
TYPE Original Research

PUBLISHED 03 April 2023

DOI 10.3389/frai.2023.1123285

OPEN ACCESS

EDITED BY

Francesco Napolitano,

University of Sannio, Italy

REVIEWED BY

José Ignacio López-Sánchez,

International University of La Rioja, Spain

Hui Zhang,

Northwestern University, United States

Li Tang,

St. Jude Children’s Research Hospital,

United States

*CORRESPONDENCE

Xinping Cui

xinping.cui@ucr.edu

Jiayu Liao

jliao@engr.ucr.edu

SPECIALTY SECTION

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Artificial Intelligence

RECEIVED 17 December 2022

ACCEPTED 17 March 2023

PUBLISHED 03 April 2023

CITATION

Zhai S, Zhang Z, Liao J and Cui X (2023)

Learning from real world data about

combinatorial treatment selection for

COVID-19. Front. Artif. Intell. 6:1123285.

doi: 10.3389/frai.2023.1123285

COPYRIGHT

© 2023 Zhai, Zhang, Liao and Cui. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Learning from real world data
about combinatorial treatment
selection for COVID-19

Song Zhai1,2, Zhiwei Zhang3, Jiayu Liao4* and Xinping Cui2*

1Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, United States,
2Department of Statistics, University of California, Riverside, Riverside, CA, United States, 3Biostatistics

Innovation Group, Gilead Sciences, Foster City, CA, United States, 4Department of Bioengineering,

University of California, Riverside, Riverside, CA, United States

COVID-19 is an unprecedented global pandemic with a serious negative impact

on virtually every part of the world. Although much progress has been made in

preventing and treating the disease,much remains to be learned about howbest to

treat the disease while considering patient and disease characteristics. This paper

reports a case study of combinatorial treatment selection for COVID-19 based

on real-world data from a large hospital in Southern China. In this observational

study, 417 confirmed COVID-19 patients were treated with various combinations

of drugs and followed for four weeks after discharge (or until death). Treatment

failure is defined as death during hospitalization or recurrence of COVID-19 within

four weeks of discharge. Using a virtual multiple matching method to adjust for

confounding, we estimate and compare the failure rates of di�erent combinatorial

treatments, both in the whole study population and in subpopulations defined by

baseline characteristics. Our analysis reveals that treatment e�ects are substantial

and heterogeneous, and that the optimal combinatorial treatment may depend

on baseline age, systolic blood pressure, and c-reactive protein level. Using these

three variables to stratify the study population leads to a stratified treatment

strategy that involves several di�erent combinations of drugs (for patients in

di�erent strata). Our findings are exploratory and require further validation.

KEYWORDS

G-computation, virtual multiple matching, subgroup analysis, multiple comparisons with

the best, COVID-19

1. Introduction

COVID-19, a respiratory illness caused by the coronavirus SARS-CoV-2, is an

unprecedented global pandemic that is adversely affecting virtually every part of the world

(Helmy et al., 2020). As of February 22, 2023, the global number of confirmed cases has

risen above 674 million, with over 6 million COVID-19-related deaths reported worldwide

(overall mortality rate ∼1.02%), according to the Johns Hopkins University Coronavirus

Resource Center (https://coronavirus.jhu.edu). The increasing availability of COVID-19

vaccines is hugely helpful in the fight against COVID-19. That being said, given the

magnitude of the pandemic, searching for effective treatments of COVID-19 will likely

remain an important scientific question in the foreseeable future. The United States Food

and Drug Administration has approved the antiviral agent remdesivir for treating adults and
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certain pediatric patients and has authorized several monoclonal

antibody treatments for emergency use. The approval of remdesivir

was based on the results of three randomized clinical trials,

including a double-blinded, placebo-controlled trial in which

remdesivir significantly reduced the median time to recovery

from 15 to 10 days (Beigel et al., 2020). In November 2021,

Pfizer announced that a new antiviral pill, Paxlovid, was showing

promising results in clinical trials, where Paxlovid significantly

reduced the proportion of people with COVID-19 related

hospitalization or death by 88% compared to placebo (https://

www.fda.gov/news-events). But because the data of our study

was collected in the early of pandemic (2020) when Paxlovid

was not available, the recurrence of COVID-19 treatment with

Paxlovid had not been reported. Other therapeutic agents, such as

hydroxychloroquine, have also been studied, often with negative or

inconclusive results (Wu et al., 2020). There is also growing interest

in combining multiple agents to improve efficacy (e.g., Hung et al.,

2020). Bassetti et al. (2021) give a summary of the available clinical

evidence about the efficacy and safety of various antiviral agents for

treating COVID-19. While COVID-19 is much better understood

now than it was when it first broke out, much remains to be learned

about how best to treat the disease while considering patient and

disease characteristics.

This paper reports a case study of combinatorial treatment

selection for COVID-19 based on real-world data from early

days of the pandemic. The data were collected on a cohort

of 417 consecutive COVID-19 patients admitted to the Second

Affiliated Hospital of Southern University of Science and

Technology in Shenzhen, China, between January 11, 2020

and February 16, 2020. Their disease status was confirmed

using reverse transcription-polymerase chain reaction (RT-PCR).

Baseline information was collected on age, sex, body mass

index, disease severity, comorbidities, imaging features, and 49

biochemical variables (e.g., oxygen saturation); some of these are

summarized in Table 1. The patients had an average age of 45

years (SD 17.7) and were largely evenly distributed between the

two sexes (47.5% male). Most patients (74.1%) had moderate

disease, and some (17.5%) had severe disease, with relatively

few (3.8% and 4.6%, respectively) in the mild and critical

disease categories.

While hospitalized, the patients were treated for COVID-19

using a variety of drugs: five antiviral drugs (lopinavir-ritonavir-

arbidol, interferon, oseltamivir, ribavirin, and favipiravir), two

anti-inflammatory drugs (methylprednisolone and tocilizumab),

and the immunomodulator hydroxychloroquine. As shown

in Table 2A, the most commonly used (per patient) drugs

were interferon (83.2%), lopinavir-ritonavir-arbidol (79.9%)

and methylprednisolone (24.5%). These drugs were frequently

combined, so the total percentage in Table 2A is well above

100%. For example, a majority of patients (64%) were treated

with interferon and lopinavir-ritonavir-arbidol upon admission;

depending on patient conditions and physician judgement, the

initial regimen may continue unchanged or be modified in some

way. With little guidance available for treating COVID-19, drug

choices tended to be exploratory and haphazard. We define a

combinatorial treatment as the collection of all drugs administered

to a patient during hospitalization, regardless of the actual

TABLE 1 Summary of demographics and baseline characteristics for all

COVID-19 patients (measured at initial admission to hospital), treatment

success group and treatment failure group.

