
TYPE Original Research

PUBLISHED 03 April 2023

DOI 10.3389/fsufs.2023.1103118

OPEN ACCESS

EDITED BY

Sudhakar Srivastava,

Banaras Hindu University, India

REVIEWED BY

Arvind Kumar Dubey,

University of Nebraska, United States

Abhinav Yadav,

Banaras Hindu University, India

*CORRESPONDENCE

Jesús Castillo

jcastillo@inia.org.uy

SPECIALTY SECTION

This article was submitted to

Agroecology and Ecosystem Services,

a section of the journal

Frontiers in Sustainable Food Systems

RECEIVED 20 November 2022

ACCEPTED 13 March 2023

PUBLISHED 03 April 2023

CITATION

Castillo J, Kirk GJD, Rivero MJ, Fabini G,

Terra JA, Ayala W, Roel A, Irisarri P and

Haefele SM (2023) Measured and modeled

nitrogen balances in lowland rice-pasture

rotations in temperate South America.

Front. Sustain. Food Syst. 7:1103118.

doi: 10.3389/fsufs.2023.1103118

COPYRIGHT

© 2023 Castillo, Kirk, Rivero, Fabini, Terra,

Ayala, Roel, Irisarri and Haefele. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Measured and modeled nitrogen
balances in lowland rice-pasture
rotations in temperate South
America

Jesús Castillo1,2,3*, Guy J. D. Kirk3, M. Jordana Rivero4,

Guillermo Fabini1, José A. Terra1, Walter Ayala5, Alvaro Roel1,

Pilar Irisarri6 and Stephan M. Haefele2

1Programa Nacional de Investigación en Arroz, Instituto Nacional de Investigación Agropecuaria (INIA),

Treinta y Tres, Uruguay, 2Sustainable Soils and Crops, Rothamsted Research, Harpenden,

United Kingdom, 3School of Water, Energy and Environment, Cranfield University, Cranfield,

United Kingdom, 4Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton,

United Kingdom, 5Programa Nacional de Pasturas, Instituto Nacional de Investigación Agropecuaria

(INIA), Treinta y Tres, Uruguay, 6Laboratorio de Microbiología, Departamento de Biología Vegetal,
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Rotational rice systems, involving pastures, other crops and/or livestock, are

common in temperate South America, exemplified by the rice-pasture-livestock

system of Uruguay which combines very high rice yields with tight nitrogen (N)

balances. The generally good nutrient use e�ciency in these systems provides

a template for nutrient management in other mixed farming systems, if the

underlying processes can be su�ciently well quantified and understood. Here,

we studied N balances in rice–non-rice rotations in a long-term experiment

in Uruguay, with the aim of parameterizing and testing the DNDC model of N

dynamics for such systems for use in future work. The experiment includes three

rotations: continuous rice (RI-CONT), rice-soybean (RI-SOY) and rice-pasture (RI-

PAST). We considered 9 years of data on N balances (NBAL), defined as all N inputs

minus all N outputs; N surplus (NSURP), defined as all N inputs minus only N

outputs in food products; and N use e�ciency (NUE), defined as the fraction of

N inputs removed in food products. We parameterized DNDC against measured

yield and input and output data, with missing data on N losses inferred from

the N balance and compared with literature values. The model performance was

assessed using standard indices of mean error, agreement and e�ciency. The

model simulated crop yields and rice cumulative N uptake very well, and soil N

reasonably well. The values of NBAL were +45 and−20 kg N ha−1 yr−1 in RI-

CONT and RI-SOY, respectively, and close to zero in RI-PAST (−6 kg N ha−1 yr−1).

