an
antibody-based approach might be affected by several variables such
as abundance of the protein of interest, affinity and specificity of the
capture antibody (Fu et al., 2010).

For phenotyping characterization of CTCs, scWB can be used.
Among the novel single-cell immunoassays, scWB can potentially
allow multiplex detection of surface, intracellular and intranuclear
proteins simultaneously. Into ad hoc microwells all steps of WB are
performed, minimizing cell loss and maximizing protein
concentration (Sinkala et al., 2017). The initial electrophoretic
separation reduces the antibody cross-reactivity and increases
assay specificity, while antigen immobilization on the detection
membrane is associated with molecular size standards. Despite
the enormous potential of this method, initial steps of CTCs
isolation, enrichment and transfer into micro wells can be
challenging and opportune instruments are required (Abdulla
et al., 2022).

It has been a few years already that single-cell proteome analysis
is performed using mass cytometry (MC), which comes from the
fusion of two technologies, FC and MS. MC allows in-depth analysis
of homogenous cell populations, providing measurement of over
40 parameters at single cell resolution (Spitzer and Nolan, 2016)
from a limited sample volume. Both surface and intracellular
proteins can be targeted using FC features and antibodies against
selected targets. Then, after cell nebulization and ion cloud filtration
using a quadrupole, droplets can enter into the mass cytometer and
enriched heavy metal reporter ions are finally quantified by time-of-
flight. On this basis, a single-cell measurement can be achieved, even
for rare populations, enabling the analysis of heterogeneous complex
cellular systems (Frei et al., 2016). However, despite the enormous
potential of this technique, this kind of analysis does not allow live
cell recovery, and measurement of low expressed molecular features
may fail due to the paucity of available sensitive fluorophores and
the background noise.

Noteworthy, a technology that could be used for rapidly
investigating surface protein expression in CTCs is the
DEPArray system (Menarini Silicon Biosystems, S.p.A., Italy).
Already known for its ability to isolate single, viable rare cells
using dielectrophoretic principles combined with an image-based
selection, DEPArray technology has gradually gained clinical
relevance during the lastade (Bulfoni et al., 2016; Boral et al.,
2017).

Clinical application

It has been decades that the diagnostic, prognostic and
treatment monitoring value of serum and urine tumor
markers have been proved. Serum PSA levels for diagnosing
prostate cancer in men, cancer antigen 15-3 (CA15-3) for
breast cancer and cancer antigen 19-9 (CA19-9) for pancreatic
cancer are just a few examples of how medicine has applied
soluble protein dosage to diagnose cancer to date (De Angelis
et al., 2007; Sturgeon et al., 2009). However, due to their reduced
sensitivity and lack of cancer specificity, tissue biopsy is regularly

performed to confirm the definitive diagnosis, avoiding incorrect
interpretations associated with benign conditions.

Plasma and urine have been the most characterized biological
source of data by far, however some biomarkers are massively
diluted and alternative more concentrated clinical samples have
been investigated recently. Among the broad set of biological fluids
considered valuable sources for biomarker discovery, nipple aspirate
fluid (NAF) is gaining an emerging role for BC screening in young
women at high risk. Indeed, not only mammography has low
specificity in differentiating between benign and malignant
growth, but also in this scenario this test lacks accuracy due to
young breast density. Sadr-ul Shaheed and collaborators (Shaheed
et al., 2017) investigated the protein-rich composition of NAF using
MS techniques identifying 332 new biomarkers unique to NAF.
Using 2D-LC/MS, NAF proteome from BC patients and healthy
volunteers was analyzed to prove the potential diagnostic value of
the above cited procedure. NAF proteome already has the potential
to give us plenty of data about breast health, especially for its highly
rich composition of biological materials (Chan et al., 2016; Do Canto
et al., 2016; Shidfar et al., 2016).

Similarly, Gabriel Vales et al. have recently validated 20 proteins
using quantitative multiplex ELISA array starting from vitreous
samples while looking for uveal melanoma biomarkers associated
with metastatic risk (Velez et al., 2021). In this study, for the first
time in vitreous, this technique was used to investigate such a large
set of proteins, also confirming previous gene expression analysis.
Sampling and analyzing circulating tumor markers in these fluids in
a minimally invasive way is essential when tumors are critically
located.