Characteristic Total,
N = 417

Treatment
success,
N = 321

Treatment
failure,
N = 96

Age, years

Mean (SD) 45.2 (17.7) 46.8 (17.1) 40.1 (18.7)

0–30 years, n (%) 75 (18.0) 46 (14.3) 29 (30.2)

31–60 years, n (%) 242 (58.0) 190 (59.2) 52 (54.2)

61+ years, n (%) 100 (24.0) 85 (26.5) 15 (15.6)

Sex, n (%)

Male 198 (47.5) 159 (49.5) 39 (40.6)

BMI, kg/m2, mean

(SD)

23.1 (3.64) 23.2 (3.61) 22.7 (3.72)

Severity classification, n (%)

Mild 16 (3.8) 13 (4) 3 (3)

Moderate 309 (74.1) 234 (73) 75 (78)

Severe 73 (17.5) 59 (18) 14 (14.6)

Critical 19 (4.6) 15 (5) 4 (4.2)

Comorbidity, n (%)

Hypertension 86 (20.6) 68 (21.2) 18 (18.8)

Diabetes mellitus 31 (7.4) 23 (7.2) 8 (8.3)

Coronary heart

disease

25 (6.0) 22 (5.3) 3 (3.1)

Active cancer 6 (1.4) 5 (1.6) 1 (1.0)

Chronic obstructive

pulmonary disease

15 (3.6) 12 (3.7) 3 (3.1)

Hepatitis B 13 (3.1) 10 (3.1) 3 (3.1)

Imaging feature, n (%)

Lung consolidation 92 (22.1) 62 (19.3) 30 (31.2)

Ground-glass

opacity

367 (88.0) 282 (87.9) 85 (88.5)

Pulmonary

infiltration

325 (77.9) 247 (76.9) 78 (81.3)

Pleural effusion 17 (4.1) 11 (3.4) 6 (6.3)

Data shown are n (%) or mean (SD).

dosing and timing of specific drugs. Table 2B shows the most

common combinatorial treatments adopted for this cohort. Some

treatments in Table 2B represent unique combinations of drugs,

while others (123+ and “the rest") are aggregates of different

combinations that are difficult to study separately due to low

frequencies. Supplementary Figure S1 depicts and compares the

eight treatment groups with respect to five baseline covariates

(selected in Section 3.4).

The outcome of interest in this case study is treatment failure,

defined as death during hospitalization or recurrence of COVID-19

within four weeks of discharge. Recurrence after discharge is not
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TABLE 2 Summary of individual drugs (A) and combinatorial drugs (B) adopted for the study cohort, together with related outcome information.

A.

Individual drug, n (%) Code Total, N = 417 Failure cases, N = 96 Failure rate

Lopinavir-ritonavir-arbidol 1 333 (80) 71 (74) 0.213

Interferon 2 347 (83) 80 (83) 0.231

Methylprednisolone 3 102 (24) 22 (23) 0.216

Tocilizumab 4 7 (2) 2 (2) 0.286

Oseltamivir 5 65 (16) 11 (12) 0.169

Ribavirin 6 82 (20) 16 (17) 0.195

Favipiravir 7 11 (3) 6 (6) 0.545

Hydroxychloroquine 8 26 (6) 9 (9) 0.346

B.

Combinatorial drugs, n (%) Total, N = 417 Failure cases, N = 96 Failure rate

1 31 (8) 9 (9) 0.290

2 34 (8) 9 (9) 0.265

12 116 (28) 28 (29) 0.241

123 46 (11) 7 (7) 0.152

125 31 (7) 5 (5) 0.161

126 34 (8) 6 (6) 0.176

123+ a 39 (9) 9 (9) 0.231

The rest b 86 (21) 23 (24) 0.267

aLopinavir-ritonavir-arbidol-interferon-methylprednisolone with one or more drugs.
bThe rest: all the other possible combinations.

just an individual health issue but also has a potential impact on

public health. Post-discharge death without recurrent COVID-19 is

considered a competing risk in this definition. While hospitalized,

patients were tested every other day. Two consecutive negative

test results were required for discharge. All discharged patients

were subject to strict quarantine for four weeks, either at home

or at a designated location. Follow-up visits were performed every

3–5 days during the quarantine. In the end, there were only

three deaths in the study cohort, all of which occurred during

hospitalization. Ninety three of the 414 discharged patients were

found to have recurrent COVID-19 during the quarantine. Thus,

a total of 96 patients in the study cohort experienced treatment

failure (primarily due to recurrence), with an overall failure rate of

23%.

The overarching objective of this case study is to estimate

and compare the failure rates of the eight combinatorial drug

treatments in Table 2B, both in the whole study population

and in subpopulations defined by baseline characteristics. Such

comparisons will shed light on the relative efficacy of treatments

and help identify the most promising treatments for further

investigation. A major analytical challenge is the likely presence

of confounding in this observational study, where treatment

assignment was not randomized. For example, patients in

treatment groups 123 and 123+ tended to be older than patients

in other treatment groups (see Supplementary Figure S1). Due to

possible confounding, the observed failure rates in Table 2B may

be biased as estimates of population-level failure rates. Additional

challenges include (relatively) high-dimensional covariates and

their complex relationship with treatment outcomes, which will

be addressed using modern machine learning (ML) methods. ML

methods have been employed in many research areas related to

COVID-19, such as medical imaging, disease diagnosis, vaccine

development, and drug design (Asada et al., 2021; Dong et al., 2021;

Perez Santin et al., 2021; Xu et al., 2022). The present article adds

to this literature with a new application (i.e., drug effectiveness

analysis, especially multi-drug combination analysis).

The rest of the article is organized as follows. In Section 2.1, we

formulate the problem, state key assumptions, and give a rationale

for choosing the G-computation approach (Robins, 1986) over

various propensity score methods for confounding adjustment.

In Section 2.2, we describe specific methods, including a virtual

multiple matching (VMM) method for estimating covariate-

specific failure rates, a synthetic minority over-sampling technique

(SMOTE) for improving the performance of random forest with

class-unbalanced data, a permutation test for the sharp null

hypothesis of no treatment effect on any patient, and a multiple

comparisons with the best (MCB) procedure for demonstrating

the superiority of one treatment to all the other treatments. The

main results of our analysis are presented in Section 3, followed

by a discussion in Section 4 and conclusion remarks in Section

5. Additional technical details and results are provided as online

Supplementary material.
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FIGURE 1

Workflow of statistical analysis. After the data is collected, Virtual Multiple Matching (VMM) is first performed to minimize the e�ect of confounding

factors. SMOTE is applied with the class imbalance, and missing indicator method is applied with missing values. Sharp null hypothesis is then

conducted as the gate-keeper to test if there is an overall combinatorial treatment e�cacy. Finally, Multiple Comparisons with the Best (MCB) is

performed to select the best drug combination strategy within each patient subgroups, stratified in a data-driven manner.