Values of NSURP decreased in the order RI-CONT >> RI-SOY > RI-PAST (+115,

+25 and +13 kg N ha−1 yr−1, respectively). Values of NUE (84, 54, and 48% for

RI-SOY, RI-PAST, and RI-CONT, respectively) decreased as NBAL increased. The

sensitivity of DNDC’s predictions to the agronomic characteristics of the di�erent

crops, rotations and water regimes agreed with expectations. We conclude that

the DNDC model as parameterized here is suitable for exploring how to optimize

N management in these systems.
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Introduction

Increased global trade of crops and livestock as well as the

separation of crop and livestock production has led to large

imbalances in nutrient budgets across the globe (Grote et al.,

2008; Uwizeye et al., 2020). To improve local and global nutrient

balances, future food systems should include a return to mixed

farming systems with integrated crop and livestock production

(Asai et al., 2018; Garrett et al., 2020; Peterson et al., 2020). Such

systems have a greater potential for efficient nutrient use and

cycling than the intensive single commodity systems that have

become dominant globally over the last decades (Martin et al., 2016;

Ghimire et al., 2021). For example, until recently rice production

in Argentina, Paraguay and southern Brazil was predominantly a

monoculture, shifting in the last decade to more complex systems

with the inclusion of soybeans or short pastures with livestock

(Denardin et al., 2020; Ribas et al., 2021; Macedo et al., 2022). This

diversification has helped improve soil conditions, weed control,

and farm income, though nutrient management still needs to be

improved (De Faccio Carvalho et al., 2021).

An example of a well-integrated system is the national

rice-livestock system in Uruguay. This has been practiced for

over 50 years, attaining a high level of production for rice

(mean grain yields > 8Mg ha−1 y−1) and an average level for

livestock (120 kg liveweight gain ha−1 y−1) (Castillo et al., 2021)

for the prevailing production conditions (e.g. climate, pasture

management). Analysis of country-level statistics over the last

16 years showed tight positive nitrogen (N) balances of +2–

3 kg N ha−1 yr−1 for both the rice and livestock components

as well as the whole system (Castillo et al., 2021). This is

remarkable given that N inputs to agricultural systems globally

range from greatly excessive to inadequate, generating imbalances

from environmental pollution to soil N mining (Ladha et al., 2020).

To understand how to optimize nutrient management in such

systems, a detailed understanding of local and regional variation

in system properties and processes is needed. A good assessment

requires detailed data on nutrient inputs and outputs, as well as on

loss processes. Regional and national datasets on nutrient balances

are inevitably incomplete, especially for gaseous emissions, which

are expensive and hard to quantify in detail (Katayanagi et al.,

2012). Despite having good data on rice, pasture and livestock

production and N budgets (Kanter et al., 2016; Pittelkow et al.,

2016), data on gaseous N losses and process modeling of such losses

are scarce for the Uruguayan rice-pasture system. Irisarri et al.

(2012) and Tarlera et al. (2016) reported very low nitrous oxide

(N2O) emissions (< 2 kg N-N2O ha−1 season) from rice across the

country. However, the main gaseous N loss process in rice systems

is generally volatilization of ammonia (NH3), which can reach up

to 50–60% of the applied N (Chowdary et al., 2004; Xu et al., 2013;

Chen et al., 2015; Wang et al., 2018). Reliable modeling of NH3

volatilization is therefore needed to fill-in missing data, and to

interpret and extrapolate results. Models for this purpose need to

capture all the relevant processes equally well.

There are particular challenges in modeling N dynamics in

rice-pasture systems, because very different processes operate in

the flooded rice phase compared with the non-flooded pasture

phase. Under flooded conditions, high rates of loss can occur by

(1) NH3 volatilization from the floodwater layer due to daytime

increases in floodwater pH (by up to 2 units) as dissolved

CO2 is removed in photosynthesis of floodwater algae; and (2)

nitrification-denitrification processes in adjacent oxic and anoxic

regions in the soil-floodwater system (Kirk, 2004; Buresh et al.,

2008). In the alternating pasture phase, N dynamics depend

particularly on (1) biological N fixation (BNF) associated with

legume species; (2) the effects of grazing animals; and (3) the

retention of fixed N in crop residues and soil organic matter for

following crops (Peoples and Craswell, 1992; Ledgard, 2001).

Potential models of rice field N dynamics include DayCent, but

it does not calculate NH3 volatilization (Del Grosso et al., 2015;

Necpálová et al., 2015; Gurung et al., 2021), and CERES-Rice, which

does calculate NH3 volatilization but its application to N balances

in Uruguayan rice-pasture systems was not promising (Pravia,

2009). The DeNitrification-DeComposition (DNDC) model (Li,

2000) is a widely used process-oriented simulation model of soil C

and N biogeochemistry with a focus on agro-ecosystems. Originally

developed for simulating GHG emissions from agricultural systems

in the USA, the DNDC model has been calibrated and used

worldwide (Kesik et al., 2005; Abdalla et al., 2022). The model is

dynamic and can capture complex agro-ecosystem interactions for

simulating GHG emissions from croplands and other ecosystems.

