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Havlíček, Stadler and Kolařík. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Insight into the genomes of
dominant yeast symbionts of
European spruce bark beetle, Ips
typographus
Tian Cheng1,2, Tereza Veselská1, Barbora Křížková1, Karel Švec1,
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Spruce bark beetle Ips typographus can trigger outbreaks on spruce that

results in significant losses in the forest industry. It has been suggested that

symbiotic microorganisms inhabiting the gut of bark beetles facilitate the

colonization of plant tissues as they play a role in the detoxification of plant

secondary metabolites, degrade plant cell wall and ameliorate beetle’s nutrition.

In this study, we sequenced and functionally annotated the genomes of five

yeasts Kuraishia molischiana, Cryptococcus sp., Nakazawaea ambrosiae, Ogataea

ramenticola, and Wickerhamomyces bisporus isolated from the gut of Ips

typographus. Genome analysis identified 5314, 7050, 5722, 5502, and 5784

protein coding genes from K. molischiana, Cryptococcus sp., N. ambrosiae,

O. ramenticola, and W. bisporus, respectively. Protein-coding sequences were

classified into biological processes, cellular and molecular function based on

gene ontology terms enrichment. Kyoto Encyclopedia of Genes and Genomes

(KEGG) annotation was used to predict gene functions. All analyzed yeast

genomes contain full pathways for the synthesis of essential amino acids

and vitamin B6, which have nutritional importance to beetle. Furthermore,

their genomes contain diverse gene families related to the detoxification

processes. The prevalent superfamilies are aldo-keto reductase, ATP-binding

cassette and the major facilitator transporters. The phylogenetic relationships

of detoxification-related enzymes aldo-keto reductase, and cytochrome P450

monooxygenase, and ATP-binding cassette are presented. Genome annotations

also revealed presence of genes active in lignocellulose degradation. In vitro

analyses did not confirm enzymatic endolytic degradation of lignocellulose;

however, all species can utilize and pectin and produce a large spectrum of

exolytic enzymes attacking cellulose, chitin, and lipids.
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1. Introduction

The European spruce bark beetle, or Eight-toothed spruce bark
beetle, Ips typographus (Coleoptera: Scolytinae), infecting Norway
Spruce (Picea abies) is one of the most destructive forest pests in
Europe (Biedermann et al., 2019). Bark beetles are known to vector
microorganisms that assist them during plant phloem colonization
(Six, 2013; Hofstetter et al., 2015). They are sources of nutrients,
i.e., sterols, vitamins, essential amino acids, and other nitrogenous
compounds (Ayres et al., 2000; Bentz and Six, 2006; Veselská et al.,
2019; Ibarra-Juarez et al., 2020), facilitate plant tissue colonization
by detoxification of tree defense compounds (e.g., Zhao et al., 2019)
or necrotize healthy plant tissue by which they also can cause tree
mortality (Hofstetter et al., 2015; Li et al., 2022). It is assumed that
microorganisms introduced by beetles under the bark of a tree have
a greater effect on the wood modifications than beetle themselves
(Hýsek et al., 2021).

Bark beetles’ habitat is a hot spot of microbial diversity
and this is also true for I. typographus. Despite long-term
investigation of its fungal assemblage, novel fungal associates of
this beetle are continuously being discovered (Linnakoski et al.,
2016a; Jankowiak et al., 2017). Recent studies reported spatial
and temporal differences in fungal assemblages (Linnakoski et al.,
2016b; Netherer et al., 2021) and showed that volatile compounds
influence the beetle-fungus interactions (Kandasamy et al., 2019).
Traditionally the most studied are ectosymbiotic filamentous fungi
as they massively grow around and inside beetle’s galleries, often
causing coloration of surrounding plant tissues or having plant
pathogenic potential. Endoconidiophora polonica and Ophiostoma
bicolor, together with Grosmannia penicillata and G. europhioides,
are well-known filamentous fungal symbionts of I. typographus,
having ability to detoxify host tree defense system (Zhao et al., 2019;
Netherer et al., 2021). Although yeasts have been recognized as
constant components in the guts of bark beetles (Rivera et al., 2009;
Davis, 2015) including I. typographus (Chakraborty et al., 2020;
Veselská et al., 2023), they were mostly overlooked in majority
of the previous studies, mainly because of the difficulties in their
taxonomic identification and absence of phytopathogenicity.