2. Methodology

2.1. General framework

We start by formulating research questions using potential

outcomes (Rubin, 1974). Let T denote the set of combinatorial drug

treatments under consideration (see Table 2B). For each t ∈ T ,

let Y(t) be the potential outcome (1 for failure; 0 for success) that

would result if a patient receives treatment t. Denote by T ∈ T

the actual treatment received and Y = Y(T) the actual outcome

observed (assuming consistency and stable unit treatment value).

Let X ∈ X be a vector of baseline (i.e., pre-treatment) covariates

that may be associated with the potential outcomes for one or more

treatments; these include the variables in Table 1 as well as some

biochemical variables. The observed data based on n = 417 subjects

will be conceptualized as independent copies of (X, T, Y) and

denoted by (Xi, Ti, Yi), i = 1, . . . , n.

As indicated earlier, our case study will address the following

research questions:

1. To test the sharp null hypothesis of Fisher (1935), which in the

present setting states that Y(t) does not depend on t for any

patient in the study population. Formally, this may be written

as Y(t1) ≡ Y(t2) for any pair of treatments (t1, t2). Successful

rejection of the sharp null hypothesis would indicate that a

non-null treatment effect exists, at least for some patients.

2. To estimate and compare the overall failure rates of the different

treatments, defined as πt = P{Y(t) = 1} for t ∈ T . Such a

comparison will help identify the overall best treatment: topt =

arg mint∈T πt .

3. To estimate and compare the failure rates of the different

treatments in selected subpopulations, defined as πt(A) =

P{Y(t) = 1|X ∈ A} for t ∈ T and A ⊂ X with P(X ∈

A) > 0 (measure-theoretic issues are ignored throughout). Such
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a comparison will help identify the best treatment for patients in

the chosen subpopulation: topt(A) = arg mint∈T πt(A).

To deal with possible confounding in an observational study,

we assume that all important confounders are included in X so that

treatment assignment is ignorable (Rosenbaum and Rubin, 1983)

upon conditioning on X:

P{Y(t) = 1|X,T = t} = P{Y(t) = 1|X} = : pt(X), t ∈ T .

(1)

This assumption implies that, in each subpopulation defined by

X, the study is practically a randomized experiment in the sense

that treatment assignment is independent of potential outcomes

(Rosenbaum, 1984; Robins, 1986). We also assume that no patient

is a priori excluded from receiving any treatment in T :

P(T = t|X) > 0, t ∈ T . (2)

This is commonly known as the positivity assumption. The

practical implication of this assumption is that there should

be sufficient overlapping between the covariate distributions in

different treatment groups (Imbens, 2004). Assumptions 1 and 2

together ensure that the functions pt , t ∈ T , are nonparametrically

identified as

pt(X) = P(Y = 1|X,T = t). (3)

This further implies the nonparametric identifiability of

πt(A) = E{pt(X)|X ∈ A} (4)

for all t ∈ T and suitable A ⊂ X . In particular, πt = πt(X ) is

identified as E{pt(X)} for all t ∈ T .

Numerous statistical methods are available for confounding

adjustment under the assumptions stated above. These include the

G-computation (or outcome regression) approach (Robins, 1986),

which in the present setting amounts to estimating pt(X) from Eq. 3

and substituting the estimate into Eq. 4. There are many alternative

methods that involve the propensity score (Rosenbaum and Rubin,

1983), defined originally for binary treatments and generalized later

to multi-level treatments (Imbens, 2000). An estimated propensity

score can be used for stratification (Rosenbaum and Rubin,

1984), matching (Rosenbaum and Rubin, 1985), weighting (Robins,

Hernan and Brumback, 2000), or constructing doubly robust,

locally efficient estimators (e.g., Van Der Laan and Robins, 2003;

Tsiatis, 2006; VanDer Laan and Rose, 2011). These propensity score

methods can in principle be applied or adapted to our case study;

however, their implementation is not straightforward with multiple

treatments under consideration. Furthermore, when a propensity

score method is used for subgroup analysis, it may be difficult to

ensure compatibility of estimates across subgroups. It is not clear,

for instance, that a propensity score method will necessarily respect

the relationship

πt = P(X ∈ A)πt(A)+ P(X /∈ A)πt(X \ A), (5)

and a severe violation of this relationship would make the results

difficult to interpret. The G-computation approach does not

have such difficulties with interpretation and is straightforward

to implement. Therefore, the G-computation approach will be

employed in our case study to answer all of our research questions

in a unified fashion.

2.2. Specific methods

Figure 1 gives an overview of the workflow of our statistical

analysis, with specific methods described below.

2.2.1. Virtual multiple matching
Under the G-computation approach, we work with the pseudo-

observations Rit = p̂t(Xi), i ∈ {1, . . . , n}, t ∈ T , where p̂t is

an estimate of pt obtained by regressing Yi on Xi among subjects

with Ti = t, as suggested by equation 3. For treatment evaluation

and comparison, each Rit will be used as a surrogate outcome for

subject i under treatment t. This is somewhat similar to the “virtual

twins" approach of Foster et al. (2011) for subgroup selection in

a randomized clinical trial. Our setting is an observational study,

and we use the surrogate outcomes Rit to adjust for possible

confounding under the assumptions stated in Section 2.1. We will

refer to this approach as virtual multiple matching (VMM) to

acknowledge the fact that multiple treatments are currently under

consideration. In Foster et al. (2011), where T is binary, the random

forest algorithm is used to regress Y on (T, X, T × X). The use of

random forest seems appropriate for our case study with dozens of

baseline covariates inX, for it would be extremely difficult to specify

an approximately correct logistic regression model for predicting Y

on the basis of (X, T). On the other hand, even for a binary T, it

has been noted that regressing Y on (T, X, T × X) may provide

limited flexibility for accommodating different outcome-covariate

relationships in different treatment groups (Lu et al., 2018). For

maximal flexibility with eight treatments under consideration, we

grow a separate random forest for each treatment t ∈ T to estimate

pt and obtain Rit , i = 1, . . . , n. Section 3.1 provides empirical

evidence supporting this approach. The random forest estimation

is carried out using the randomForest package in R with the

default configuration except ntree=1000 and nodesize=3.

2.2.2. Synthetic minority over-sampling technique
In the language of machine learning, treatment failure is the

minority class in our case study, with observed failure rates 15–29%

in the eight treatment groups. The presence of class imbalance is

known to cause performance issues with classification algorithms

such as random forest (Ali, Shamsuddin and Ralescu, 2015;

Brownlee, 2019), and a synthetic minority over-sampling technique

(SMOTE) is available to improve classification performance on

class-imbalanced data (Chawla et al., 2002). Even though our

estimation problem is not a classification problem, we will consider

SMOTE as a possible way to improve estimation performance.

