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Medical image segmentation has long been a compelling and fundamental

problem in the realm of neuroscience. This is an extremely challenging task

due to the intensely interfering irrelevant background information to segment

the target. State-of-the-art methods fail to consider simultaneously addressing

both long-range and short-range dependencies, and commonly emphasize the

semantic information characterization capability while ignoring the geometric

detail information implied in the shallow feature maps resulting in the dropping

of crucial features. To tackle the above problem, we propose a Global-Local

representation learning net for medical image segmentation, namely GL-Segnet.

In the Feature encoder, we utilize the Multi-Scale Convolution (MSC) and Multi-

Scale Pooling (MSP) modules to encode the global semantic representation

information at the shallow level of the network, and multi-scale feature fusion

operations are applied to enrich local geometric detail information in a cross-

level manner. Beyond that, we adopt a global semantic feature extraction module

to perform filtering of irrelevant background information. In Attention-enhancing

Decoder, we use the Attention-based feature decoding module to refine the

multi-scale fused feature information, which provides e�ective cues for attention

decoding. We exploit the structural similarity between images and the edge

gradient information to propose a hybrid loss to improve the segmentation

accuracy of the model. Extensive experiments on medical image segmentation

from Glas, ISIC, Brain Tumors and SIIM-ACR demonstrated that our GL-Segnet

is superior to existing state-of-art methods in subjective visual performance and

objective evaluation.

KEYWORDS

neuroscience, medical image segmentation, vision transformer, Global-Local

representation learning, multi-scale feature fusion

1. Introduction

Medical image segmentation is one of the vital technologies for intelligent analysis
and understanding of medical images, providing clinicians with significant information for
diagnosis and treatment (Ali et al., 2020). Specifically, in the planning of radiotherapy, it
can accurately depict the area where the tumor is located to maximize the coverage of the
target area. Tumor delineation is usually performed manually or semi-manually, which
requires highly specialized knowledge, and is time-consuming for the annotator (Sutton
et al., 2020). Therefore, image segmentation of lesion areas through deep learning to assist
doctors has been the focus of research for many years (Li et al., 2014; Mortazi and Bagci,
2018). Currently, medical image segmentation has been applied to multiple organs, such as
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liver segmentation (Li et al., 2015; Vorontsov et al., 2018), brain
tumor segmentation (Cherukuri et al., 2018), cell segmentation
(Li et al., 2018), heart segmentation (Khened et al., 2018),
etc. The traditional method of extracting features is normally
designed using expert knowledge according to the gray value,
shape, and texture to automatically segment the target region.
For instance, threshold segmentation method (Oksuz et al., 2022),
cluster segmentation method (Hua et al., 2021), region-based
segmentation method (Xiao-yao et al., 2020) and edge detection-
based segmentation method (San-ping et al., 2017). The above
methods frequently involve a large amount of prior knowledge
to extract manual features for segmentation. Nevertheless, the
designed manual features are only valid for segmentation tasks on
specific datasets and the segmentation performance is not stable.
The segmentation method based on deep learning adopts the
idea of pixel classification, which is different from the traditional
method of manually extracting features. Deep learning-based
methods have flourished in the field of medical image segmentation
(Gai et al., 2020; Liu et al., 2021; Touvron et al., 2021). Li et al.
(2020) introduced encoder and decoder structures into the field
of image segmentation and proposed the Fully Convolutional
Network (FCN), which preserves the location information by
replacing the fully connected with convolutional layers. U-Net
(Ronneberger et al., 2015) used contraction paths to obtain feature
information and expansion paths to achieve precise positioning,
which has preeminent performance on various data sets. Chu and
et al. (2020) proposed a method that utilizes a simple edge detector
to locate all discontinuities and additionally monitor these regions,
which effectively improves the segmentation accuracy. Although
the model based on the convolutional neural network has excellent
representation ability, it is difficult to model the features with
long-range dependencies in the image because the convolutional
computation has only a fixed receptive field, failing to capture
sufficient contextual information.

The main contributions of this work are as follows:

1. To encode the global semantic representation information at
the shallow level of the network, we employ the MSC and MSP
modules. Meanwhile, the Multi-scale feature fusion operation
was adopted by us to cross-level enrich the local geometric
detail information.

2. We utilize an attention-based feature decoding module to
generalize the feature information, which provides effective
clues for attention decoding.

3. We exploit the structural similarity between images and the
edge gradient information to propose a hybrid loss, which
protects image edge information and improves the performance
of the model.

4. The proposed model achieves excellent segmentation results on
GLAS, ISIC, Brian Tumors and SIIM-ACR datasets.

2. Related work

2.1. Medical image segmentation

Medical image segmentation aims to make the human tissue
or pathological structures vibrant and intuitive. In addition, the
relevant tissue can be modeled through the segmentation results

for subsequent manipulation. Early, image segmentation methods
were mainly divided into threshold-based segmentation methods
(Tang et al., 2017), region-based segmentation methods (Deng
et al., 2019), edge-based segmentation methods (Borovec et al.,
2017), and segmentation methods based on specific theories (Liu
et al., 2022). At present, SegNet (Badrinarayanan et al., 2017)
directly extracted target features and achieved unexceptionable
segmentation performance. Kitrungrotsakul et al. (2020) proposed
an interactive deep optimization network for medical image
segmentation. In addition, Gu et al. introduced a CE-Net
model for medical image segmentation, which involves a dilated
convolution to change the receptive domain size of the model
and reduce information loss. An Edge Attention Network is
proposed, which embedded edge attention representations to guide
the segmentation network (Zhijie et al., 2019). Although CNN
networks have a great advantage in the extraction of local features,
they are less capable of encoding global information.