Recent studies (Barcoto et al., 2020; Ibarra-Juarez et al., 2020)
emphasize the importance of whole microbial community, called
holobiont (Six, 2013), including endosymbiotic gut inhabiting
yeasts and bacteria. It was shown that gut of bark beetles provides
an environment for microbial inhabitation (Engel and Moran,
2013), where plant allelochemical digestion, detoxification, and
nutritional exchange take place (Linser and Dinglasan, 2014;
Stefanini, 2018). Thus, gut-associated fungi can facilitate those
important intestinal processes (Itoh et al., 2018). Despite the
functional importance of gut inhabiting fungi, factors that maintain
these complex interactions are still poorly understood (Biedermann
and Vega, 2020) and there are very few studies that have
comprehensively investigated bark beetles’ microbial intestinal
community, particularly in terms of genomics. These studies show
that yeasts together with bacteria belong to the first organisms that
inhabit bark beetle galleries and synergically prepare galleries for
growth of filamentous fungi (Barcoto et al., 2020; Ibarra-Juarez
et al., 2020).

In the prior study (Veselská et al., 2023), we described
I. typographus gut core microbiome based on the

metatranscriptomic and DNA metabarcode analysis. We
found that it is largely dominated by ascomycetous yeasts
(Saccharomycetales), especially by Kuraishia molischiana, which
took 25.6% of total fungal reads, Nakazawaea ambrosiae, 20.7%
of the reads, Wickerhamomyces bisporus, 16.8% of the reads and
Ogataea ramenticola, 2% of the reads. One unidentified species of
the genus Cryptococcus (Basidiomycota: Tremellomycetes) with
0.1% of the reads, was selected as representative of basidiomycetous
yeasts, which represent another important component of intestinal
yeast diversity. On NCBI database, assembled genomes of
K. molischiana (PPKW02; 10.36 Mb, 50.7% GC) and O. ramenticola
(PPKK02; 12.99 Mb, 32.3% GC) are available; however, they are not
annotated. Genomes of the other above-mentioned yeast species
have not been sequenced yet.

In the present study, we attempt to study dominant gut-
associated yeasts with an insight in their genomes. Yeast species
remain an untapped source of carbohydrate-active enzymes
(CAZymes) since their contribution to biomass degradation has
been largely overlooked (Sun and Cheng, 2002; Zhao et al., 2014;
Despres et al., 2016). In the present study, we focus on the analysis
of yeasts’ CAZymes targeting plant cell wall, which is comprised
mainly by pectin, cellulose, hemicellulose, other polysaccharides,
lignin, lipids and proteins (Glass et al., 2013). We also searched
for genes related to detoxification processes as the detoxification
of plant secondary metabolites is a complex process for the
bark beetles and their associated symbionts. It is performed in
different physiological phases involving a variety of genes and
proteins. At present, it is known that in microorganisms, enzymes
such as cytochrome P450 (CYP) monooxygenases, glutathione-S-
transferases (GST), multicopper oxidases, carboxylesterases, flavin-
containing monooxygenases (FMO), and aldo-keto reductases
(AKR) participate in xenobiotics detoxifications (Sheehan et al.,
2001; Barski et al., 2008; Sehlmeyer et al., 2010; Lah et al., 2013;
Ramya et al., 2016). ATP-binding cassette (ABC) transporters,
major facilitator superfamily (MFS), and multidrug and toxic
compound extrusion (MATE) transporters are involved in drug
and stress resistance (Lah et al., 2013; Eisinger et al., 2018). Finally,
we were looking for pathways related to synthesis of nutrients
essential for beetle development. Such information fills the existing
knowledge gaps and provides a scientific basis for future studies in
the functional analysis of gut associated fungi.

2. Materials and methods

2.1. Collection, isolation, and
identification of yeast strains

Strains were isolated from the gut of I. typographus larvae
collected within a study of its intestinal microbial diversity
(Veselská et al., 2023). In brief, larvae were collected during
September and October 2020 in the surroundings of forest area in
Nižbor (Czechia, 49◦59′09.9′′N 13◦56′47.5′′E, 390 m.a.s.l.). Larvae
were taken out of the galleries and surface sterilized by subsequent
washing with 70% ethanol, 2% Tween 80 (Avantor, USA) and
sterile distilled water. The larvae were dissected straight after
collection, their guts were homogenized and plated in various
dilutions (diluted with saline) on Petri dishes with YES (5 g of
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yeast extract, 30 g of glucose, 20 g agar, 1 l of distilled water)
and antibiotics (streptomycine and chloramphenicol, 60 mg/l).
Cultivation took place for 5–7 days at 24◦C in dark. DNA was
extracted by Nucleo Spin kit (Machery Nagel), the ITS sequence
was used for determination based on the BlastN similarity search
in NCBI Genbank database. Cultures were deposited in Culture
Collection of Fungi (CCF, Department of Botany, Faculty of
Sciences, Charles University, Prague) as Cryptococcus sp. CCF
6641, Kuraishia molischiana CCF 6642, Nakazawaea ambrosiae
CCF 6643, Ogataea ramenticola CCF 6644, and Wickerhamomyces
bisporus CCF 6645.