The idea is to augment the data (i.e., subjects with Ti = t) with

artificial instances of the minority class (i.e., treatment failures) that

resemble the existing ones, so that the augmented dataset has a

lesser imbalance issue. Clearly, the addition of artificial treatment

failures may create an upward bias in the estimation of pt and

thus requires statistical adjustment. Details on the implementation

of SMOTE as well as the subsequent adjustment in our case

study are provided in Supplementary Method. Empirical evidence

supporting the use of SMOTE is given in Section 3.1.
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2.2.3. Handling of missing data
Most of the 49 biochemical variables in X have some missing

values, with a mean (rsp. median) proportion of 34% (rsp. 31%)

missing values across variables. (There are no missing values in

(Y , T) or the other components of X.) Excluding subjects with

missing values in X would incur a substantial loss of information

and could potentially result in biased estimates. We include all

available participants in the analysis using a missing indicator

method (Miettinen, 1985; Greenland and Finkle, 1995; Burton and

Altman, 2004; Donders et al., 2006). Specifically, we include all

subjects in the estimation procedure by treating missing values as a

special category. Each covariate with missing values is represented

by two derived variables: an indicator for missingness (1 if missing;

0 if observed) and an “imputed" version of the original variable with

missing values replaced by an arbitrary value, say 0. It is easy to

see that the two derived variables together carry exactly the same

information contained in the original (partially observed) variable.

2.2.4. Permutation test of sharp null hypothesis
The aforementioned techniques will be used to obtain Rit =

p̂t(Xi) from {(Xi,Yi) :Ti = t} for all (i, t). Once computed, the Rit ’s

will be used to test the sharp null hypothesis stated in Section 2.1.

This null hypothesis implies that Yi = Yi(t) for all (i, t), regardless

of the actual treatments Ti. Therefore, permuting the treatment

labels {Ti, i = 1, . . . , n} randomly provides a valid reference

distribution for any test statistic. If the sharp null hypothesis is

false, Yi(t) will depend on t and we expect larger differences in

{Rit , t ∈ T }, at least for some i. To capture such differences, our

test statistic is defined as a sum of within-patient variances:

n∑

i=1

1

|T | − 1

∑

t∈T

(Rit − Ri·)
2,

where |T | is the size of the set T and Ri· = |T |−1
∑

t∈T Rit .

This test statistic will be computed for both the original sample (to

find the observed value) and a large number of permuted samples

(to produce a reference distribution). The proportion of values in

the permutation-based reference distribution that exceed the actual

observed value will be used as the p-value for testing the sharp null

hypothesis.

2.2.5. Estimation of failure rates
For each treatment t ∈ T , the overall failure rate πt is estimated

as π̂t = n−1
∑n

i=1 Rit , and the subpopulation failure rate πt(A) is

estimated as

π̂t(A) =

n∑

i=1

I(Xi ∈ A)Rit

/
n∑

i=1

I(Xi ∈ A) ,

where I(·) is the indicator function, for any subpopulation A

with sufficient representation in the data (i.e.,
∑n

i=1 I(Xi ∈ A)

is not too small). Confidence intervals for these quantities will be

obtained using a nonparametric bootstrap percentile method. Each

bootstrap sample will be obtained by sampling from the original

dataset {(Xi,Ti,Yi), i = 1, . . . , n} with replacement. The resulting

bootstrap sample is {(Xi,Ti,Yi), i ∈ I}, where I consists of n

i.i.d. observations from the uniform distribution on {1, . . . , n}. Each

bootstrap sample will be analyzed using the exact samemethods for

obtaining π̂t and π̂t(A) for all t and A of interest.

2.2.6. Multiple comparisons with the best
In comparing π̂t across t, a natural question is whether the

apparent winner, say t̂opt = arg mint π̂t , is significantly better than

the other treatments in the sense of having a lower failure rate.

This question can be addressed using a multiple comparisons with

the best (MCB) procedure (Hsu, 1984; Cui et al., 2021). The null

hypothesis being tested is that t̂opt is not strictly better than the

other treatments, that is,

π̂topt − min
t 6=̂topt

πt ≥ 0.

To test this hypothesis at level α, one may use the same

nonparametric bootstrap procedure described earlier to obtain a

1− α upper confidence bound for

π̂̂topt − min
t 6=̂topt

π̂t

The null hypothesis will be rejected if the upper confidence bound

is less than 0. This MCB procedure can also be performed in a

subpopulation A after replacing πt with πt(A) and π̂t with π̂t(A).

2.2.7. Subgroup selection
The preceding discussion of subgroup analysis is for a given

subgroup of interest. In our case study, subgroups are not pre-

specified but will be chosen in a data-driven manner. Specifically,

we use the random forest algorithm to assess the importance of

each baseline variable for predicting the average failure rate of all

treatments under consideration. This will identify a small number

of variables with the highest (overall) prognostic values, which

may or may not be effect modifiers. (An effect modifier must be

prognostic for one or more treatments, but a prognostic variable

may have no effect modification at all.) The strongest prognostic

variables identified in this manner will be examined further as

potential effect modifiers. A variable is considered a possible

effect modifier if it stratifies the study cohort into subgroups with

different treatment choices (i.e., estimated best treatments). Once

identified, the apparent effect modifiers will be considered jointly

in developing a stratified treatment strategy.

3. Data analysis results

3.1. Validation of VMM and SMOTE

We used a cross-validation approach with the negative log-

likelihood as a loss function (Van Der Laan and Dudoit, 2003; Buja

et al., 2005) to compare different options of VMM (single forest

vs. multiple forests; with or without SMOTE). The log-likelihood

value of a regression model is a way to measure the goodness of

fit for a model. The lower the value of the negative log-likelihood,

the better a model fits a dataset. The comparison was based on 1000

simulation replicates of random partitioning.Within each replicate,
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FIGURE 2

Cross-validated negative log-likelihood for three di�erent versions

of VMM (single forest vs. multiple forests; with or without SMOTE)

based on 1,000 replicates of five-fold cross-validation.

FIGURE 3

Cross-validated ROC curves for estimated failure probabilities based

on all baseline covariates (blue line) or the five most prognostic

variables (i.e., the top five variables ranked by the variable

importance from random forests): age, SBP, AST, BMI, and CRP (red

line).

a standard five-fold cross-validation procedure was performed to

compute the cross-validated negative log-likelihood for different

estimation methods. The 1000 replicates differed from each other

in how the study subjects were actually partitioned into five folds.