If soluble proteins’ dosage is effortless because they are easily
accessible, we cannot state the same for surface, intracellular and
particles’ proteins. Over the past decade, EV and particles EV (EVP),
which include small exosomes, large exosomes and exomeres
(Zhang and Lyden, 2019) have gained increasing importance in
cancer detection from LB and beyond, since they reflect the systemic
effects of cancer. Recently, the prognostic and functional importance
of tumor-derived exosome’s proteins has been proved in tumor
progression, immune regulation and therapy guidance (Costa-Silva
et al., 2015; Hoshino et al., 2015; Chen et al., 2017; Rodrigues et al.,
2019).

A recent multicentric study has elegantly investigated the
proteomic profile of EVPs in 426 human samples from tissues,
plasma and other bodily fluids, related to adult (pancreatic, lung,
breast, and colorectal carcinomas and melanoma) and pediatric
cancers (neuroblastoma and osteosarcoma) (Hoshino et al., 2020).
Using MS combined with ML approach, they identified pan-EVP
markers, demonstrating that tumor-associated EVP proteins are
reliable biomarkers for early-stage cancer detection and
determination of uncertain primary tumor types, reaching 95%
sensitivity and 90% specificity.

As for many exploratory studies, Hoshino’s research group
interrogated publicly available protein databases to find proteome
quantitative data and thenmake a list of tumor specific EVP proteins
of interest (Omenn et al., 2005; De Angelis et al., 2007; Mathivanan
and Simpson, 2009; Kalra et al., 2012; Hoshino et al., 2015; Chan
et al., 2016; Do Canto et al., 2016; Shidfar et al., 2016; Chen et al.,
2017; Shaheed et al., 2017; Rodrigues et al., 2019; Zhang and Lyden,
2019; Hoshino et al., 2020). After having selected conventional and
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newly identified markers, they employed a targeted MS-approach,
using a designed time-scheduled parallel reaction monitoring
(PRM) method, to quantify tissue-specific tumor-derived EVP
proteins in patients. PRM is particularly suitable for quantifying
tens to hundreds of targeted proteins in complex matrices with
attomole-level limit of detection. Tumor-associated EVP protein
profiles could serve as a LB tool to detect cancer and discriminate
among heterogeneous cancer types, as also confirmed by EVP
profiles of tissue biopsies (i.e., lymph nodes).

Similarly, Yunee Kim and his collaborators used targeted
proteomics combined with computational biology to define
proteomic signatures for prostate cancer from urines collected by
men with extra prostatic and organ-confined prostate cancer, in a
74-patient cohort. Since protein signatures, rather than individual
soluble proteins, allow us to accurately discriminate patient groups,
they tried to distinguish pT2 stage from pT3 stage tumors, before
radical prostatectomy, for potentially modifying and personalizing
patient treatment (Kim et al., 2016). Selected Reaction Monitoring
Mass Spectrometry (SRM-MS) allows targeted quantification of a
large number of proteins in a selective and sensitive way (Kim et al.,
2016). A ready-to-use prognostic signature could help in the clinical
decisions-making process leading to appropriate treatments,
improving survival. If to date CTCs enumeration alone has been
a new method to diagnose cancer, monitoring surface and
intracellular protein expression in CTCs, together with
transcriptomic and genomic analyses, is going to be the next step
to enhance prognostic decisions, classify patients in low and high-
risk groups, and better guide treatments. scWB and MC could both
satisfy this clinical need (Stelzer et al., 2021). Indeed, E. Sinkala and
his collaborators, within a pilot study, used scWB to investigate the
expression of eight surface and intracellular proteins in CTCs from
metastatic BC patients, to assess individual response to therapy
(Sinkala et al., 2017). Since therapies that target proteins are
increasingly rising, monitoring protein expression in CTCs
isolated from peripheral peripheral blood may guide therapeutic
selection in the near future.

Recently, FC-based technologies have been used and adapted to
detect multiple markers at a single cell level too. In this regard, CTCs
from osteosarcoma patient blood samples were characterized by
Shulin Li’s research group a couple of years ago (Batth et al., 2020).
After having isolated CTCs for their positivity to vimentin and
negativity to CD45, a multiplex labeling using antibodies conjugated
to metal ions revealed the presence of 18 different markers
simultaneously. After protein quantification, they used a tailored
bioinformatic analysis to obtain unique patient-related protein
signatures containing information about active signaling
pathways, which could help us to predict future tumor behavior
and guide treatment choice.