2.2. Genome sequencing, assembly, and
evaluation

Genomic DNA (gDNA) of yeasts was obtained with Nucleo
Spin kit (Machery Nagel) kit. DNA yield was quantified on Qubit
2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA)
using Qubit dsDNA BR Assay Kit and DNA quality was checked on
Nanodrop (NanoDropTM 2000 c, ThermoFisher scientific). gDNA
samples were sent to Macrogen NGS sequencing service center
(Amsterdam, Netherlands) for library preparation and sequencing.
A TruSeq DNA PCR free (350) library was prepared and genomes
were sequenced on Illumina NextSeq 500 system with 2 × 151 nt
PE, resulting in a total of 38.96 Gb and roughly 6.49 Gb read
bases per sample. The quality of raw data was analyzed with
FASTQC v 0.11.9 (Andrews, 2010). Sequencing adapters and low-
quality reads were trimmed with Trimmomatic v 0.39 (Bolger et al.,
2014), k-mer = 5 was used to remove leading and trailing bases
with Phred scores lower than 33, as well as reads shorter than
150 bp. De novo assembly was performed using SPAdes v 3.13.1
(Bankevich et al., 2012) in Python v 3.8.10 environment with –
careful setting, k-mer = 121 was selected. The completeness of
assemblies was evaluated with Benchmarking Universal Single-
Copy Orthologs [BUSCO v5.2.1 (Seppey et al., 2019)] to
search against the saccharomycetes_odb10 database for Kuraishia
molischiana, Nakazawaea ambrosiae, Ogataea ramenticola, and
Wickerhamomyces bisporus. The assembly of Cryptococcus sp.
was searched against the tremellomycetes_odb10 database. The
assessment of those assemblies was performed with Quast v 5.0.2
(Gurevich et al., 2013).

2.3. Gene prediction and genome
annotation

Gene prediction was performed using AUGUSTUS v 3.1.0
(Stanke et al., 2006) with Saccharomyces cerevisiae S288C as
reference species. Gene Ontology (GO) annotation was carried out
in eggnog-mapper v 2 (Cantalapiedra et al., 2021) with an e-value
of 10−3. The GO terms were distributed by R package GO.db
(Carlson et al., 2019) and plotted by ggplot (Wickham, 2006).
Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation
was carried out with BlastKOALA (Kanehisa et al., 2016). KEGG
pathways were performed with KEGG mapper (Kanehisa and Sato,
2020).

2.4. Identification of
carbohydrate-related proteins

Carbohydrate active enzymes (CAZymes) were identified in the
predicted proteins of each genome with hmmsearch in HMMER
3.3.2 (Mistry et al., 2013) against the CAZy database dbCAN2
(Zhang et al., 2018)1 version 8. The e-value was set as 1e–5.

2.5. Annotation and phylogenetic
analysis of detoxification-related
enzymes

The predicted enzymes associated with the detoxification
process were identified with HMMER E-value 1e–5 (Mistry
et al., 2013) against specific domain from Pfam database (Mistry
et al., 2021): cytochrome P450 monooxygenase (PF00067),
aldo-keto reductases (PF00248), carboxylesterase (PF00135),
flavin-containing monooxygenase (PF00743), glutathione
S-transferase (PF13409, PF14497, PF02798, PF13417, PF00043, and
PF13410), multicopper-containing oxidases (PF07732, PF00394,
and PF07731), ATP-binding cassette (ABC) transporter (PF00664,
PF00005, PF06472, and PF00004), multidrug and toxic compound
extrusion (MATE) (PF01554) and major Facilitator Superfamily
(MFS) (PF07690, PF16983, PF05631, PF00083, PF12832, PF06779,
PF13347, and PF05977). The results were verified and filtered
with BlastP (e-value 1e-5) using SEG, a word-size six letters and
BLOSUM62 matrix.

Multiple sequence alignment was carried out with MAFFT
v 7.453 (Rozewicki et al., 2019) using maxiterate 1000. The
phylogenetic trees were performed with PhyML v 3.0 (Guindon
et al., 2010). The best evolutionary model for protein sequences was
calculated with Akaike method and likelihood-based method was
selected as aLRT SH-like and bootstrap analysis repeated for 100
times. According to the BlastP results and phylogenetic analysis,
enzymes of aldo-keto reductases, cytochrome P450, and ABC
transporter family were classified into specific groups. Phylogenetic
trees were visualized and edited with iTOL (Letunic and Bork,
2021).

2.6. Prediction of localization of
detoxification-related enzymes

The subcellular localization of detoxification related enzymes
was predicted with Protcomp-AN v 6.0 (Klee and Ellis, 2005),
molecular mass isoelectric point (pI) was performed with Protein
isoelectric point calculator (Kozlowski, 2016).