The DNDC model has also been used to simulate crop grain yield

and N uptake in lowland rice systems (Babu et al., 2006; Katayanagi

et al., 2013; Zhao et al., 2020) as well as in aerobic “upland” crops

(Zhang et al., 2018; Jiang et al., 2021; Abdalla et al., 2022).

Our objectives were to parametrize and test the DNDC model

for characterizing N dynamics in rice-pasture rotations in Uruguay,

and to use the model to examine the components of the N balance

in these rotations. We parameterized and tested the model against

data from a no-till long-term experiment on direct seeded rice-

pasture rotations in Uruguay, with nine years of measurements

of yields and the components of the N balance. To the best of

our knowledge, this is the first time the DNDC model has been

used in multi-cropping systems including perennial pastures and

livestock, alternating between dry and flooded soil conditions. If

a good fit between predicted and observed data can be achieved,

the model will allow us to predict the trajectory of the existing

systems and the effects of altering the current management, such as

by the intensification of rice cultivation and introduction of non-

traditional crops such as soybeans. The results should apply to

rice production across temperate South America (Argentina, Brazil,

Paraguay, Uruguay) where 1.5Mha of land is currently used for rice

and potentially could shift to more complex systems. The results

could help define optimal N fertilization management strategies for

such systems.

Materials and methods

The long-term experiment

The experiment is located at the Instituto Nacional de

Investigación Agropecuaria (INIA) Treinta y Tres, Paso de la

Laguna Experimental Station in the East of Uruguay (33◦16′22.2"S;

54◦10′23.1W). The climate is mesothermic and humid. Daily mean

temperatures is 22.6 ± 0.54◦C in summer and 12.0 ± 0.82◦C in

winter. Annual mean rainfall is 1,354± 283mm and total potential
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evapotranspiration 1,048 ± 196mm. The dominant soil type is

an Argialboll (main properties in Supplementary Table S1). In the

30 years before the experiment, the area was under a rice-pasture

rotation with 2 years of rice followed by 3 years of improved legume

pasture. The experiment occupies an area of 7.2 ha, comprising 60

plots, each 60m long and 20m wide. There are six rotations in

a randomized complete block design with three replications (full

details in Supplementary Text S1, Supplementary Table S2). For

this study, we selected the three most contrasting rotations in terms

of the frequency of rice cultivation and N additions: (a) continuous

rice-legume pasture cover crop each year (RI-CONT), (b) rice-

pasture cover crop-soybean-legume pasture cover crop every two

years (RI-SOY) and (c) rice-pasture cover crop-rice-grazed pasture

for 3.5 years every 5 years (RI-PAST) (Table 1).

Field measurements

Data on all management variables for crops and pastures were

recorded annually. Rice and soybean yields, nutrient removals

with the grain and seasonal pasture production and botanical

composition were measured each season. Biological N fixation

by the pasture and soybean was estimated based on crop and

pasture measurements and literature data. Similarly, N removal in

animal tissue were estimated from animal production and literature

data (Supplementary Table S3). Climate data (daily maximum and

minimum air temperature, precipitation, solar radiation, wind

speed and air humidity) were obtained from a weather station at

the site.

Aboveground rice N uptake and KCl-extractable NH4-N in

the soil during flooding were measured in sub-plots in 2019–

2020 and 2020–2021. For rice N uptake, above-ground plant tissue

was sampled seven times during the growing season each year,

from 15 d after flooding about every 15 d up to harvest. The

plant samples were dried at 60◦C for 48 h and N concentrations

measured by the Dumas method. The soil was sampled seven

times from immediately after flooding to 15 d before harvest by

inserting a 30-mm diameter scaled tube to 15 cm depth. Six soil

samples were taken per plot and bulked. Extractable NH4-N was

measured by shaking the wet soil in 2M KCl for 2 h and analyzing

colorimetrically (Nelson, 1983), and allowing for the soil water

content. Emissions of N2O were measured in the main plots by

the closed chamber technique (Rochette and Eriksen-Hamel, 2008;

Minamikawa et al., 2012) every 15 d on average, starting after

flooding in the rice crop and 1 week after establishment in pasture

and soybean crops and up to the day of the rice drainage, in

both crops.