Metabolomics

Metabolomic analysis

Since the discovery of the famous Warburg effect (Warburg
et al., 1927), several studies have shown that there is a broad
spectrum of bioenergetic and metabolic phenotypes supporting
cell proliferation, metastasis and resistance to cancer therapies.

Oncometabolites are small endogenous and exogenous molecules
present in tissues and biofluids, accumulated by altered metabolic
pathways during malignant transformation (Khatami et al., 2019).
They originate in the tumor microenvironment to create the optimal
growing conditions for the tumor (Elia and Haigis, 2021; Hofer et al.,
2021).

Metabolomics focuses on the profiling of small intracellular or
free metabolites (≤1,500 Daltons) in bodily fluids including blood,
urine, CSF and saliva (Han et al., 2021). Metabolites of interest can
be detected using Nuclear Magnetic Resonance (NMR) (mostly
proton NMR, H-NMR) and MS, in association with different
separation methods (Fiehn, 2016; Kang et al., 2018; Lane et al.,
2019; Sinclair and Dudley, 2019). Based on chemical properties of
specific atoms in a molecule, NMR can be used with biological
samples without prior processing, and the unaltered starting
material can be re-used for additional investigations. However,
compared to MS, a lower number of metabolites, with lower
sensitivity (micromolar vs. nanomolar) can be identified using
NMR, and for this reason MS still represents a gold standard.

Clinical application

Metabolomics is mainly used for early cancer detection and
biomarkers discovery (Schmidt et al., 2021). Uchiyama et al. showed
that benzoic acid has a high diagnostic capacity in CRC and
identified a correlation between CRC stages and upregulation/
downregulation of different serum metabolites (Uchiyama et al.,
2017). Another study based on proton NMR revealed that fecal
metabolomic fingerprinting can be used as an early diagnostic tool in
CC patients (Uchiyama et al., 2017). In a wide-scale metabolic
investigation of plasma samples from OC patients, Ke et al.
demonstrated that metabolic signatures can facilitate early
diagnosis of OC, helping us to discriminate early from late stages
(Ke et al., 2015).

Interesting results have been obtained from studies of
metabolomic composition of urine(u)-EV of prostate cancer
patients (Clos-Garcia et al., 2018). According to Puhka et al.,
patients before prostatectomy presented a different uEV
metabolome content compared to those after prostatectomy and
healthy controls (Puhka et al., 2017). A different study reported that
approximately 76 metabolites were differentially expressed between
patients with prostate cancer and patients with benign prostatic
hyperplasia (BPH) some of which were among the metabolic
alterations reported in PCa (Xu et al., 2021).

Increased evidence has demonstrated the influence of
microbiota in human malignancies including cancer (ich-Poore
et al., 2021). Microbiome metabolites can influence the tumor
microenvironment by regulating different aspects of
carcinogenesis including proliferation, angiogenesis, inflammation
and metastasis (Rossi et al., 2020). The connection between serum
metabolome and the intestinal microbiome in patients with lung
cancer at different stages was recently investigated. As the disease
progressed, the L-valine and Lachnospiraceae_UCG006reased
suggesting L-valine is a potential marker for lung cancer
diagnosis (Chen et al., 2022). A different research group
identified specific microbiome-associated metabolites in CRC
patients analyzing their fecal microbiome (Yang et al., 2019).
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They found proteobacteria, fusobacteria, high concentrations of
polyamines (cadaverine and putrescine), amino acids (Pro, Glu)
and urea in patients compared to healthy volunteers in which, on the
contrary, sugars and fatty acids (Yang et al., 2019) were abundant.

In conclusion, implementation of analytical techniques and
validation of algorithms for analyzing metabolomics data are still
needed to let metabolomics take its rightful place among precision
oncology omics.

Bioinformatics tools for liquid biopsy

The reduced amount of target molecules in LB affects the
capability to detect low-frequency genomic variations. To
increase detection sensitivity, a panel of genes rather than the
whole genome can be sequenced numerous times, even though
this leads to higher false positivity risk. To solve this issue, advanced
bioinformatic tools or machine learning algorithms are needed to
reduce false positive results and eliminate background noise.