2.7. Extracellular enzyme activities

As our functional analysis predicts presence of pathways for
the degradation of plant cell wall components, in the next step we

1 https://bcb.unl.edu/dbCAN2/download/Databases
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verified them by in vitro degradation tests. The analyzed enzymes
are listed in Table 1. Activity of endolytic enzymes was assessed
using various chromogenic substrates (Megazyme, Bray, Ireland),
whereas activity of exolytic enzymes was assessed using fluorogenic
substrates (Sigma-Aldrich). For endolytic enzyme analyses, yeasts
were cultivated in submerged media in 250 ml Erlenmeyer flasks
on rotary shaker (200 rpm) at 24◦C. Basic medium (BM) consisted
of 1 g pepton, 1 g yeast extract, 1 g (NH4)2HPO4, 0.5 g K2PO4,
0.5 g MgSO4.7H2O and substrates specific to the enzyme tested
[3 g of cellulose, 6 g xylan birchwood, 15 g galactomannan (Locust
beam gum), 6 g of starch, 1.5 g of amylopectin and 13.5 g of
dextran] in 1 l of McIlvaine buffer, pH 4.5. The cultivation time
was determined using the glass tube test. Glass tubes containing
water agar (20 g agar in 1 L distilled water) were overlaid with a thin
layer of a specific chromogenic substrate dissolved in water agar and
the agar surface was inoculated with the tested fungi and cultured
at 24◦C. Enzymatic degradation was manifested by diffusion of
the chromogenic substrate into the water agar. At this point, the
submerged cultivation in the Erlenmeyer flask was stopped. If no
staining of the water agar was evident after 14 days of cultivation
in the glass tubes, submerged cultivation was also stopped and
enzyme activities were evaluated. Enzymes were extracted into
extraction buffers as it is recommended by manufacturer for 2 h
at 4◦C. After extraction, the mixture was centrifuged for 10 min at
3,000 rpm to exclude the medium and fungal cells. The supernatant
containing extracellular enzymes was further filtered through filter
paper to remove remaining solid parts. We used manufacturer’s
protocols for measurement and calculation of enzymatic activities.
Trichoderma viride CCF 4516 was used as a positive control for
enzymatic degradation of cellulose, xylan and casein as it is known
to degrade these substrates (Gomes et al., 1992; Kredics et al., 2005).
Sterile media without inoculated fungi served as blanks.

To measure exolytic activity, yeast strains were also cultured
in submerged medium in 250 ml Erlenmeyer flasks on a rotary
shaker (200 rpm) at 24◦C. The medium consisted of yeast extract
(5 g/l), peptone (2 g/l), glucose (2 g/l), casein (2 g/l), cellulose
(3 g/l), lignin (3 g/l), starch (3 g/l), lime phloem (63 g/l). The yeast
grew for 14 days. Sodium acetate, pH 4.5, was used for enzyme
extraction. The fluorescence of the released reaction products was
measured as previously described (Baldrian, 2009) using a method
adapted from Vepsäläainen et al. (2001). The fluorescence value of
each MUF fluorogenic substrate was corrected by subtracting the
background fluorescence of the growth medium. Laccase activity
(EC 1.10.3.2) was measured by monitoring the oxidation of ABTS
[2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (Bourbonnais
and Paice, 1990) in citrate-phosphate buffer (100 mM citrate,
200 mM phosphate, pH 5.0)]. The formation of the resulting green
dye was evaluated spectrophotometrically at 420 nm.

3. Results

3.1. Genome sequencing and assembly

General genome features, e.g., genome size, scaffolds number,
N50, L50, number of predicted genes, GC content, completeness of
assembly and NCBI accession numbers are summarized in Table 2.
The number of reads generated by Illumina sequencing ranged

from 39,806,602 to 47,849,884 reads with an average count of
43,006,421. Established genomes range in size from 9.86 to 18.3 Mb.
Genomes assembled with Spades resulted in 315–799 scaffolds and
were predicted to contain 5,314–7,050 genes, and GC contents from
34.5 to 59.3%. The N50 of five genomes range from 197,085 to
1,183,430, while L50 align from 5 to 26. BUSCO assessment results
showed that these assembles are in high quality with around 96% of
genes were covered for all five species.

3.2. GO enrichment and KEGG pathway
annotation

Gene Ontology enrichment analysis indicated that about 63.06,
32.96, 59.14, 63.54, 70.76, and 70.65% genes from K. molischiana,
Cryptococcus sp., N. ambrosiae, O. ramenticola, and W. bisporus
were mapped to GO terms (Figure 1 and Supplementary Table 1).
They were matched to three ontologies: molecular function, cellular
component, and biological process. They were highly enriched
in cellular process, metabolic process, intracellular anatomical
structure, organelle, cytoplasm, binding and catalytic activity.
Cryptococcus sp. differed from the other considered species in
several functions, such as antioxidant activity, biological adhesion,
multicellular organismal process, carbon utilization, immune
system process, biological phase and rhythmic process.