2.2. U-shaped network structure

A U-shaped network structure based on FCN is widely used in
medical image segmentation. U-Net is applied in numerous fields
of segmentation, which has an outstanding contribution in the
medical and biological fields (Liu et al., 2020b). The role of the
encoder is to accomplish feature extraction, which can be done
using various classical convolutional neural networks such as VGG,
Inception, ResNet, DenseNet, etc. All these networks can be used
as the encoding layer, while in the decoding layer, the opposite
operation can be performed. On this basis, Shankaranarayana et al.
(2017) combined the idea of residual connectivity with U-Net
to propose the residual U-Net. Oktay et al. (2021) exploited the
Attention U-Net to capture salient features by integrating attention
gates. Zongwei et al. (2020) proposed U-Net++, which fixes features
at different levels and utilizes a flexible network structure with
deep supervision, enabling deep networks to drastically reduce the
number of parameters within acceptable accuracy. Apart from that,
Jafari et al. (2020) added additional skip connections to Residual
Network (ResNet) (Kaiming et al., 2016) and Dense Convolutional
Network (DenseNet) (Huang and Wang, 2017) to reduce the
time complexity (Song et al., 2018). The CNN network has great
advantages in the extraction of local features, but it lacks the ability
to encode contextual information.

2.3. Transformer mechanism

Compared to Convolutional Neural Network (CNN),
Transformer (Vaswani et al., 2017) effectively establishes long-
range dependencies through the Self-Attention mechanism.
Zheng et al. (2021) applied the Transformer as an encoder
to compress the spatial resolution, progressively extracting
high-level semantic features and mapping the features to the
original spatial resolution through a decoder for final pixel-level
segmentation. Petit et al. (2021) proposed the U-Transformer
network structure, which develops Multi-Head Self-Attention to
obtain remote dependencies, resulting in the excellent recovery
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of spatial resolution. Zhang et al. (2021) fused two parallel CNN
branches and Transformer branches to attain global dependencies
and local detail features, using AGs to fuse multi-level features
between different layers. Moreover, Valanarasu et al. (2021)
employed a Local-Global training strategy to extract geometric
features such as details and textures through shallow global
branching. The deep local branching is involved to extract spatial
location information to obtain the final segmentation result.
Since the Transformer cannot capture the internal relationship
between each slice, Chu et al. (2021) added a conditional position
encoding generator to produce an implicit position encoding
that allows the original spatial position relationship. Recently,
Chen et al. (2021) proposed Transununet by exploiting the
advantages of Transformer and U-Net. In the encoder part, the
Transformer is presented to encode the feature map from the
CNN, to enrich the contextual features. The encoded features are
up-sampled in the decoder part to acquire precise localization.
Although these methods achieved good results, they lack local
area information interaction in the process of encoding (Liu,
2020a).

3. Method

3.1. Feature encoder

The proposed encoder is composed of two parts: a Context-
rich connection module and a Global semantic feature extraction
module. Among them, we focus on the various feature information
of global and local contained in different layers using a variety
of modules in context-rich operations, so as to solve the
problem of detail loss during the upsampling process. In the
Global semantic feature extraction module, The Residual-
Block can tackle the problem that the gradient of the network
disappears during the training process, thus improving the
performance of the network; The Vision Transformer (ViT)
module introduces a multi-headed attention mechanism
into the network, which allows the network to reduce the
interference of non-semantic feature information during the
coding process.

As shown in Figure 1A, the Multi-Scale Convolution (MSC)
and Multi-Scale Pooling (MSP) modules are used to perform
a multi-scale fusion from the features in layer 1. Meanwhile,
for the Context-rich operations of layer 2 and layer 3, we
choose to perform atrous convolution operations with different
atrous rates on the output of the upper Residual-block. After
adjusting, it is concatenated with the output of this Residual-
block layer as a feature supplement, so as to enrich the context of
the network.

Concretely, the proposed encoder structure consists of four
layers. First, a convolution operation is used to perform preliminary
feature extraction on the input image. After each layer of the
network has been passed down through the Residual-block, the
size of the feature is changed to 1/2 of the original size and
the number of channels is doubled. In the last layer, a high-
level feature is established. Finally, the output of the encoder is
processed by the multi-headed self-attention mechanism in the
ViT module.

3.1.1. Context-rich connection module
To encode the global semantic representation information

at the shallow level of the network and cross-level enrich the
local geometric detail information, a variety of modules are
utilized to augment the semantic features of the context in
the network. For the large-size and lower-level feature maps
initially extracted by a simple convolution operation in layer
1, we apply multi-scale semantic feature enrichment operations
using MSC and MSP modules. This operation can balance the
geometric detail information representation capability and the
semantic information representation capability of the feature map.
Additionally, for the output of the other two layers of Residual-
Block, we propose a multi-level feature fusion module. It uses
atrous convolution for obtaining feature maps with different
representation capabilities by changing the size of the receptive
field. Finally, they are concatenated as skip connections to balance
the global semantic representation information and local geometric
detail information. Therefore, it is effective to cope with the feature
loss phenomenon during upsampling.

MSC Module: As shown in Figure 1B, four different
convolutions are used to process the input feature map, so as
to obtain four features of the same size from multiple scales.
Mathematically, the atrous convolution is computed as follows:

y[i] =
∑

l

x[i+ dl]w[l] (1)

Where y[i] is a point at position i of the output feature map,
x is the input feature map, w is the convolution weight, w[l] is the
point at position l of the convolution weight matrix, l denotes a
coordinate pair representing position similar to (-1,1), and d is the
atrous rate.

The four feature maps obtained in this way will contain
different receptive fields and convolution depths. After the four
feature maps are cascaded, the number of channels will be changed
to 1/4 of the original featuremap through a 3×3 convolution. Thus,
these features are integrated to get a feature map with the same size
and channel as the input.

Since atrous convolution has a grid effect, it cannot perform
element-by-element calculations for a matrix. When operating on
lower-level feature maps, the grid effect of atrous convolution may
lead to the harm of detailed information.

MSP Module: As the pooling operation can compensate for
the grid effect of the atrous convolution, we tend to use the MSP
module to make up for this defect. Specifically, three different scale
pooling operations are applied to obtain feature maps of three sizes.
Afterward, they are turned into three channels of 1 and the same
size as the input through a 1 × 1 convolution and upsampling
operation. At the same time, when pooling is utilized to expand
the receptive field, part of the semantic representation information
extracted by the network will be lost, while atrous convolution
can protect the extracted semantic representation information. The
MSPmodule is described as follows:
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FIGURE 1

Detailed explanation of the GL-Segnet. (A) Overview of the GL-Segnet. (B) Illustrations of the modules.