The results, shown in Figure 2, indicate that VMM with multiple

forests fits better than VMM with a single forest (i.e., negative

log-likelihood 0.40 vs. 0.44) and that adding SMOTE to VMM

with multiple forests produces even better fits than the multi-forest

based VMM without SMOTE (i.e., negative log-likelihood 0.34

vs. 0.40). Therefore, VMM with multiple forests and SMOTE was

chosen as our estimation method in the rest of the analysis. Using

the same cross-validation process, we also compared different

choices of ntree (100, 500, 1000 and 2000), and the results suggest

that the behavior of our chosen VMM estimation method is not

sensitive to ntree (see Supplementary Table S1).

The blue line in Figure 3 is a cross-validated receiver operating

characteristic (ROC) curve for the chosen VMM method based on

all baseline covariates (including age, sex, BMI, disease severity,

comorbidities, imaging features, and 49 biochemical variables). The

area under the curve (AUC) is estimated to be 0.90, demonstrating

high prediction accuracy of our proposed VMM algorithm.

3.2. Test of sharp null hypothesis

The permutation test of the sharp null hypothesis produced

a p-value of 0.008 (see Supplementary Figure S2). This is strong

indication that, at least for some patients, differences exist between

the failure rates of the eight combinatorial drugs. This result

strengthened themotivation for comparing the different treatments

in the whole population as well as selected subpopulations.

3.3. Overall comparison of treatments

Figure 4 shows the estimated overall failure rates of the

eight combinatorial drug treatments together with 95%

confidence intervals. Based on these results, the combination

123 appears to be the most promising treatment for the

entire patient population, with an estimated overall failure

rate of 16.6%. Supplementary Figure S3 shows the MCB

test results with parameters of interest formulated as

πk − mini6=k πi, where π denotes the failure rate and k

denotes the combinatorial drug treatment group specified

in Table 2: k ∈ {1, 2, 12, 123, 125, 126, 123+, the rest}. In

Supplementary Figure S3, the upper bound of the 95% bootstrap

percentile confidence interval of π123 − mini6=123 πi is less than

zero, indicating that the drug combination 123 is significantly

better than the other treatments with the lowest failure rate at the

one-sided 2.5% level.

This overall comparison provides some evidence in favor of

the combination 123 (if a single treatment is to be chosen for

the entire patient population). However, treatment effects may be

heterogeneous, and the optimal treatment may depend on patient

FIGURE 4

Estimated overall failure rates and 95% confidence intervals for the

eight combinatorial drug treatments under consideration (with no

adjustment for multiplicity) (1: lopinavir-ritonavir-arbidol, 2:

interferon, 3: methylprednisolone, 4: tocilizumab, 5: oseltamivir, 6:

ribavirin, 7: favipiravir, 8: hydroxychloroquine).
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FIGURE 5

Variable importance ranking by the random forests in terms of the

total decrease in node impurity (i.e., residual sum of squares) from

splitting on the variable, averaged over all trees.

and disease characteristics. This possibility is addressed in the

following subgroup analysis.

3.4. Subgroup analysis

In this section, we aim to identify important subgroups of

patients, compare treatments in each subgroup, and develop a

stratified treatment strategy.

To identify a small number of covariates for patient

stratification, we regressed all Rit ’s together on Xi using the random

forest algorithm and assessed variable importance based on node

impurity. Specifically, for each variable, the sum of the Gini

impurity decrease across every tree of the forest is accumulated

every time that variable is chosen to split a node. The sum is divided

by the number of trees in the forest to yield an average. The ten

most important variables (i.e., with the largest mean decrease in

node impurity) are shown in Figure 5. In our subgroup analysis,

we consider subgroups defined using the top five covariates in

Figure 5: age, systolic blood pressure (SBP), body mass index

(BMI), c-reactive protein (CRP), and aspartate aminotransferase

(AST). These five covariates together account for most of the

predictive power of X, as Figure 3 shows that the ROC curve

based only on the five covariates has an AUC of 0.87 (close to

the AUC for the ROC curve based on all covariates, i.e., 0.90).

Separately from our work, these covariates have been found to be

predictive of COVID-19 severity and outcomes (e.g., Ali, 2020;

Mahase, 2020; Wei et al., 2020; Zhou et al., 2020; Zuin et al.,

2020).

In order to define subgroups, the top five covariates were

discretized as follows. SBP was dichotomized at 120 mm Hg; that

is, an SBP reading below 120 mm Hg is considered normal and

a reading of 120 mm Hg or more is considered high (Robinson

and Brucer, 1939). AST was dichotomized at 40 U/L; that is, the

normal range for AST is from 5 to 40 U/L and an AST level

above 40 U/L is considered high and indicative of liver damage

(https://www.medicinenet.com/liver_blood_tests). Following CDC

guidelines, we considered patients with 18.5 < BMI < 24.9 as

normal, and those with BMI > 30.0 as obese. According to Mayo

Clinic, a CRP level greater than 10 mg/L is a sign of severe infection

or inflammation. Different cutoffs for age have been suggested in

the literature. In our case study, age was trichotimized at 30 and

60 years, as suggested by CDC (cdc.gov/coronavirus) and Li et al.

(2020).

The top five covariates, which were initially selected on the

basis of their overall prognostic value, may or may not be

important effect modifiers. Before these covariates were combined

for stratification, each covariate was evaluated separately as a

potential effect modifier. For each covariate, we estimated and

compared the failure rates of the eight combinatorial treatments in

each subgroup defined by the covariate. If the estimated optimal

treatment (i.e., the treatment with the lowest estimated failure

rate) differed across subgroups defined by the same covariate,

the covariate was then considered potentially useful for treatment

selection. Figure 6 shows the main results (point estimates and

95% confidence intervals) of this evaluation. The corresponding

MCB test results are provided in Supplementary Figure S4. The

combinatorial treatment 126 had the lowest observed failure rate

among young patients (<30). For patients 30–60 years old, drug

combination 123 was superior to the other treatments with upper

bound of MCB confidence interval less than zero. For patients

older than 60, drug combination 12 outperformed the other

treatments with the lowest observed failure rate. We therefore

considered the age as a potential effect modifier. Similarly, we

selected SBP and CRP as potential effect modifiers for a stratified

treatment strategy. Meanwhile, BMI and AST were dropped

since the optimal combinatorial treatment remained unchanged

across different levels of BMI and AST. We summarized our

observations from Figure 6 and Supplementary Figure S4 into

Table 3.