Tools such as the popular IchorCNA (Adalsteinsson et al.,
2017), have been designed to estimate a low coverage plasma
sample tumor fraction in an ultra LP-WGS scenario (0.1X) and
help the operator decides whether enough material is available for a
WES comprehensive clonal analysis. Following, in a recent paper,
Zviran et al. (2020) stick to WGS and proposed replacing depth of
sequencing with breath for sensitive detection of low-burden cancer,
by increasing the number of detectable sites (SNVs) performing
WGS at an average 35X. The WGS approach enabling effective
integration across orthogonal data dimensions such as SNV and
CNV allows clinical application to a wide range of tumor types that
have either high mutation load or aneuploidy (Taylor et al., 2018).
Unfortunately, if the technique provides sensitive detection of
ctDNA it does also provide limited confidence in the sensitivity
to detect any individual site so, target sequencing remains the
election choice to identify driver mutational events.

Similar approaches can be used to detect CTC genome
alterations. Once CTC are isolated from biological fluids their
DNA is amplified and sequenced by LP or ultra LP-WGS. At a
coverage of 1X or 0.1X heterogeneity that might arise due to small
genomic aberrations such as SNVs and short indels will be missed.
Several computational tools are available for CNV analysis using
bulk sequencing data including CNVkit (Talevich et al., 2016),
ControlFreec (Boeva et al., 2012), ASCAT (Van Loo et al., 2010)
and Sequenza (Favero et al., 2015), just to name some, and many
groups rely on these for the analysis of single cell data (Liu et al.,
2019a; Pailler et al., 2019; Oulhen et al., 2021). Among the few open-
source tools specifically designed for CNV calling in single cells we
can list the cloud-based Ginkgo (Garvin et al., 2015) which is
developed for LP-WGS data, making the CNV analysis procedure
user-friendly, including for those with limited bioinformatics
experience.

When the goal is to analyze large datasets, more computationally
efficient strategies are required. AneuFinder (Bakker et al., 2016) and
SCOPE (Wang et al., 2020) are two R-Bioconductor packages
developed to explore tumor single cell data to identify evidence
for copy number variations in WGS samples while among the
python packages we can highlight SCNV (Wang et al., 2019),
baseqCNV (Fu et al., 2019), SCCNV (Dong et al., 2020),

SCICoNE (Kuipers et al., 2020) and CHISEL (Zaccaria and
Raphael, 2021). If genomic alterations’ analysis is influenced by
the scarcity of the starting material, investigations on RNA must be
performed also taking into account its instability in biological fluids
(Cheng et al., 2019; Vaisvila et al., 2021). Therefore, even if the
bioinformatics pipelines currently used for CTC derived bulk and
scRNAseq sequencing data are the same used for other types of
transcriptomic data (Satija et al., 2015; Wolf et al., 2018) analyses of
these samples require additional quality evaluation and
preprocessing.

Recent research suggests that cfDNA fragmentation patterns can
provide additional information beyond the genetic analysis of
somatic mutations and copy-number abnormalities. Indeed, DNA
fragmentation from dying tumor cells seems not randomly
distributed but also determined by the DNA sequence: it appears
to reflect the chromatin structure and epigenetic states of the cells,
from which DNA fragments derive (Snyder et al., 2016; Cristiano
et al., 2019; Sun et al., 2019). Peneder et al. (2021), in their inspiring
paper, identified a specific epigenetic signature among
fragmentation patterns in tumor DNA isolated from the blood of
patients with Ewing Sarcoma. The authors introduced a new
algorithm for detecting ctDNA based on cancer-specific
chromatin signatures and combined several fragmentation-based
metrics into an integrated machine-learning classifier that exploits
widespread epigenetic deregulation and is tailored to cancers with
few genetic lesions such as pediatric tumors.

Among the positive outcomes of multi-omic investigations there
is the construction of useful databases, built to help researchers
delineate which proteins are expressed in specific tissues in
physiological and pathological conditions. Examples are
computational resources such as the Human Protein Atlas
(https://www.proteinatlas.org): a repository of information about
mRNA and protein expression across several healthy tissues and
cancers, and the Genotype-Tissue Expression (GTEx) project
(https://gtexportal.org).