Where X is the input, Y is the output, UP is the upsampling,
Conv is the convolution with a kernel size of 1 and a channel
number of 1, Poolinga×a is the maximum pooling of size a, and [·]
is the concatenate operation.

The feature map of size 64×(H/2)×(W/2) is obtained byMSC

module, and the featuremap of size 4×(H/2)×(W/2) is attained by
MSPmodule, which is concatenated with the feature map extracted
from Layer 1.

Multi-scale feature fusion operation: The Residual-blocks in
Layer 2 and Layer 3 output feature maps with smaller sizes and
high-level features. They are not suitable to use the MSC and MSP

modules for feature enrichment operations as in Layer 1. To enrich
the feature information of the local geometric detail of them that
can be used in decoding, we proposed the multi-scale feature fusion

operation. This operation first convolves the feature maps with
different sizes of receptive fields, and then concatenates the feature
maps of the same size after convolution. This will compensate and
enrich the detailed features of the semantic feature information
of the underlying network abstraction. Also reduce the loss of
semantic features during simple upsampling.

In details, we firstly perform two consecutive atrous
convolution operations on the feature maps in Layer 1 after
the initial feature extraction with different atrous rates. By
controlling the padding value, a feature map of size (H/4)× (W/4)
and a feature map of size (H/8)× (W/8) can be obtained. Likewise,
we also use the atrous convolution to operate on the feature map
output by the Residual-Block in Layer 2 to obtain a feature map of
size (H/8)× (W/8) by controlling the padding.
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Then the feature maps of size (H/4)× (W/4) are concatenated
with the feature maps output by Residual-block in Layer 2, while
the feature maps of size (H/8) × (W/8) are concatenated with
the feature maps output by Residual-block in Layer 3. These
concatenated feature maps will be utilized in the skip connection
to enrich the contextual information and thus reduce the loss of
feature information during upsampling.

3.1.2. Global semantic feature extraction module
In the structure of the proposed model, we combine Residual-

block and ViT to create a novel encoder module. The encoder of the
traditional U-Net adopts a convolution stacking structure, which
fails to deal with the problem of gradient disappearance during
the training process. Correspondingly, adding residual connections
(Kaiming et al., 2016) can boost the performance of the network.
Specifically, the formula for Residual connection is as follows:

Y = F (X,Wi)+ X (3)

Where X is input, the Y is output, F is the convolution layer
operation, andWi is the convolution parameter.

As the background information is extracted into the feature
map at the same time as the semantic information, it can cause
the network to conduct non-semantic information during the
decoding process, thus affecting the accuracy of the segmentation
task. To decrease the interference of background information on
semantic information, after extracting feature information from
multiple stacked Residual-blocks, we employ the ViT module to
filter the extracted features to obtain semantic feature information.
The ViT module consists of Patch embedding and several
Transformer layers.

The ViT module first uses a multi-layer Residual-block to
accomplish feature extraction, which can obtain the feature map
H ×W × C. The feature map is then divided into N sub-blocks of
size P× P× C, whose number is (H×W×C)

(P×P×C) . Then, they are stitched
together horizontally to obtain a combined feature map of size
N× (P×P×C). The combination of feature maps are compressed
into a feature map N × K by performing a linear transformation
through the fully connected layer. In addition, ViT introduces a
trainable location embedding feature map to improve the location
information. The Patch embedding specific formula is as follows:

M0 =

[

Y1
pB;Y

2
pB;Y

3
pB; · · · ;Y

N
p B
]

+ Bpos (4)

Where B is the fully connected layer of the embedding, and
B ∈ R(P×P×C)×K , Bpos is the positional embedding feature map,
andBpos ∈ R(N×K).

The Transformer layer mainly includes two parts, MSA and
MLP. The output of the Lth layer is expressed by the following
formulas:

m′
l = MSA

(

LN
(

ml−1
))

+ml−1

ml = MLP
(

LN
(

m′
l

))

+m′
l

(5)

Where LN(·) is the normalization operator, MSA is the
Multihead Self-Attention module, and MLP is the Multi-layer
Perceptron module. The multi-head self-attention used in theMSA

module is different from the common self-attention mechanism,
which transforms the input feature map into three different

matrices, namely, query matrix Q, key value matrix K, and value
matrix V . The query matrix Q is multiplied by the transpose of
the key value matrix K to obtain the similarity matrix QKT . The
similarity matrix is normalized by the softmax function to obtain
the weight matrix. The weight matrix is multiplied by the value
matrix to get the attention of the input matrix, the specific formula
is defined as:

Attention (Q,K ,V) = softmax

(

QKT

√

dk

)

× V (6)

Where dk represents the dimension of the query matrix or
key value matrix. The MSA module is the core component of
Transformer layer. It uses a multi-head attention mechanism,
which is composed of n self-attention mechanism modules. The
specific formula is:

MSA(Q,K,V) =
[

h1; . . . ; hn
]

WO

where hi = Attention
(

QW
Q
i ,KW

K
i ,VW

V
i

) (7)

WhereWi
Q,Wi

K ,Wi
Vare the linear transformationmatrices of

the i−th self-attentionmechanism. The n self-attentionmechanism
modules are concatenated and then multiplied with the linear
transformation matrixWO to obtain the final output.

TheMLP is mainly composed of two fully connected layers and
a linear activation layer ReLU linearly combined.

MLP(X) = max
(

0,XW1 + b1
)

W2 + b2 (8)

Where W1, b1 and W2, b2 represent the weights and biases of
the two fully connected layers, respectively.

3.2. Attention-enhancing decoder

The Attention-enhancing decoder used in the proposed model
consists of attention-based feature decoding module and cascaded
upsampling module. The attention-based feature decoding module
can make optimal use of the feature information in the skip
connection feature maps. Moreover, it extracts useful semantic
feature information from the redundant feature information in
feature maps; The cascaded upsampling module enables the
network to cope well with the loss of important semantic feature
information during the upsampling process.