Parameterizing DNDC

DNDC is a process-based model representing C and N

biogeochemical cycles in agricultural systems on daily time steps,

with four ecological drivers: climate, soil, vegetation and cultural

practices (Li, 2000; Simmonds et al., 2015). One component

calculates crop growth and soil temperature, moisture, pH, redox

potential and substrate (dissolved organic C, hereinafter expressed T
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TABLE 2 DNDC cropping parameter settings used for calibration.

Rice Soybean Egyptian clover Ryegrass Mixed perennial pasture

Range of maximum grain

production (kg ha−1 yr−1)

7,790–13,908 1210–3,170 23–46 17–43 63–155a

80–224b

69–92c

14–46d

Biomass fraction

(grain/leaf/stem/root)

0.45/0.21/0.22/0.12 0.31/0.25/0.24/0.2 0.01/0.4/0.4/0.19 0.01/0.4/0.4/0.19 0.02/0.35/0.35/0.28

C to N ratio

(grain/leaf/stem/root)

35/60/80/85 10/45/45/24 15/10/21/30 15/25/25/30 19/19/19/19

Thermal degree days (TDD) 2,800–3,140e 2,700 1,700 1,700 4,000

N fixation index (N plant/N

from soil)

1.05 4 10 1 1.34

a,b,c,dBased on measured aboveground biomass fraction for pastures in its 1st, 2nd, 3rd and 3.5th year.
eRange of thermal degree days for rice for the different used rice varieties across the years.

as DOC, NH+
4 , NO−

3 , CO2, and H2) concentration profiles.

A second component calculates nitrification, denitrification and

fermentation, simulating CO2, CH4, NH3, NO, N2O, and N2

emissions from the plant-soil system.

For the climate driver, we used on-site data of temperature

(maximum and minimum), solar radiation, wind speed, air

humidity and precipitation over the study period. The default

atmospheric CO2 value was adjusted to 390 ppm for 2012,

increasing by 2.5 ppm each year thereafter (NOAA, 2022). Nitrogen

concentration in rainfall was set at 0.35mg l−1 (Zunckel et al.,

2003). Soil clay content, pH and organic carbon content were as

measured at the start of the experiment (Supplementary Table S1).

The depth of the water retention layer (0.6m) and the drainage

efficiency (50%) were estimated based on the site conditions. Bulk

density, porosity, soil hydraulic conductivity and available water

potential values were calculated by the model from the Input soil

property variables.

Annual crop and cultural practices were included in the

cropping management sub-model. Grazing by sheep was allowed

for in the RI-PAST rotation with grazing frequency (rotational

grazing averaging 8 d occupancy and 20 d of regrowth) and stocking

rate (28 animals ha−1 on average) as managed in the experiment.

To simulate the start of a chemical fallow period in pasture cover

crops and pastures in the final productive year, we selected the “crop

termination tillage” option, which does not alter the soil surface.

The model was calibrated by adjusting the crop parameters

listed in Table 2 to obtain best fits between measured and simulated

crop and pasture yields and N balances (total N uptake, grain

and straw N partitioning, and soil NH4-N concentrations) in

the different rotations over the nine growing seasons. All other

parameter values were either as determined above or the DNDC

default values.

We lacked measurements of NH3 volatilization, but it is an

important part of the N budget (Results). We therefore assessed

the sensitivity of simulated NH3 volatilization and grain yields

to the main soil parameters affecting volatilization (carbon and

clay contents and pH) and N fertilization rate. We varied each

parameter by −30 to +30 % of the standard value with an

increment of 10%, consistent with variability across the main

rice regions in Uruguay. We also checked the sensitivity of NH3

volatilization and grain yield to the main crop development

parameters (Table 2) by varying values by −15 and +15%. That

range covers the expected variability in biomass fraction and C

to N ratio in all rice plant components, and thermal degree

days accumulation.