TABLE 1 Extracellular enzyme analyzed in our study.

Target Enzyme (endo or
exolytic)

Substrate

Cellulose endo-1,4-β-D-glucanase (endo) Azo-CM-Cellulose

Cellobiohydrolase (exo) MUF-β-D- cellobioside

β-glucosidase (exo) MUF-β-D-glucopyranoside

Hemicellulose endo-1,4-β-D-xylanase (endo) Azo-Xylan (Birchwood)

β-xylosidase (exo) MUF-β-D-xyloside

Pectin endo-1,4-β-D-mannanase
(endo)

Azo-Carob Galactomannan

endo-1,5-α-L-arabinanase
(endo)

Red Debranched Arabinan (Sugar
Beet)

β-galactosidase (exo) MUF-α-D-galactoside

β-mannosidase (exo) MUF-β-D-mannoside

α-glucuronidase (exo) MUF-α-D-glucuronide hydrate

Starch α-amylase (endo) Red Starch

Pullulanase (endo) Red Pullulan

Lignin Laccase (endo) ABTS

Proteins endo-protease (endo) Azocasein

Chitin Chitinase (exo) MUF-β-D-N.N-diacetylchitobiose
hydrate

Phosphate
monoester

Acid phosphomonoesterase
(exo)

MUF-phosphate

Triglycerides Lipase (exo) MUF-oleate

MUF, 4-Methylumbelliferone; ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid).
All MUF based substrates and ABTS were purchased from Sigma-Aldrich, other substrates
were purchased from Megazyme.
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TABLE 2 Genome assembly statistics of yeasts isolated from the gut of Ips typographus.

Species Assembly
size (Mb)

Number of
scaffolds

N50 (bp) L50 Predicted
genes

GC (%) BUSCO (%) NCBI WGS
project

K. molischiana CCF 6642 9.86 354 475.982 8 5.314 54.8 98.4 JANBXH01

Cryptococcus sp. CCF 6641 18.30 629 235.228 26 7.050 59.3 95.9 JANBXI01

N. ambrosiae CCF 6643 13.20 315 546.084 5 5.722 42.3 98.6 JANBXG01

O. ramenticola CCF 6644 12.20 269 1.183.430 4 5.502 34.5 98.4 JANBXF01

W. bisporus CCF 6645 11.70 628 300.060 13 5.784 35.9 97.5 JANBXE01

FIGURE 1

Gene Ontology (GO) terms enrichment in five genomes. The GO annotation is presented in Y-axis, while species names were labeled in X-axis.
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FIGURE 2

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation.

FIGURE 3

Carbohydrate active enzymes (CAZymes) present in the yeasts’ genomes. (A) Comparison of CAZymes classes in five species. (B) Comparison of
gene counts related to celluloses, hemicelluloses and pectin in six species. GT, glycosyl transferase; GH, glycoside hydrolase; CE, carbohydrate
esterase; CBM, carbohydrate-binding module; PL, polysaccharide lyase; AA, auxiliary activity.
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TABLE 3 Number of genes involved in the detoxification process.

K. molischiana
CCF 6642

Cryptococcus
sp. CCF 6641

N. ambrosiae
CCF 6643

O. ramenticola
CCF 6644

W. bisporus
CCF 6645

Aldo-keto reductases 17 8 21 19 25

Carboxylesterase 6 2 6 1 3

Cytochrome P450 monooxygenase 4 6 5 4 5

Flavin-containing monooxygenase 3 5 5 3 15

Glutathione S-transferase 6 4 9 8 11

Multicopper oxidases 2 3 4 2 5

Transporter ABC 35 37 30 29 31

Multidrug and toxic compound extrusion (MATE) 5 0 5 5 6

Major facilitator Superfamily (MFS) 132 41 127 113 154

FIGURE 4

Maximum-likelihood tree of aldo-keto reductases predicted from all five yeast genomes.

To investigate the function of proteins in those five species, the
annotation based on BlastKOALA (Kanehisa et al., 2016) against
the KEGG database was performed. It was possible to annotate
58.2, 57.4, 60.1, 56.3, and 35.6% of conserved sequences from
K. molischiana, N. ambrosiae, O. ramenticola, W. bisporus, and
Cryptococcus sp., respectively, Figure 2. As a result, the highest
enriched system was “Genetic information processing,” followed
by “Carbohydrate metabolism,” and “Cellular processes.” Vitamin
B6 compounds, are synthetized and metabolized in all five species
(Supplementary Figure 1). Additionally, essential amino acids
such as arginine, lysine, phenylalanine, tyrosine, valine, leucine,

and isoleucine are biosynthesized in these yeast strains as well
(Supplementary Figure 2).