As shown in Figure 1A, for each layer of the decoder, we
initially perform feature decoding on the feature maps which have
been subjected to feature enrichment operations. In the process
of feature decoding, the attention-based feature decoding module
needs to use the output feature map of the upper layer network for
assistance. Eventually, the feature maps after feature decoding are
upsampled with the featuremaps output by the upper layer network
using the cascaded upsampling module. The final output image of
the network, will be obtained by a 7×7 convolution operation after
going through the decoder.

3.2.1. Attention-based feature decoding module
In the decoding process, as the skip connection feature maps

of each layer undergo semantic feature enrichment operations,
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they contain features extracted from several different scales and
are richer in feature information. Nevertheless, overly redundant
feature information may affect the performance of the decoding
module. Therefore, a 3×3 convolution operation is used to perform
a feature summarization operation on the skip connection feature
map before adding the attention mechanism to it. After this, we use
the feature maps output by the upper layer network for assistance,
performing Attention-Gate operation on the feature maps after
feature summarization.

Attention-gate: The application of Attention-Gate introduces
the attention mechanism to the decoder, thus highlighting the
semantic feature information conveyed by the feature maps
after feature summarization, while reducing the interference of
irrelevant background information to the semantic information
during decoding. The structure of Attention-Gate is shown in
Figure 1B. Where X is the feature map output from the upper layer
of the network, the C is the skip connection feature map after
the feature summarization operation mentioned above. Initially,
perform a 1 × 1 convolution operation on them, and then sum
the obtained outputs, which highlights the feature information
contained in the two feature maps simultaneously. After the Relu
function, it goes through a 1 × 1 convolution to make the feature
map channel equals to 1. After normalizing the feature map by the
Sigmoid function, it is multiplied with C to obtain the output of
Attention-Gate. The specific formula is as follows:

AG(X,C) = σ2 (ψ (σ1 (WxX +WcC)))C (9)

WhereX andC have beenmentioned above,Wx is the weight of
the 1×1 convolution onX,Wc is the weight of the 1×1 convolution
onC, σ1 is theRelu function, σ2 is the Sigmoid function, andψ is the
weight of the 1×1 convolution on the featuremap after summation.

The soft attention operation of the multilayer Attention-Gate
can effectively reduce the interference of the background feature
information to the semantic information in the skip connection
feature map, so as to obtain a segmented image with more
accurate segmentation.

3.2.2. Cascaded upsampling module
The module formula is as follows:

Y = Conv3×3([AG(X,C);UP(X)]) (10)

Where X is the feature map output from the upper layer
network, C is the skip connection feature map mentioned
above, UP(·) operation is the upsampling operation with twice
magnification scale, AG(·) operation is the Attention-Gate
operation described above, Conv3×3 is the convolution operation
with 3 × 3 convolution kernel size, while [; ]is the concatenate
operation.

The upsampling module completes the decoding process from
high-level features to segmentation masks. It is a combination of
multiple upsampling steps, consistent with U-Net. By upsampling
the high-level features and concatenating them with the skip
connection feature maps before the convolution layer operation.
This prevents the loss of some detailed features caused by mere
upsampling operation during the image recovery process, thereby
ensuring the accuracy of the recovered image.

3.3. Hybrid loss

The proposed model employs a hybrid loss function with
multiple loss functions interacting with each other in order to
balance the evenly decline of each metric during learning. The loss
functions adopted include: Dice loss, Binary cross entorpy loss,
SSIM loss and Edge preservasion loss. we assume that Dice loss
is L1, Binary cross entorpy loss is L2, SSIM loss is L3, and Edge
preservasion loss based on the gradient-based Edge preservasion
loss is L4.

Dice loss: The Dice loss function is a common loss function
applied in the field of image segmentation to measure the similarity
of two sets, and its specific formula is:

L1 =
2
∑

i tiei
∑

i ti +
∑

i ei
(11)

Where i denotes a pixel point, ti is whether the current pixel
point is the semantic pixel point in the ground truth, and ei is
whether the current pixel point is classified as a semantic pixel point
in the predicted image.

Dice loss can reflect the image similarity well from the region,
and has good performance for the scenario with serious imbalance
between positive and negative samples, so we choose it as the main
loss function of Hybrid loss.

Binary cross entropy loss: The binary cross entropy loss
function is a common loss function for binary classification
problems, which is a convex optimization function. It facilitates us
to find the optimal value by gradient descent method, while being
able tomeasure the subtle differences between the two pictures. The
specific formula of this loss function is as follows:

L2 =
−
(
∑

i

(

ti ∗ log (ei)+ (1− ti) ∗ log (1− ei)
))

N
(12)

where N denotes the total number of pixel points. The meaning of
i, ti, ei in the formula is the same as in Dice loss.

SSIM loss: SSIM loss is used tomeasure the structural similarity
between two images. It measures the similarity between two images
by brightness, contrast, and structure. The addition of SSIM
loss enables us to obtain higher quality images. the formula for
calculating SSIM is as follows:

SSIM (I1, I2 | ω) =
(2ω̄1ω̄2 + C1)+

(

2σω1ω2 + C2
)

(

ω̄2
1 + ω̄

2
2 + C1

) (

σ 2
ω1

+ σ 2
ω2

+ C2
) (13)

Where ω1 and ω2 are the chunked images of I1 and I2
respectively, ω̄1 and ω̄2 are the mean values of ω1, ω2 images
respectively, σω1ωn is the covariance ofω1 andω2 of the two images.
σω1 and σω2 are the variance of ω1 and ω2 respectively. The larger
SSIM value of the two pictures, the greater the structural similarity
of the two pictures, so when SSIM is used as a loss function, we take:

L3 = 1− SSIM
(

Is, Ig
)

(14)

where SSIM(Is, Ig) denotes the average of SSIM of all windows of
both Is and Ig images.