Model performance

Model accuracy during calibration and validation stages

was tested through three indices following (Yang et al., 2014):

mean error (ME), index of agreement (IA) and modeling

efficiency (MEF):

ME =

∑n
i=1 (Pi − Oi)

n
(1)

IA = 1−

∑n
i=1 (Pi − Oi)

2

∑n
i=1

(
∣

∣Pi − O
∣

∣+
∣

∣Oi − P
∣

∣

)2
(2)

MEF = 1−

∑n
i=1 (Pi − Oi)

2

∑n
i=1

(

Oi − O
)2

(3)

where Pi and Oi are the predicted and observed values respectively

in season i, P and O are the respective mean values, and n is

the number of seasons. If ME is above or below 0, the model

underestimates or overestimates the observed data, respectively.

The dimensionless IA index (0 ≤ IA ≤ 1) is used to represent the

degree of deviation from zero. The MEF values (–∞ to 1), also

dimensionless, assess the goodness-of-fit of the model, withMEF =

1 indicating a perfect fit and 0–1 denoting acceptable fit. For MEF

< 0, goodness of fit must be assessed with a t-test.

The good agreement (see results) when comparing simulated

and measured field data during the two parametrization stages gave

us confidence to use other N parameters simulated by the DNDC

model but not measured, to conduct a more complete N budget

analysis in the different crop rotation systems.
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FIGURE 1

Comparison of simulated and observed (A) rice grain yield, (B)

soybean yield, and (C) pasture dry matter from 2012 to 2021.

Nitrogen balance, surplus and
use-e�ciency

The N balance (NBAL) was calculated as:

NBAL =
∑

Ninputs −
∑

Nouputs (4)

where Ninputs = N in fertilizers, BNF, atmospheric N deposition,

and Noutputs = N in food products, N gas losses (NH3, N2O, NO2,

and NO), and N leached.

All N inputs not retained in food products were considered

as potential N loss to the environment and was defined as

surplus (NSURP):

NSURP =
∑

Ninputs − Nfood products (5)

Components of Ninputs = as in Equation 1 and Nfoodproducts =

amount of N in grain or meat or both.

The N use efficiency was calculated as the fraction of N retained

in food products considering all inputs:

NUE% =
Nfood products
∑

Ninputs
× 100 (6)

whereNUE%=N use efficiency expressed in percentage while N in

food products and N inputs are the same items as in Equation 5.

Analyses of variance for NBAL, NSURP and NUE% were

conducted with a general linear model. In the model, rotation was

considered a fixed effect while the block effect nested in year was

considered random. A significance level of P ≤ 0.05 was defined

and all data was tested for normality and variance homogeneity.

Comparisons of the assessed soil parameters during the sensitivity

analysis were conducted using multiple t-tests (P ≤ 0.05). All the

statistical analyses were performed in the Infostat software (Di

Rienzo et al., 2008).

Results

Rice yield

Yields were highest in the RI-SOY and in the first rice of the

RI-PAST rotations and lowest in the second rice of the RI-PAST

and RI-CONT rotations (Figure 1A). Supplementary Table S4 gives

the results of the model assessment using Equations 4–6. The

model simulated rice yields well for all rotations over the entire

period, with a small average underestimation of −409 kg ha−1

yr−1 (Figure 1A). Analysis within rotations also showed a high

association between simulated and observed yields for the first

rice of the RI-PAST rotation, the RI-CONT rotation, and the RI-

SOY Rotation depending on the RI-SOY rotation sequence (rice-

soybean or soybean-rice, respectively). In both cases, the model

under or overestimated rice yield on average by −397 and 558 kg

ha−1 yr−1, respectively. In contrast, the simulation for the second

rice of the RI-PAST rotation was poor with an average yield

underestimation of−2,937 kg ha−1 yr−1. This was associated with

an average difference in total N uptake of around 25 kg N ha−1

compared with the average N uptake of the first rice in the RI-

PAST rotation. Based on that N uptake difference we added the

mentioned amount as fertilizer and assuming 50% of fertilizer

recovery and repeated the model run.