To develop a stratified treatment strategy, we divided the

whole cohort into 3 × 2 × 2 = 12 subgroups by intersecting

the previously defined subgroups based on age, SBP and

CRP. One of these subgroups (age 60 – 80 with normal

SBP and normal CRP) had no data and thus could not be

studied. In each of the other 11 subgroups, we estimated

and compared the failure rates of the eight combinatorial

drug treatments. The point estimates and 95% confidence

intervals are shown in Figure 7, and the corresponding MCB

test results are presented in Supplementary Figure S5. Table 4

summarizes our main findings (i.e., the best combinatorial

treatment selection in different patient subgroups) based on both

point estimate results (from Figure 7) and MCB test results

(from Supplementary Figure S5), and displays the most promising

treatment (with the lowest estimated failure rate) in each of

the 11 subgroups studied. In five subgroups (shown as red in

Table 4), the apparent optimal treatment is significantly better

than all other treatments at the one-sided 2.5% level according

to the MCB test. The other subgroups tend to be smaller and

have less data. The double combination of lopinavir-ritonavir-

arbidol with interferon (12) is included in all the patient

subgroups, either used alone or combined with other drugs.

The triple combination of lopinavir-ritonavir-arbidol, interferon,

and methylprednisolone (123) is the most frequently suggested

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2023.1123285
https://www.medicinenet.com/liver_blood_tests
cdc.gov/coronavirus
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zhai et al. 10.3389/frai.2023.1123285

FIGURE 6

Estimated failure rates and 95% confidence intervals for the eight combinatorial drug treatments under consideration (with no adjustment for

multiplicity), in subgroups defined by the top five covariates (one at a time). The lowest estimated failure rate in each subgroup is shown in red.
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TABLE 3 Selecting e�ect modifiers among age, SBP, BMI, CRP, and AST.

Covariate Subgroup Optimal drug
combination

E�ect
modifier

Covariate Subgroup Optimal drug
combination

E�ect modifier

SBP
Normal 123

Yes BMI
Normal 123

No

High 126 Obesity 123

Age

0 - 30 126

Yes
CRP

Normal 12
Yes

30 - 60 123 High 123

60 - 80 12
AST

Normal 123
No

High 123

The combinatorial treatment with the lowest observed failure rate varies across different patient subgroups stratified by the effect modifier.

FIGURE 7

Estimated failure rates and 95% confidence intervals for the eight combinatorial drug treatments under consideration (with no adjustment for

multiplicity), in 3× 2× 2 subgroups defined by age, SBP and CRP. The lowest estimated failure rate in each subgroup is shown in red.
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TABLE 4 A stratified treatment strategy based on age, SBP and CRP.

SBP CRP Age

0 - 30 30 - 60 60 - 80

Normal Normal 123 125

Normal High 123 123 123

High Normal 126 126 123

High High 126 123 12

The combinatorial treatment strategy, that appears to be the best with the lowest observed

failure rate (i.e., point estimate), varies across different patient subgroups. The red color

indicates statistical significance at the one-sided 2.5% level from the MCB test.

treatment in Table 4, consistent with the overall comparison in

Section 3.3. However, Table 4 also suggests two other treatments

(i.e., triple combinations of lopinavir-ritonavir-arbidol, interferon

with either oseltamivir (125) or ribavirin (126)) for specific

subgroups; these would have been missed without a subgroup

analysis.

4. Discussion

Combinatorial treatment selection for COVID-19 is one of

the most pressing issues in today’s medical research. In this

study, we provide a standard analysis framework for the drug

combination problem: (1) apply virtual multiple matching to

adjust for possible confounding across multiple treatment groups

(SMOTE is applied with the presence of class imbalance); (2)

apply missing indicator method to handle missing values in the

data; (3) conduct permutation test of overall treatment efficacy;

(4) determine patient stratification with identified effect modifiers

in a data-driven manner; (5) perform multiple comparisons with

the best to select the best drug combination strategy within each

subgroup.

In addition, the retrospective case study in this paper also

provides some insights on this issue based on real-world data

from China. Our case study indicates that, among the treatments

adopted in the study cohort, combining lopinavir-ritonavir-

arbidol with interferon and possibly other drugs is generally a

promising treatment strategy. On one hand, taking lopinavir-

ritonavir-arbidol (antiviral drug), interferon (antiviral drug), and

methylprednisolone (anti-inflammatory drug) leads to the best

outcome overall. On the other hand, there appears to be some

treatment effect heterogeneity, and the optimal combinatorial

treatment may depend on baseline age, SBP, and CRP. Using the

three baseline variables together to stratify the study population

leads to a stratified treatment strategy that involves several

combinations of drugs (for different strata) with varying levels of

evidence. Specifically, for young patients (<30), taking lopinavir-

ritonavir-arbidol and interferon, together with methylprednisolone

or ribavirin (antiviral drug), leads to the lowest treatment failure

rate. However, our MCB test results also indicate that there

are other potential drug combinations providing comparable

treatment outcomes. For patients older than 30, there exists some

particular drug combination that is significantly superior to other

combinatorial strategies in most of patient subgroups stratified by

SBP and CRP.

The results of the case study should be interpreted cautiously

with several limitations in mind. First, the study is limited

to a biologically homogeneous patient population in China,

and to a relatively small set of drugs (excluding, for example,

remdesivir and Paxlovid). Second, conducted in the early days

of the pandemic, the study is unable to account for subsequent

genetic variations of the SARS-CoV-2 virus. Third, the analysis

is retrospective and the selection of subgroups is somewhat ad

hoc (although the prognosis-based selection of variables and

the data-independent choices of cutpoints should provide some

protection against possible selection bias). Fourth, the moderate

sample size does not allow us to study treatment effects at a

very detailed level (i.e., considering doses and times of drug

usage). Fifth, a longitudinal causal analysis is infeasible due to

lack of information on time-dependent confounders (i.e., daily

evaluations of patient conditions). In light of these limitations,

our findings should be regarded as exploratory and hypothesis-

generating.

In this article, treatment selection is based solely on efficacy.

Guo et al. (2021) propose a statistical method to utilize the Food

and Drug Administration’s adverse event reporting system to

compare and select existing drugs for COVID-19 treatment based

on their safety profiles. In future research, it will be of interest to

combine efficacy and safety in COVID-19 treatment selection.

It should be noted that the methodology used in this case study

is fairly general and readily applicable to another observational

study of COVID-19 or another disease condition. The code to

implement the methodology is available at https://github.com/

zhaiso1/COVID19. In this era of big data, there are many disease

registries available, which typically measure hundreds of variables

on thousands of patients. Such disease registries offer great

opportunities to learn about treatment selection from real world

data using sophisticated machine learning methods.

5. Conclusion

In this retrospective case study of combinatorial treatment

selection for COVID-19, we investigate eight different treatment

combination strategies with eight candidate drugs. Our

contributions are at least three-fold. First, we build a standard

analysis pipeline for the drug combination problem, involving

a series of novel/popular machine learning and multiple testing

algorithms (i.e., VMM, SMOTE, missing indicator method,

variable importance ranking, and MCB). The code to implement

the analytical pipeline is available at Github https://github.

com/zhaiso1/COVID19. Second, our findings emphasize the

benefit of combination therapy with correctly combined drugs,

compared to the monotone therapy. Third, our case study

provides an insight that different patient subgroups may react

differently to the same combinatorial drug treatment, depending

on patients’ demographics and drug mechanisms (e.g., antiviral,

anti-inflammatory, immunomodulator). In a nutshell, we believe

our study can be used as a foundation for combination therapy

of COVID-19, and our analysis framework can be used by

stakeholders in public health to address the similar problems in

various of disease fields.