Edge preservasion loss: In semantic segmentation, the edge
information of the semantic region is most likely to be lost during
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encoding and decoding, thus, we introduce a gradient-based edge-
preserving loss function, the expression of which is:

L4 =
1

H ×W

∥

∥1IS −1Ig
∥

∥ (15)

where 1Is and 1Ig are the gradients of Is and Ig , which are
calculated as follows (using1Is as an example)

1Is =
∂2Is(x, y)

∂x2
+
∂2Is(x, y)

∂y2

∂2Is(x, y)

∂x2
= If (x+ 1, y)+ If (x− 1, y)− 2If (x, y)

∂2Is(x, y)

∂y2
= If (x, y+ 1)+ If (x, y− 1)− 2If (x, y)

(16)

The same formula for1Ig can be easily obtained.
In this paper, we utilize a combination of the above four loss

functions to form the hybrid loss function L.
The expressions are:

L = αL1 + βL2 + γ L3 + θL4

where α + β + γ + θ = 1
(17)

4. Experiment

4.1. Experimental datasets

GLAS (Glad segmentation) dataset: a public dataset from the
MICCAI 2015 challenge, consisting of 165 images from 16 H&E
(hematoxylin and eosin) stained slides of colorectal cancer tissue
sections. The original images varied in size, mostly 775 × 522. To
facilitate training, we preprocessed the dataset into images of size
256 × 256. The dataset was separated into training set and test set,
in which 144 images were divided into training set and 36 images
were divided into test set.

ISIC2018 dataset: This dataset is a dataset for skin lesion
analysis for melanoma detection, in which the part for medical
image segmentation includes 5460 RGB skin lesion images. The
dataset was divided into training set and test set. There were 3461
images of training set and 2002 images of test set.

Brain tumors dataset: This dataset was chosen from those
mentioned in the paper (Mazurowski et al., 2017; Buda et al., 2019),
which were obtained from The Cancer Imaging Archive TCIA and
The Cancer Genome Atlas. It includes brain slice images of 110
LGG patients, and after processing the dataset, we obtained a total
of 1311 brain images of various sizes. We divided the dataset into
two parts: the training set and the test set, including 1049 images as
training set and 262 images as test set.

SIIM-ACR dataset: This dataset consists of partial
anteroposterior chest radiographs from the public dataset of the
pneumothorax X-ray segmentation and recognition competition
held by the Society for Imaging Informatics in Medicine in
August 2019, with 101 X-ray chest images. (101 labeled data in
nii format, with 2 being the lungs, 3 being the heart, and 0 being
the background in the labeled data.) We performed correlation
processing on this dataset, retaining the lung labels from the
labeled data and using the lung images as the segmentation target

for these experiments. We divided the dataset into a training set
and a test set, with 81 images as the training set and 20 images as
the test set.

4.2. Implementation details

The proposed network was implemented based on the PyTorch
architecture, and an NVIDIA TITANVGPUwas used to accelerate
our experiments. During the experiments, we resized all the
datasets into 256 × 256 pixel images and chose the SGD optimizer
with momentum to train the network, where the momentum size
was 0.9, the learning rate was 0.01, and the weight decay parameter
in the optimizer was 0.0001. For experiments on GLAS and SIIM-
ACR datasets, we performed 400 iterations. For the Brian Tumors
dataset, we performed 100 iterations; for the ISIC dataset, we
performed 30 iterations.

4.3. Evaluation indicators

In order to evaluate the performance of the model more
comprehensively and accurately, five evaluation indices are chosen
to evaluate the results of our experiments in various aspects,
including Dice Coefficient (DICE), Intersection over Union (IoU),
Weighted F-measure (wFm), Enhanced-alignment Metric (Em),
and Structure-based Metric (Sm). These evaluation indices reflect
the degree of strengths and weaknesses of different aspects of
the model. Among them, the Dice and IoU indices are used to
evaluate the similarity degree between the pixel points of two
image collections; the wFm index intuitively generalizes the F-
measure by calculating the accuracy and recall rates alternately.
It extends the four basic quantities Tp, Tn, Fp, and Fn to
real values and considers the neighborhood information to give
different weights to different errors at different positions, thus
highlighting the target part of the evaluation by weighting. The
Em index can reflect both image-level statistical information and
local pixel matching information between two image collections;
the Sm index is a harmonic indicator of two structural
similarity indicators, region-oriented and object-oriented, which
can effectively respond to the structural similarity between two
image collections.

4.4. Experimental results and analysis

To verify the accuracy of our model and reflect the
segmentation effect of our model, we selected eight state-of-
the-art CNN-based networks for comparison, including U-Net
(Ronneberger et al., 2015), Segnet (Badrinarayanan et al., 2017),
R2U-Net (Alom et al., 2018), Attention U-Net (Oktay et al.,
2021), R2AU-Net (Zuo et al., 2021), BiSeNet-V2 (Yu et al.,
2021), KiU-Net (Valanarasu et al., 2020), and Transunet (Chen
et al., 2021). In the following, we will introduce the specific
situation of the experiment based on each of the four datasets
mentioned above.
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FIGURE 2

Qualitative results on GLAS dataset.

4.4.1. GLAS dataset
Figure 2 shows the visual comparison results between the

other models and the proposed model on the GLAS dataset.
As shown by the segmentation effect of the red rectangular
box labeled area in Figure 2, our network performs better, with
segmentation results closest to the Ground Truth and fewer under-
segmented tissue regions. In the first set of comparison experiments
shown in Figure 3, the networks U-Net, KiU-Net, R2AU-Net and
Segnet showed significant under-segmentation when segmenting
the target glandular cells at the labeled region due to the absence
of an attention mechanism. Specially, the BiSeNet-V2 network did
not identify the target glandular cells. Adoption of the attention
mechanism allows the network to reduce the interference of
background information and hence segment the semantic targets
more accurately, so the under-segmentation of target regions
is enhenced in the prediction results of Attention U-Net and
R2AU-Net compared to U-Net and R2U-Net. Our model and the
Transunet model introduce a multi-head attention mechanism to
further improve the network’s resistance to extraneous background
information, which makes a more accurate segmentation of the
target glandular cells at the lower right corner of this annotated
region. However, for the upper right glandular cells in this region,

the Transunet model showed blurred boundaries, which were
noticeably improved by introducing Edge preservasion loss to
protect the edge information during the training of our model.
Furthermore, in the second set of comparison experiments, only
our model does not show any missing regions, benefiting from
the usage of the multi-head attention mechanism, compared to the
other models.