Several ML frameworks have been developed to characterize
tumor biomarkers in an unbiased, automated and reproducible
manner (Svensson et al., 2015; Ko et al., 2018), mostly purely
based on extracted-features traditional methods. Recently, Zeune
et al. (2020) showed how with a more complex, “black box”
approach combining autoencoding convolutional neural networks
(CNN) with advanced visualization techniques they were able to
segregate 164 metastatic BC patients based on favorable and
unfavorable prognosis starting from CellSearch imaging data,
proving the deep learning method was at least as good as manual
CTC count in cell classification. Automatic, objective cell
classification with a CNN-based image processing path was
followed by several other groups (He et al., 2020; Guo et al.,
2022) highlighting the importance for research centers, and
hospitals to work with instruments producing accessible, good
quality and properly formatted CTC imaging data for reliable
ML-based predictions.

Challenges and perspectives

Although there is great potential in LB’s biomarkers, some
biological and technical issues must be solved before entering
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TABLE 5 Ongoing and completed clinical trials involving liquid biopsy in cancer management.

Trial Biomarkers Tumor type Sample
size

Outcome measures Clinical application

NCT00382018
Phase 3

CTC Breast cancer 624 Evaluation of OS and PFS in early switching to
an alternative chemotherapy in CTC positive
patients

Therapy selection Prognosis

NCT0180005
NA

CTC Prostate cancer 68 Prognostic value of CTCs in prostate cancer at
High Risk treated radically with radiotherapy
and hormones

Prognosis Response prediction
Monitoring therapy

NCT02874885
Observational

CTC Renal cancer 520 Assess of the CTC number during
neoadjuvant treatment

Response prediction

NCT05326295
Observational

CTC Breast cancer 1,000 Evaluation of CTC number and phenotype on
the prognosis of early stage BM patients
treated with neoadjuvant or adjuvant
chemotherapy

Prognosis Therapy monitoring

NCT04917289
Phase 3

CTC Colon cancer 100 CTC vs. Radiography as the evidence of
recurrence in CRC patients

Therapy resistance

NCT05533515
Observational

CTC Prostate cancer 490 Establish the value of CTC positivity in
predicting post-Radical Prostatectomy failure

Therapy prediction

NCT03568630
Observartional

ctDNA Pancreatic cancer 1,250 Identification of specific ctDNA signature for
early cancer detection

Early detection

NCT03664024
Phase 2

ctDNA Non-Small Cell Lung
Cancer

118 Baseline TMB assessment in ctDNA for
response prediction to Pembrolizumab +
chemotherapy

Therapy prediction

NCT02813928
NA

ctDNA Colon cancer 473 Monitoring ctDNA in CRC patients after
curative treatment

Diagnosis Prognosis

NCT04089631
Phase 3

ctDNA Colon cancer 4,812 DFS and OS after Adjuvant Treatment Therapy selection

NCT04901988
Phase 2/3

ctDNA Melanoma 1,050 cfDNA guided therapy for stage IIB/C
melanoma after surgical resection

Therapy selection

NCT05174169
Phase 2/3

ctDNA Colon cancer 1912 Evaluation of residual disease by cfDNA for
optimal adjuvant chemotherapy scheme

Minimal residual desease

NCT04629079
Observational

Exosome Lung cancer 800 Improving the early detection of lung cancer
by combining exosomal analysis of hypoxia
with standard of care imaging

Early Diagnosis

NCT02702856
Observational

Exosome Prostate cancer 2000 Correlate an exosome gene expression
signature with the presence of high-grade
prostate cancer

Early diagnosis

NCT05427227
Observational

Exosome Gastrointestinal cancer 500 Evaluation of proteomic profiling of tumor
exosome during IC, anti-Her2 and anti-
CLDN18.2 therapy

Monitoring response

NCT05705583
Observational

Exosome Renal cell carcinoma 100 Assess the correlation between the circulating
exosomes levels and the tumor responsiveness
to immunotherapy

Response prediction

NCT04965259
Observational

miRNA Hepatocellular
cancinoma

2000 Evaluate changes in the profile of miRNA as
high-risk patients develop HCC

Diagnosis

NCT01722851
Observational

miRNA Breast cancer 255 Assess the relationship between changes in
circulating miRNA levels and therapy
response

Therapy selection Monitoring
Response

NCT04771871
Phase 2

miRNA Breast cancer 42 Evaluation of the fold change in serum levels
of miRNA during standard chemotherapy