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2023.1123285
https://github.com/zhaiso1/COVID19
https://github.com/zhaiso1/COVID19
https://github.com/zhaiso1/COVID19
https://github.com/zhaiso1/COVID19
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zhai et al. 10.3389/frai.2023.1123285

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. Written informed consent from

the participants’ legal guardian/next of kin was not required to

participate in this study in accordance with the national legislation

and the institutional requirements.

Author contributions

JL collected the data. JL and XC designed the study. SZ, ZZ,

JL, and XC analyzed the data and contributed to the writing of the

manuscript. All authors contributed to the article and approved the

submitted version.

Acknowledgments

We would like to thank USDA National Institute of Food and

Agriculture (NIFA) Hatch Project CA-R-STA-7132-H for XC; UCR

Academic Award to JL.

Conflict of interest

SZ was employed by Biostatistics and Research

Decision Sciences, Merck & Co., Inc. ZZ was

employed by Biostatistics Innovation Group,

Gilead Sciences.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2023.

1123285/full#supplementary-material

References

Ali, A., Shamsuddin, S. M., and Ralescu, A. L. (2015). Classification with class
imbalance problem: a review. Int. J. Adv. Soft Comput. Applic. 7, 176–204.

Ali, N. (2020). Relationship between COVID-19 infection and liver injury: a review
of recent data. Front. Med. 7, 458. doi: 10.3389/fmed.2020.00458

Asada, K., Komatsu, M., Shimoyama, R., Takasawa, K., Shinkai, N., Sakai, A., et al.
(2021). Application of artificial intelligence in COVID-19 diagnosis and therapeutics.
J. Pers. Med. 11, 886. doi: 10.3390/jpm11090886

Bassetti, M., Corcione, S., Dettori, S., Lombardi, A., Lupia, T., Vena, A., et al. (2021).
Antiviral treatment selection for SARS-CoV-2 pneumonia. Expert Rev. Respir. Med. 15,
1–8. doi: 10.1080/17476348.2021.1927719

Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil,
A. C., et al. for the ACTT-1 Study Group (2020). Remdesivir for the treatment of
Covid-19—final report. N. Engl. J. Med. 383, 1813–1826. doi: 10.1056/NEJMoa20
07764

Brownlee, J. (2019). A gentle introduction to imbalanced classification.Mach. Learn.
Mastery 22.

Buja, A., Stuetzle,W., and Shen, Y. (2005). Loss functions for binary class probability
estimation and classification: structure and applications.Working Draft 3.

Burton, A., and Altman, D. G. (2004). Missing covariate data within cancer
prognostic studies: a review of current reporting and proposed guidelines. Br. J. Cancer,
91, 4–8. doi: 10.1038/sj.bjc.6601907

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002)
SMOTE: synthetic minority over-sampling technique. J. Artif. Intellig. Res. 16, 321–357.
doi: 10.1613/jair.953

Cui, X. P., Dickhaus, T., Ding, Y. and Hsu, J. C. (2021). Handbook of Multiple
Comparisons. CRC Press. doi: 10.1201/9780429030888

Donders, A. R. T., Van Der Heijden, G. J., Stijnen, T., and Moons, K. G. (2006). A
gentle introduction to imputation of missing values. J. Clin. Epidemiol. 59, 1087–1091.
doi: 10.1016/j.jclinepi.2006.01.014

Dong, J., Wu, H., Zhou, D., Li, K., Zhang, Y., Ji, H., et al. (2021). Application of
big data and artificial intelligence in COVID-19 prevention, diagnosis, treatment and
management decisions in china. J. Med Syst. 45, 84. doi: 10.1007/s10916-021-01757-0

Fisher, R. A. (1935). The Design of Experiments. London: Oliver and Boyd.

Foster, J. C., Taylor, J. M., and Ruberg, S. J. (2011). Subgroup identification from
randomized clinical trial data. Stat. Med. 30, 2867–2880. doi: 10.1002/sim.4322

Greenland, S., and Finkle, W. D. (1995). A critical look at methods for handling
missing covariates in epidemiologic regression analyses. Am. J. Epidemiol. 142, 1255–
1264. doi: 10.1093/oxfordjournals.aje.a117592

Guo, W., Pan, B., and Sakkiah, S. (2021). Informing selection of drugs
for COVID-19 treatment through adverse events analysis. Sci. Rep. 11, 14022.
doi: 10.1038/s41598-021-93500-5

Helmy, Y. A., Fawzy, M., Elaswad, A., Sobieh, A., Kenney, S. P., and Shehata, A.
A. (2020). The COVID-19 pandemic: a comprehensive review of taxonomy, genetics,
epidemiology, diagnosis, treatment, and control. J. Clin. Med. 9, E1225–E1225.
doi: 10.3390/jcm9041225

Hsu, J. C. (1984). Constrained simultaneous confidence intervals for multiple
comparisons with the best. Ann. Stat. 12, 1136–1144. doi: 10.1214/aos/1176346732

Hung, I. F. N., Lung, K. C., and Tso, E. Y. K. (2020). Triple combination of
interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients
admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet
395, 1695–1704. doi: 10.1016/S0140-6736(20)31042-4

Imbens, G. W. (2000). The role of the propensity score in estimating dose-response
functions. Biometrika 87, 706–710. doi: 10.1093/biomet/87.3.706

Imbens, G.W. (2004). Nonparametric estimation of average treatment effects under
exogeneity: a review. Rev. Econ. Stat. 86, 4–29. doi: 10.1162/003465304323023651

Li, W., Fang, Y., Liao, J., Yu, W., Yao, L., Cui, H., et al. (2020). Clinical and CT
features of the COVID-19 infection: comparison among four different age groups. Eur.
Geriatr. Med. 11, 843–850. doi: 10.1007/s41999-020-00356-5

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2023.1123285
https://www.frontiersin.org/articles/10.3389/frai.2023.1123285/full#supplementary-material
https://doi.org/10.3389/fmed.2020.00458
https://doi.org/10.3390/jpm11090886
https://doi.org/10.1080/17476348.2021.1927719
https://doi.org/10.1056/NEJMoa2007764
https://doi.org/10.1038/sj.bjc.6601907
https://doi.org/10.1613/jair.953
https://doi.org/10.1201/9780429030888
https://doi.org/10.1016/j.jclinepi.2006.01.014
https://doi.org/10.1007/s10916-021-01757-0
https://doi.org/10.1002/sim.4322
https://doi.org/10.1093/oxfordjournals.aje.a117592
https://doi.org/10.1038/s41598-021-93500-5
https://doi.org/10.3390/jcm9041225
https://doi.org/10.1214/aos/1176346732
https://doi.org/10.1016/S0140-6736(20)31042-4
https://doi.org/10.1093/biomet/87.3.706
https://doi.org/10.1162/003465304323023651
https://doi.org/10.1007/s41999-020-00356-5
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Zhai et al. 10.3389/frai.2023.1123285