As shown in Table 1, overall, our method slightly
outperformed the other methods in all indices on the GLAS
dataset, with MeanDice and MeanIoU reaching 0.931 and
0.874, respectively. It can be seen that the overall effect of
the proposed model is better. At the same time, our model
is 1% and 0.8% higher than the two suboptimal methods
in wFm and Sm, respectively, which is much higher than
the level. In the Em index, our model also achieves the
optimal value.

Meanwhile, compared with U-Net, Segnet, and R2U-Net
without the attention mechanism, our network is 1.7%, 0.9%,
and 7.5% higher in Em parameter, respectively. This reflects
that with the addition of the attention mechanism, the network
can better reduce the interference of background information on
semantic information.
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TABLE 1 The Quantitative result on the Glas dataset.

Dataset Method MeanDice MeanIoU wFm Sm Em

Glas U-Net (Ronneberger et al., 2015) 0.915 0.847 0.902 0.845 0.911

Segnet (Badrinarayanan et al., 2017) 0.925 0.863 0.913 0.854 0.919

R2U-Net (Alom et al., 2018) 0.858 0.784 0.842 0.786 0.853

Attention U-Net (Oktay et al., 2021) 0.929 0.870 0.920 0.860 0.922

R2AU-Net (Zuo et al., 2021) 0.915 0.850 0.910 0.837 0.900

BiSeNet-V2 (Yu et al., 2021) 0.921 0.856 0.912 0.847 0.916

KiU-Net (Valanarasu et al., 2020) 0.923 0.860 0.922 0.854 0.918

Transunet (Chen et al., 2021) 0.928 0.868 0.924 0.859 0.924

GL-Segnet (Ours) 0.931 0.873 0.930 0.868 0.928

The highest value is marked bold.

FIGURE 3

Qualitative results on ISIC dataset.

4.4.2. ISIC dataset
Figure 3 shows the visual comparison results of other models

and the proposed model on the ISIC dataset. As the example
images in columns 1 and 2 in Fig. 4, U-Net, Attention U-Net, KiU-
Net, R2U-Net, R2AU-Net, Transunet, and BiSeNet-V2 networks

all have obvious under-segmentation phenomena, while Segnet
and the model proposed in this paper do not have obvious
under-segmentation. However, the Segnet model suffers from an
obvious under-segmentation of the boundary detail information.
Meanwhile, in the area marked by the box in Figure 3, other
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TABLE 2 The Quantitative result on the ISIC dataset.

Dataset Method MeanDice MeanIoU wFm Sm Em

ISIC U-Net (Ronneberger et al., 2015) 0.950 0.844 0.890 0.891 0.932

Segnet (Badrinarayanan et al., 2017) 0.875 0.798 0.842 0.858 0.904

R2U-Net (Alom et al., 2018) 0.907 0.845 0.898 0.893 0.933

Attention U-Net (Oktay et al., 2021) 0.907 0.847 0.890 0.892 0.932

R2AU-Net (Zuo et al., 2021) 0.913 0.853 0.902 0.896 0.938

BiSeNet-V2 (Yu et al., 2021) 0.904 0.840 0.89 0.889 0.932

KiU-Net (Valanarasu et al., 2020) 0.894 0.826 0.875 0.879 0.924

Transunet (Chen et al., 2021) 0.880 0.807 0.859 0.868 0.913

GL-Segnet (Ours) 0.915 0.858 0.906 0.900 0.940

The highest value is marked bold.

networks failed to fully capture the edge details of the segmented
lesions, and the unclear edge boundaries were not well handled.
The proposed model used the Residual-Block module, improving
the ability of the network to learn features. Hence, the proposed
model can capture the edge details of the lesion, better handle
the segmentation details, and achieve more accurate segmentation
for the case of uneven grayscale and unclear edges in the
segmented image.

As shown in Table 2, on the ISIC dataset, the proposed model is
optimal in every evaluation index. Compared to the eight models,
Segnet and Transunet have lower segmentation accuracy on the
ISIC dataset, with Dice index of around 88%. U-Net, R2U-Net,
AttentionU-Net, BiSeNet-V2, and KiU-Net are closer in accuracy,
with the Dice index around 90%, and the rest of the indices are
very close. R2AU-Net performs better than them in accuracy,
while the proposed model is comparable to R2AU-Net in terms
of accuracy, with a Dice index only 0.01% higher than it. In
other indices, the proposed model is all slightly better than the
second-best R2AU-Net model. GL-Segnet outperforms BiseNet-
V2 and Transunet by 1.1 and 3.2 percentage points, respectively,
in the Sm evaluation metric. This indicates that the proposed
Attention-enhancing decoder of this network has better results in
the extraction of semantic information compared with the more
recent popular transformer.

4.4.3. Brian Tumors dataset
Figure 4 displays visual comparisons of the proposed model’s

comparison experiment using the Brain Tumors dataset. The
proposed model introduces context-rich operations such as MSC

and MSP modules, which enrich the features that the network
can use, and the use of Residual-Block also allows the network
to acquire more detailed information in the image. As a result,
the network model can better deal with segmentation details.
For example, in the box markers of the images in the first set
of comparison experiments in Figure 4, except for the R2AU-
Net model, which has a phenomenon of missing targets at the
markers, the segmentation effect of the rest of the networks is
good. However, the segmentation effect of the proposed model is
significantly better than the other models for the detailed part of the
“crabfoot-like” changes of the glial brain tumor at the box markers.

Meanwhile, compared with the proposed network, the Transunet
model only takes into account the long-distance dependence of
images and the fusion of contextual information, but not the local
dependence of images and the importance of channel information
in the process of fusion of contextual information, so its target is
missing in the necrotic area of the glioma marked by the box in the
second set of comparison experiments in Figure 4. In comparison,
Attention U-Net, R2AU-Net, and the network proposed introduce
the Attention Gate structure in the process of decoding, which
makes the network take into account the importance of channel
information in the process of fusion of image and contextual
information, so no target missing phenomenon occurs. The use of
MSC andMSP modules in the proposed model allows the network
to take into account the long-range dependence of images and
the local dependence of images, making the proposed model more
effective than AttentionU-Net and R2AU-Net and closer to the
results of manual segmentation by doctors.