3.3. Identification of carbohydrate-active
enzyme (CAZyme)

The carbohydrate-active enzyme (CAZyme) gene contents
were predicted for all five genomes (Figure 3A, Supplementary
Figure 3 and Supplementary Table 2) in this study. These
CAZymes are classified into six classes: auxiliary activity (AA),

Frontiers in Microbiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1108975
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1108975 March 28, 2023 Time: 16:58 # 8

Cheng et al. 10.3389/fmicb.2023.1108975

carbohydrate-binding module (CBM), carbohydrate esterase
(CE), glycoside hydrolase (GH), glycosyltransferase (GT), and
polysaccharide lyases (PL). Nakazawaea ambrosiae has more
CAZymes (221) than the other four studied species, while the
Cryptococcus sp. has the smallest CAZymes count (157). GH
accounted for almost half of the identified enzymes (83–98) in
those species except for Cryptococcus sp. (41), followed by GH (63–
79), AA (13–28), CE (14–24), and CBM (4–9). PL (0–5) comprised
only a few genes and is absent in Nakazawaea ambrosiae.

The number of identified genes regulating plant cell wall-
degrading enzymes varies in five yeast species (Figure 3B).
Wickerhamomyces bisporus has the highest (71) and Cryptococcus
sp. has the least number of genes (35). The number of genes
related to cellulose degradation is lower than those related to
hemicelluloses and pectin degradation in all genomes.

3.4. Analysis of genes related to
detoxification

More than 200 detoxification related genes were identified
from each species, K. molischiana (225), N. ambrosiae (235),
O. ramenticola (200), and W. bisporus (276), except for
Cryptococcus sp. (110) (Table 3 and Supplementary Table 3).

We predicted presence of 115 aldo-keto reductase enzymes,
with lengths from 107 to 599 amino acids, pIs from 4.62 to 9.00,
and predicted molecular weights between 12.02 and 65.57 kDa.
They were predicted to be localized in the cytoplasm, plasma
membrane, nucleus, mitochondria, vacuoles, and the bonding
membranes of the Golgi apparatus. They can be classified
into 9 subfamilies (Figure 4), aryl-alcohol dehydrogenases,
D-arabinose 1-dehydrogenases, oxidoreductases, and NAD(P)H-
dependent D-xylose reductases. They were found in all five
genomes with 22, 7, 24, and 10 members, respectively. There
are 9, 14, 10, and 16 genes identified in subgroups pyridoxal
reductases, NAD(P)H-dependent reductases, D-arabinose
1-dehydrogenases (NAD(P)+) heavy chain, and glycerol 2-
dehydrogenases (NAD(P)+), respectively. These subgroups were
absent in Cryptococcus sp. Three genes putatively encoding
for aldehyde reductase I were found in Cryptococcus sp. and
N. ambrosiae.

We identified 29 cytochrome P450 (CYP) monooxygenases
with amino acids lengths from 126 to 591, molecular weights from
13.78 to 66.48 kDa, and pIs from 4.9 to 8.51. They were predicted to
localize in cytoplasm, plasma membrane, mitochondria, bounding
membrane of mitochondria and endoplasmic reticulum. The
topology tree of CYP monooxygenases showed that they can
be classified into six subfamilies (Figure 5), with 7, 6, 5, 2, 4,
and 5 members for CYP51, CYP61, CYP501, CYP56, CYP52,
and CYP5252, respectively. Sequences in the CYP51 and CYP61
subfamilies were observed in all five species. CYP501 and
CYP5252 were absent in Cryptococcus sp. CYP52 only existed
in Cryptococcus sp., while CYP56 was present in W. bisporus
genome.

ATP binding cassette (ABC) transporters were predicted from
those five genomes, they can be classified into seven subfamilies
(Figure 6): 35 pleiotropic drug resistance, 10 eye pigment
precursor transporter, 62 drug conjugate transporter, 7 heavy metal

transporter, 13 α-factor-pheromone transporter, 43 mitochondrial
peptide exporter, and 11 peroxisomal fatty acyl CoA transporter.
Their amino acid lengths varied from 120 to 2058 aa, molecular
weights from 13.14 to 230.256 kDa, pIs from 4.23 to 9.06. Their
predicted subcellular localizations are cytoplasmic, mitochondrial,
plasma and endoplasmic reticulum membranes, peroxisomal and
vacuolar.