Therapy resistence

NCT05146505
Observational

miRNA Ovarian cancer 150 Longitudinal miRNAs analysis over
chemotherapy treatment

Therapeutic Monitoring

NCT02739867
Observational

TEP Solid/hematological
cancer

476 Evaluation of diagnostic accuracy of platelet
RNA profiling in detecting occult cancer

Cancer screening
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into medical practice. Several completed and ongoing are going to
establish whether these biomarkers can be fully adopted in
clinicalisions (Table 5). However, it is not yet clear whether
liquid biomarkers can capture the entire tumor heterogeneity at
the time of analysis, especially in metastatic patients in which
distinguishing the contribution of each site is currently not
feasible. Detection and characterization of circulating tumor
components, especially in the early setting, presents many
difficulties due to their low amounts in biological fluids. These
unresolved aspectsgenerate inconclusive and conflicting data with a
high rate of false positives (overdiagnosis) and/or false negatives
(underdiagnosis).

One possible solution that has been recently proposed is the
use of a multi-omic, multi-analyte LB which could offer a high-
resolution snapshot of cancer complexity (Figure 2). Indeed, the
identification of a single biomarker able to reconcile biological
and technical needs represents a lost cause. Clinical sensitivity
and specificity of CTC and ctDNA tests can be improved when
coupled with protein-based markers. First evidence is the
prospective study of Imperiale et al. which compares a
multitarget stool DNA test with a fecal immunochemical test
(FIT) to predict the risk of developing CC. The stool test
combines identification of KRAS mutation and aberrant
NDRG4 and BMP3 methylation with fecal hemoglobin

dosage. DNA test demonstrated to have higher sensitivity
than FIT assay for both advanced precancerous lesions and
colorectal cancer, although with lower specificity (Imperiale
et al., 2014).

Cohen et al. developed a multi-analyte blood test, called
CancerSEEK that simultaneously evaluates eight protein
biomarkers and tumor-specific mutations in circulating DNA
of common human cancer types (Cohen et al., 2018). The assay
had a sensitivity of 69%–98% for five cancers for which no
screening tests are available for high-risk individuals while
specificity was greater than 99% with only 7 of 812 healthy
controls testing positive. Moreover, without any clinical
information on patients, the test identified the single anatomic
site in a median of 63% of the patients (Cohen et al., 2018).
Interesting preliminary data were obtained with a multianalyte
panel based on analysis of EV RNA, cfDNA and dosage of CA19-
9 protein in PDAC patients (Yang et al., 2020). Combining
different blood-based biomarkers, authors distinguished
patients with PDAC patients from healthy controls with 92%
accuracy, 95% specificity and 88% sensitivity. This model could
improve detection of occult metastases not visible with
conventional imaging at baseline and only discovered
intraoperatively or after 4 months of baseline blood draw
(Yang et al., 2020).

FIGURE 2
Integrated multi-omic approach in liquid biopsy. An integrated multi-omic approach is going to be used investigating single or multiple analytes
from different fluids of the same patient. Artificial intelligence will be educated using the enormous amount of information that has been created. From
the resulting predictive models can be originated personalized medical decisions (NAF, Nipple Aspirate Fluid; CSF,Cerebrospinal Fluid; SEMN, Seminal
Fluid; CNV, Copy Number Variations; SNPs, Single Nucleotide Polymorphisms).
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On the one hand, multi omic analysis seeks to fullyipher the
complexity of cancer heterogeneity, in contrast it generates a
huge amount of data. Omic data can “apparently” be very
different from each other as numerous biological and non-
biological variables can influence their production. The choice
of patients, the type of protocol adopted to perform the analysis,
or the personal experience of the operator can greatly affect the
final data. Over the years different repositories like TCGA
(https://portal.gdc.cancer.gov/) and ICGA (https://dcc.icgc.org/
) have been created to collect all omics data in an orderly manner.
Since there is an urgent need to connect multi-level information
concerning molecular signatures and the phenotypic
manifestation of different cancer types, AI and ML approaches
have been proposed to transform big-sized complex data into
evidence-based medicalisions. Although there is growing
evidence demonstrating the potential of ML to improve the
performance of various LB tests, their integration into the
clinical workflow represents the main challenge of the
upcoming years (Macaulay et al., 2015).
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