As shown in Table 3, on the TCGA dataset, the proposed model
outperformed other methods in all indices. Compared to U-Net,
Segnet, R2U-Net, Attention U-Net, R2AU-Net, BiSeNet-V2, KiU-
Net, and Transunet, our model improved on MeanDice by 0.9%,
10.0%, 4.2%, 2.4%, 8.9%, 1.6%, 1.0%, and 0.5%, respectively. And
it improved by 2.7%, 15.5%, 6.0%, 3.9%, 10.7%, 2.8%, 1.8%, and
0.8%, respectively, on the MeanIoU. The proposed model also
outperformed the suboptimal model by 0.9%, 0.05%, and 0.02% on
wFm, Sm, and meanEm, respectively, so it is evident that the MSC

and MSP modules can extract multi-dimensional information,
which enables subsequent attentionmechanisms to make better use
of multi-level feature information.

4.4.4. SIIM-ACR dataset
Figure 5 shows the visual comparison results between state-

of-the-art models and propose model on the SIIM-ACR dataset.
The region-based lung segmentation method is simple in
calculation and fast in segmentation, but it is parameter-
sensitive and cannot accurately segment the inter-adhesive
lung regions. The introduction of the multi-headed attention
mechanism and Residual-Block enables the proposed model
to extract semantic feature information more accurately while
reducing the interference of background feature information on
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FIGURE 4

Qualitative results on Brain tumors dataset.

TABLE 3 The Quantitative result on the Brain Tumors dataset.

Dataset Method MeanDice MeanIoU wFm Sm Em

Brian Tumors U-Net (Ronneberger et al., 2015) 0.922 0.861 0.925 0.937 0.983

Segnet (Badrinarayanan et al., 2017) 0.831 0.722 0.790 0.858 0.928

R2U-Net (Alom et al., 2018) 0.889 0.817 0.884 0.917 0.965

Attention U-Net (Oktay et al., 2021) 0.907 0.836 0.892 0.922 0.975

R2AU-Net (Zuo et al., 2021) 0.842 0.770 0.845 0.889 0.925

BiSeNet-V2 (Yu et al., 2021) 0.915 0.849 0.920 0.932 0.983

KiU-Net (Valanarasu et al., 2020) 0.921 0.859 0.927 0.937 0.985

Transunet (Chen et al., 2021) 0.926 0.869 0.928 0.940 0.986

GL-Segnet (Ours) 0.931 0.877 0.937 0.945 0.988

The highest value is marked bold.

the segmentation task, thus enabling the network to segment
the inter-adherent lung regions more accurately. As shown
in the comparison results of the box-labeled regions in the
first set of comparison experiments in Figure 5. Except for the
proposed model and Attention U-Net, other networks have

obvious deviations when segmenting targets, including a lot of
Mis-segmented regions, and cannot guarantee the integrity of
segmentation results. At the same time, as the proposed network
introduces the loss function of edge information protection in the
training process, the model can segment the edge information of
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FIGURE 5

Qualitative results on SIIM-ACR dataset.

TABLE 4 The Quantitative result on the SIIM-ACR dataset.

Dataset Method MeanDice MeanIoU wFm Sm Em

SIIM-ACR U-Net (Ronneberger et al., 2015) 0.958 0.922 0.962 0.942 0.977

Segnet (Badrinarayanan et al., 2017) 0.908 0.835 0.872 0.881 0.937

R2U-Net (Alom et al., 2018) 0.941 0.891 0.942 0.922 0.968

Attention U-Net (Oktay et al., 2021) 0.960 0.926 0.920 0.942 0.977

R2AU-Net (Zuo et al., 2021) 0.859 0.755 0.859 0.851 0.925

BiSeNet-V2 (Yu et al., 2021) 0.957 0.919 0.961 0.940 0.976

KiU-Net (Valanarasu et al., 2020) 0.960 0.925 0.963 0.943 0.977

Transunet (Chen et al., 2021) 0.959 0.922 0.952 0.939 0.975

GL-Segnet (Ours) 0.969 0.942 0.972 0.952 0.982

The highest value is marked bold.

the target more accurately, as shown in the box-labeled regions of
the images in the second set of comparison experiments in Figure 5.
The lung lobe edges of the prediction results of other comparison
experiments, except the proposed model, show obvious jaggedness.
As for the predictions of the Attention U-Net model, which does

not show obvious redundant regions in the prediction results of
the images in columns 1 and 2, its segmentation results of the lung
lobe edges also show obvious jaggedness. However, the predicted
image edges of the propose model are smooth and are closest to the
Ground truth manually labeled by the doctor.
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TABLE 5 Ablation study on the validity of AGs, ViT, and context-rich operations.

Variants Module Dataset

AGs ViT ER Glas ISIC Brain Tumors SIIM-ACR

Mean
Dice

Mean
IoU

Mean
Dice

Mean
IoU

Mean
Dice

Mean
IoU

Mean
Dice

Mean
IoU

Backbone 0.915 0.847 0.905 0.844 0.922 0.861 0.958 0.922

U w/AGs+ViT X X 0.929 0.869 0.913 0.854 0.928 0.974 0.966 0.936

U w/AGs+ER X X 0.924 0.962 0.905 0.846 0.924 0.865 0.967 0.937

U w/ViT+ER X X 0.927 0.866 0.910 0.850 0.929 0.873 0.965 0.935

GL-Segnet (Ours) X X X 0.931 0.873 0.915 0.858 0.931 0.877 0.969 0.942

The highest value is marked bold.

TABLE 6 Ablation study on the e�ect of the ViT model’s size.

Variants Dataset

Glas ISIC Brain Tumors SIIM-ACR

Mean Dice Mean IoU Mean Dice Mean IoU Mean Dice Mean IoU Mean Dice Mean IoU

Base 0.931 0.873 0.915 0.858 0.931 0.877 0.969 0.942

Large 0.929 0.871 0.911 0.851 0.929 0.873 0.971 0.945

The highest value is marked bold.

As shown in Table 4, the proposed model improved MeanDice,
wFm, and Sm indices by 0.09% over the suboptimal model on
the SIIM-ACR dataset, and its MeanIoU and meanEm indices
increased significantly compared to Transunet, KiU-Net, and
Attention U-Net, with MeanIoU and meanEm improved by up
to 1% and 0.07%, respectively. This can show the superiority of
the attention mechanism used in the proposed model. Among the
models used in the experiments, the proposed model achieves the
best results for medical image segmentation.