Lu, M., Sadiq, S., Feaster, D. J., and Ishwaran, H. (2018). Estimating individual
treatment effect in observational data using random forest methods. J. Comput.
Graphical Stat. 27, 209–219. doi: 10.48550/arXiv.1701.05306

Mahase, E. (2020). Covid-19: why are age and obesity risk factors for serious disease?
BMJ 371, m4130. doi: 10.1136/bmj.m4130

Miettinen, O. S. (1985). Theoretical Epidemiology: Principles of Occurrence Research
in Medicine. New York, NY: Wiley.

Perez Santin, E., Rodrguez Solana, R., Gonzlez Garca, M., Surez, M. M. J., Dz, G.
D. B., Garc, M. G., et al. (2021). Toxicity prediction based on artificial intelligence: A
multidisciplinary overview. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 11, e1516. doi: 10.1002/wcms.1516

Robins, J. M. (1986). A new approach to causal inference in mortality studies with
a sustained exposure period—application to control of the healthy worker survivor
effect.Math. Modell. 7, 1393–1512. doi: 10.1016/0270-0255(86)90088-6

Robins, J. M., Hernan, M. A., and Brumback, B. (2000). Marginal structural
models and causal inference in epidemiology. Epidemiology 11, 550–560.
doi: 10.1097/00001648-200009000-00011

Robinson, S. C., and Brucer, M. (1939). Range of normal blood pressure: a
statistical and clinical study of 11,383 persons. Arch. Intern. Med. 64, 409–444.
doi: 10.1001/archinte.1939.00190030002001

Rosenbaum, P. R. (1984). From association to causation in observation studies: the
role of tests of strongly ignorable treatment assignment. J. Am. Stat. Assoc. 79, 41–48.
doi: 10.1080/01621459.1984.10477060

Rosenbaum, P. R., and Rubin, D. B. (1983). The central role of the
propensity score in observational studies for causal effects. Biometrika 70, 41–55.
doi: 10.1093/biomet/70.1.41

Rosenbaum, P. R., and Rubin, D. B. (1984). Reducing bias in observational studies
using subclassification on the propensity score. J. Am. Stat. Assoc. 79, 516–524.
doi: 10.1080/01621459.1984.10478078

Rosenbaum, P. R., and Rubin, D. B. (1985). Constructing a control group using
multivariate matched sampling methods that incorporate the propensity score. Am.
Stat. 39, 33–38. doi: 10.1080/00031305.1985.10479383

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and
nonrandomized studies. J. Educ. Psychol. 66, 688–701. doi: 10.1037/h0037350

Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. New York, NY:
Springer.

Van Der Laan, M. J., and Dudoit, S. (2003). “Unified cross-validation methodology
for selection among estimators and a general cross-validated adaptive epsilon-net
estimator: finite sample oracle inequalities and examples,” in UC Berkeley Division
of Biostatistics Working Paper Series, paper 130. Available online at: http://biostats.
bepress.com/ucbbiostat/paper130 (accessed March 23, 2023).

Van Der Laan, M. J., and Robins, J. M. (2003). Unified Methods for
Censored Longitudinal Data and Causality. New York, NY: Spring-Verlag.
doi: 10.1007/978-0-387-21700-0

Van Der Laan, M. J., and Rose, S. (2011). Targeted Learning: Causal
Inference for Observational and Experimental Data. New York, NY: Springer.
doi: 10.1007/978-1-4419-9782-1

Wei, Y.Y., Wang, R.R., and Zhang, D.W. (2020). Risk factors for severe COVID-
19: evidence from 167 hospitalized patients in Anhui, China. J. Infect. 81, e89–e92.
doi: 10.1016/j.jinf.2020.04.010

Wu, R., Wang, L., Kuo, H.-C. D., Shannar, A., Peter, R., Chou, P. J., et al. (2020).
An update on current therapeutic drugs treating COVID-19. Curr. Pharmacol. Rep. 6,
56–70. doi: 10.1007/s40495-020-00216-7

Xu, Z., Su, C, Xiao, Y., and Wang, F. (2022). Artificial intelligence for COVID-
19: battling the pandemic with computational intelligence. Intell. Med., 2, 13-29.
doi: 10.1016/j.imed.2021.09.001

Zhou, F., Yu, T., and Du, R. (2020). Clinical course and risk factors
for mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study. Lancet 395, 1054–1062. doi: 10.1016/S0140-6736(20)30
566-3

Zuin, M., Rigatelli, G., and Zuliani, G. (2020). Arterial hypertension
and risk of death in patients with COVID-19 infection: Systematic
review and meta-analysis. J. Infect. 81, e84–e86. doi: 10.1016/j.jinf.2020.
03.059

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2023.1123285
https://doi.org/10.48550/arXiv.1701.05306
https://doi.org/10.1136/bmj.m4130
https://doi.org/10.1002/wcms.1516
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.1097/00001648-200009000-00011
https://doi.org/10.1001/archinte.1939.00190030002001
https://doi.org/10.1080/01621459.1984.10477060
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1080/01621459.1984.10478078
https://doi.org/10.1080/00031305.1985.10479383
https://doi.org/10.1037/h0037350
http://biostats.bepress.com/ucbbiostat/paper130
http://biostats.bepress.com/ucbbiostat/paper130
https://doi.org/10.1007/978-0-387-21700-0
https://doi.org/10.1007/978-1-4419-9782-1
https://doi.org/10.1016/j.jinf.2020.04.010
https://doi.org/10.1007/s40495-020-00216-7
https://doi.org/10.1016/j.imed.2021.09.001
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1016/j.jinf.2020.03.059
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Learning from real world data about combinatorial treatment selection for COVID-19
	1. Introduction
	2. Methodology
	2.1. General framework
	2.2. Specific methods
	2.2.1. Virtual multiple matching
	2.2.2. Synthetic minority over-sampling technique
	2.2.3. Handling of missing data
	2.2.4. Permutation test of sharp null hypothesis
	2.2.5. Estimation of failure rates
	2.2.6. Multiple comparisons with the best
	2.2.7. Subgroup selection


	3. Data analysis results
	3.1. Validation of VMM and SMOTE
	3.2. Test of sharp null hypothesis
	3.3. Overall comparison of treatments
	3.4. Subgroup analysis

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