We predicted the presence of 21 carboxylesterases with 109
to 566 amino acids and molecular weight of 12.10 to 62.49 kDa.
Then we predicted 46 flavin-containing monooxygenases with
137–647 amino acids, and molecular weights 15.86–72.63 kDa.
Glutathione S-transferases were predicted with number of amino
acids varying from 111 to 1006 and molecular weights 12.21–
110.52 kDa. We also predicted 21 multicopper oxidases with
152–722 amino acids and 17.48–76.62 kDa, 38.10% of them were
predicted as extracellular enzymes. The number of amino acids
of multidrug and toxic compound extrusion (MATE) ranged
from 361–1018 with molecular weights 39.43–113.68 kDa. Major
Facilitator Superfamily (MFS), which contains 720 sequences,
has 92–1863 amino acids with molecular weights 10–207.86 kDa
(Supplementary Table 3).

3.5. Extracellular enzyme activities

We measured the activities of endo- and exolytic enzymes
degrading complex components of plant tissues (see Table 4 for
results) as functional analysis predicted the presence of these genes
in yeast genomes. We found that the yeast species studied do not
produce endolytic enzymes, with the exception of endo-1,4-β-D-
mannanase, which cleaves pectin. However, all yeasts were strong
producers of exolytic enzymes. Kuraishia molischiana was the only
species producing all the enzymes tested, especially β-glucosidase,
cellobiohydrolase, β-xyloside and β-mannosidase. Nakazawaea
ambrosiae was the strongest producer of acid monophosphatase,
lipase and β-mannosidase. Wickerhamomyces bisporus mainly
secreted β-glucosidase and lipase, and O. ramenticola β-glucosidase
and β-mannosidase. Cryptococcus sp. was the weakest of the
yeasts in enzyme activities and produced mainly β-glucosidase
and lipase. We successfully measured the enzyme activities of the
positive control Trichoderma viride, suggesting that the absence of
endolytic enzymes in the yeast species was not a methodological
error.

4. Discussion

Central Europe is currently facing outbreaks of spruce bark
beetles, of which Ips typographus is the most common and
widespread species (Biedermann et al., 2019). In the previous study
(Veselská et al., 2023) we found that ascomycetous yeasts, namely,
K. molischiana, N. ambrosiae, O. ramenticola, and W. bisporus
dominate the gut fungal microbiome of I. typographus. The set
was supplemented by a representative of basidiomycetous yeasts,
Cryptococcus (Tremellales). In the present study we sequenced and
annotated genomes of these yeasts to infer their possible roles in the
bark beetle habitat.

Bark beetles face harsh conditions when they colonize rigid
plant tissues which are full of toxic secondary metabolites
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FIGURE 5

Maximum-likelihood tree of P450 predicted from all five yeast genomes.

FIGURE 6

Maximum-likelihood tree of ABC transporter predicted from all five yeast genomes.

related to tree defense against intruders (e.g., Netherer et al.,
2021). The bark beetles associated filamentous fungi facilitate
colonization as these fungi are often involved in detoxification

and/or cause necrosis of the plant tissues (Hofstetter et al.,
2015; Zhao et al., 2019; Li et al., 2022). Carbohydrate-active
enzymes (CAZymes) play a vital role in the depolymerization
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TABLE 4 Enzymatic activities of the studied yeasts.

Target
substrate

Enzyme (endo, or
exolytic)

Enzyme activities [mU]

Cryptococcus
sp. CCF 6641

K. molischiana
CCF 6642

N. ambrosiae
CCF 6643

O. ramenticola
CCF 6644

W. bisporus
CCF 6645

T. viride
CCF 4516

Cellulose endo-1,4-β-D-glucanase 0.0 0.2 0.0 0.0 0.0 5.3

Cellobiohydrolase 0.1 239.0 44.9 1.2 0.2 326.0

β-glucosidase 14.3 493.7 352.2 50.9 111.1 358.9

Hemicellulose endo-1,4-β-D-xylanase 0.0 0.0 0.0 0.0 0.0 8.5

β-xylosidase 2.8 504.0 11.5 8.8 7.7 148.8

Pectin endo-1,4-β-D-mannanase 1.5 1.0 0.6 1.2 1.0 0.5

endo-1,5-α-L-arabinanase 0.0 0.0 0.0 0.0 0.0 0.0

β-galactosidase 0.0 2.4 17.5 0.0 1.1 306.3

β-mannosidase 0.0 12.7 15.4 8.6 0.1 10.0

α-glucuronidase 0.0 1.1 0.1 0.0 0.6 431.1

Starch α-amylase 0.0 0.0 0.1 0.0 0.0 0.0

Pullulanase 0.0 0.0 0.0 0.0 0.0 0.0

Lignin Laccase 0.0 0.0 0.0 0.0 0.0 0.0

Proteins endo-protease 0.0 0.0 0.0 0.0 0.0 5.3

Chitin Chitinase 0.0 1.3 0.0 1.1 0.5 99.1

Phosphate
monoester

Acid phosphomonoesterase 0.0 3.3 221.5 0.0 1.0 202.2

Triglycerides Lipase 11.7 4.5 507.9 2.0 224.8 209.7

Trichoderma viride was used as a positive control for cellulose, hemicellulose, pectin, proteins, chitin and lipids.