4.4.5. Ablation experiment
In order to explore the effects of different factors on model

performance, we conducted a series of ablation experiments on the
above-mentioned dataset by means of control variables, and this
experiment mainly contains the following points:

· The validity of AGs, ViT, and context-rich operations
· The effect of the ViT model’s size
· The effect of the location, mode and number of MSP and MSC

modules
· Validity of AGs, ViTs, and context-enrichment operations.

Validity of AGs, ViT, and context-rich operations: To further
analyze the contributions of AGs, ViT, and context-rich operations
in the model, we compared the performance of four variants of
the model with U-Net as the backbone, including U-Net, under
the above data set by comparing the values of MeanIoU and
MeanDice. The experimental results are shown in Table 5, where
“U w/AGs+ViT” denotes the U-Net model with the addition of
the AGs module and ViT module; "U w/AGs+ER" denotes the U-
Net model with the addition of the AGs module and context-rich
module; and “U w/ViT+ER” denotes the U-Net model with the
addition of the ViT module and the context-rich module.

From the results in the Table 5, we can see that the MeanDice
and MeanIoU of the backbone network on the four datasets are
0.915, 0.847; 0.905, 0.844; 0.922, 0.861; 0.958, 0.922. On each
dataset, the indices of the variant model with the addition of
the relevant modules are higher than the backbone and lower
than the proposed model. The three modules introduced improve
the network’s ability to extract features to varying degrees, which
reflects the effectiveness of the relevant modules introduced in
the paper.

Effect of the ViT model’s size: Two models, “base” and “large”,
are experimentally trained. The size of hidden layers, the number
of transformer layers and the number of attention headers in each
transformer structure are 12, 768, 3,072, and 24, 1,024, 4,096,
respectively. The experimental results are shown in Table 6, which
shows that with the same number of iterations, the “large” model
does not obtain more accurate segmentation results on the GLAS,
ISIC, and Brain Tumors datasets and has a huge computing power
overhead. Therefore, although its performance on the SIIM-ACR
dataset is slightly better than that of the “base” model. we finally
chose the “base” model for the experiments.

From the data in Table 6, it can be seen that the “base” model
is lower than the “large” model by 0.2 and 0.3 percentage points
on the evaluation indexes of Mean Dice and Mean IoU on the
SIIM-ACR data, but the two evaluation indexes on the other three
data sets are slightly higher than the large model. The "base"
model has reached 0.931, 0.915, and 0.931 respectively in the
Mean Dice evaluation indicators on the three data sets of Glas,
ISIC and Brain Tumors, and is better than the “large” model in
terms of model size based on the reason of fewer parameters.
Therefore, we finally selected the network structure based on the
“base” model.

Effect of the role position, mode and number of MSC and

MSP modules: To explore the best way to use the MSC and MSP

modules proposed in this paper, four variants of the proposed
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TABLE 7 Ablation study on the e�ect of the role position, mode and number of MSC and MSP modules.

Variants Dataset

Glas ISIC Brain Tumors SIIM-ACR

Mean Dice Mean IoU Mean Dice Mean IoU Mean Dice Mean IoU Mean Dice Mean IoU

L1-SPI 0.928 0.868 0.906 0.842 0.93 0.875 0.966 0.936

L2-PRL 0.923 0.860 0.910 0.850 0.926 0.868 0.968 0.940

L3-PRL 0.924 0.862 0.91 0.849 0.929 0.873 0.968 0.939

L123-PRL 0.925 0.863 0.912 0.853 0.922 0.860 0.968 0.939

L-PRL (ours) 0.931 0.873 0.915 0.858 0.931 0.877 0.969 0.942

The highest value is marked bold.

model with different positions, modes, and numbers of MSC and
MSP modules were trained in this experiment. The experimental
results are shown in Table 7, where “L1-SPI” denotes the variant
in which the above modules are used serially and act on the jump
connection vector of Layer1, and “L2-PRL” denotes the variant
in which the above modules are used in parallel and act on the
jump connection vector of Layer1. “L2-PRL” denotes the variant
model where the above modules are used in parallel and act on the
jump connection vector of Layer2. “L3-PRL” denotes the variant
model where the above module are used in parallel and act on the
jump connection vector of Layer 3, “L123-PRL” denotes the variant
model where the above modules are used in parallel and act on the
jump connection vector of Layer1, Layer2, Layer3 simultaneously.
From the experimental results, we know that the model with the
MSC and MSP modules acting on the jump connection vector of
Layer1 in parallel achieves the best experimental results.

From Table 7, we can clearly see that the model with the L-PRL
method is significantly better than the other four methods for the
two evaluation metrics on the four data sets. The L-PRL approach
outperforms the suboptimal model by 0.5%, 0.5%, 0.2%, and 0.2%
on the Mean IoU metric on the four data sets, respectively. Further
thinking, the parallel use ofMSC andMSP can maximize the ability
of the network to extract features, and the use at the first layer can
effectively extract the texture and boundary features of the images.

5. Conclusion

In this paper, we attempt to solve the challenge of semantic
segmentation of medical images in different medical scenarios,
such as image segmentation tasks of rectal adenocarcinoma cells,
skin cancerous regions, brain glioma and thoracic organs. In
order to cope with the problem of diverse and complex irrelevant
background features of medical images in many different medical
scenarios, we propose a Global-Local Representation Learning
Net for Medical Image Segmentation (GL-Segnet).To solve the
intensely interfering irrelevant background information to segment
the target, we conceive a Global semantic feature extraction
module which can improve the accuracy of model predictions.
Nevertheless, to consider simultaneously addressing both long-
range and short-range dependencies, and emphasize the geometric
detail information implied in the shallow feature maps resulting
in the dropping of crucial features, we propose a Context-rich
connection module. Experimental results on the four datasets
show that the proposed model performs better in medical image

segmentation compared to some of the state-of-the-art models. In
the future, we will extend the method to segment 3D images and
apply this method in an exact medical scenario and modify the
model slightly to suit it better.
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