of the complex lignocellulosic polysaccharides (Arntzen et al.,
2020; Chettri et al., 2020). The genome analysis of the five
yeast species revealed the presence of diverse CAZyme-encoding
genes, which constituted around 3.6% of all putative proteins
identified. This proportion is similar to phytopathogenic species
associated with bark beetles Ophiostoma novo-ulmi (Comeau et al.,
2015) and Grosmannia clavigera (DiGuistini et al., 2011), but
lower compared to other Pezizomycotina (Comeau et al., 2015).
The analyzed yeasts lack endolytic enzyme cleaving lignocellulose
in our in vitro tests, which does not allow them for efficient
degradation of these polymers. On the other side, they cleave
pectin and degrade carbohydrate from the terminal ends by
exolytic enzymes, what allows to utilize simpler carbohydrates.
These results are in concordance with previous findings on
microbial enzymatic functions in bark beetles’ galleries revealed
by Barcoto et al. (2020) and Ibarra-Juarez et al. (2020). These
authors found that the associated bacterial community has
greater potential than fungi to cleave structural components of
plant tissues and that the whole holobiont forms a biofilm in
which species can benefit from each other from their enzymatic
capabilities.

Besides CAZymes, genes important in the colonization of
plant tissues are those involved in the fight against oxidative
stress or the detoxification of plant tissues and those having
protective functions (DiGuistini et al., 2011; Comeau et al., 2015;
Schuelke et al., 2017). Analyzed yeasts possess genes known to
be involved in the degradation of toxic compounds, like aldo-
keto reductases (e.g., Barski et al., 2008), glutathione S-transferase

(Sheehan et al., 2001), cytochrome P450 monooxygenases (CYPs)
(Lah et al., 2013), carboxylesterases (Ramya et al., 2016), and flavin-
containing monooxygenase (Sehlmeyer et al., 2010), and genes for
drug and stress resistance like, ABC transporter, multidrug and
toxic compound extrusion and major facilitator superfamily (Lah
et al., 2013; Eisinger et al., 2018). All six CYP subfamilies identified
in the present study have already been described in yeast genomes
(Linder, 2019). Some of them (CYP51, CYP61, and CYP56) are
needed for yeast growth and development (Linder, 2019) as they
are involved in the biosynthesis of ergosterol (Turi et al., 1991;
Kelly et al., 1995; Chen et al., 2014), and outer layer of the yeast
spore wall (Briza et al., 1994). CYP52 family is involved in alkanes
and fatty acid assimilation (Sanglard and Loper, 1989). Role of
the other two identified cytochromes, CYP501 and CYP5252, is
unknown (Linder, 2019). A recent study (Naseer et al., 2023)
shows that I. typographus itself has a gene repertoire related to the
detoxification of plant secondary metabolites. Therefore, it awaits
unraveling how the microbial and insect detoxification pathways
are interconnected whether complementarily or redundantly.

Associated fungi assist beetles not only in plant tissue
colonization but also in the nutrition. Plant tissues have a very low
nitrogen to carbon ratio (Yang and Luo, 2011), thus larvae have
to bore long tunnels to satisfy this need. Fungi colonizing beetles’
galleries and surrounding tissues enhance nitrogen budget, which
increases beetles’ fitness (Ayres et al., 2000). All analyzed yeasts
in the present study possess pathways for synthesis of all essential
amino acids. At the same time these yeasts are able to synthesize
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vitamin B6, which insect also must acquire through diet (Douglas,
2017). Thus, our results show that yeasts can be important source
of nutrients.

In conclusion, genome analyses of the symbiotic yeasts
K. molischiana, Cryptococcus sp., N. ambrosiae, O. ramenticola,
and W. bisporus isolated from the gut of Ips typographus
indicate that these species can synthesize essential amino acids
and vitamin B6, which are important for the development
of I. typographus. In addition, they possess a wide range of
genes associated with plant tissue detoxification, which may
protect bark beetle against induced plant defense system. They
also encode enzymes active on plant cell wall; however, our
data suggest that yeasts don’t use lignocellulose directly for
nutrition. They probably use products of lignocellulose degradation
effectuated by other associated microorganisms. The genome
sequences generated in our study provide a better understanding of
symbiotic relationship between microorganisms in the gut of bark
beetle and their host.
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