Soybean yield

Yields tended to be lower and more variable during the first

years of the experiment because of dry summers and lack of

supplementary irrigation, which started in 2015. As with the

rice, soybean yield was predicted well by the DNDC model

(Figure 1B). On average, predicted values slightly underestimated
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FIGURE 2

Comparison of simulated and observed rice N uptake (kg N ha−1) in rice-pasture (first and second rice), rice-soybean and continuous rice in the

2019–2020 and 2020–2021 growing seasons. Observed data are means ± standard errors (n = 3).

yield (−195 kg ha−1 yr−1) but efficiency indices values indicated

good agreement. Within the RI-SOY rotation, soybean yield

predictions were off by−290 and 118 kg ha−1 yr−1 for the rice-

soybean and soybean-rice sequences, respectively, with indices

values confirming a good simulation (Supplementary Table S4).

Pasture yield

The greatest pasture production was during the second

year and the least during the last cycle which considered

only half a year. Dry matter production during the first

and third year were similar. Pasture dry matter production

in the RI-PAST rotation was well predicted by the model

for the yearly average and the pasture growing season.

However, this changed when analyzing each growing

season separately (Figure 1C). Except for model prediction

of second-year pastures, the simulations showed only

intermediate values for the goodness of fit index values

(Supplementary Table S4). t-tests did not detect differences

between predicted vs. observed values except for the third-year

pastures (P = 0.04).
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FIGURE 3

Comparison of simulated and observed rice grain and straw N uptake (kg N ha−1) at physiological maturity in the rice-pasture (first and second rice),

rice-soybean and continuous rice in (A) 2019–2020 and (B) 2020–2021 growing seasons. Observed data are means ± standard errors (n = 3). Letters

next to bars indicate di�erences (Fisher 5%) between simulated and observed grain and straw N values for each rotation.

Nitrogen uptake and soil N concentration

In both 2019–20 and 2020–21 growing seasons, total rice N

uptake was greater in the first rice of the RI-PAST (172 and

177 kg N ha−1) and the RI-SOY (160 and 157 kg N ha−1) systems

compared with the second rice of RI-PAST (146 and 120 kg N

ha−1) and RI-CONT rotations (146 and 130 kg N ha−1), following

the same trends as observed for rice yield. The results of the

evaluation index values for cumulative N uptake are shown in

Supplementary Table S4. These values indicate that the DNDC

model simulated the cumulative rice N uptake in the different

rotation systems very well (Figure 2), with a low deviation between

predicted and simulated N uptake values. The model could also

satisfactorily simulate the amount of N kept in straw and rice grain

in the different rotations and years (Figure 3).

Soil NH4-N concentrations were small (6.3 ± 2.6 and 9.2

± 5.4 kg N ha−1 during the rice flooded stage in 2019–20 and

2020–21, respectively) and decreased over time. There were no

differences between rotations within a year. Index values for soil

NH4-N concentration were ME = 1.38 and 0.68; IA = 0.48

and 0.54; MEF = −0.27 and 0.05, for the first and second rice

growing season, respectively. Although observed and predicted

NH4-N values were very close (10 vs. 6.8 kg ha−1 and 9.8 vs. 8 kg

ha−1 in the predicted vs. observed for 2019–2020 and 2020–2021,

respectively), index values of model accuracy showed intermediate

results (Supplementary Table S4). A paired t-test did not show

differences between the predicted and observed values for this

variable in the RI-CONT and the first rice of the RI-PAST rotation

in both years, but differences were detected for the RI-SOY rotation

in 2019–2020 (P = 0.02) and 2020–2021 (P = 0.04). But the

trend in simulated and observed soil NH4-N values was close,

corresponding to the small range of observed values for this variable

(Figure 4).

Ammonia emission

Although we do not have measurements of NH3 volatilization

against which to test the model predictions directly, the good

agreement between measured and modeled N uptake and soil

N concentrations suggests that NH3 volatilization is modeled

satisfactorily, given that it is the main source of N losses from

Frontiers in Sustainable FoodSystems 07 frontiersin.org

https://doi.org/10.3389/fsufs.2023.1103118
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Castillo et al. 10.3389/fsufs.2023.1103118

FIGURE 4

Comparison of simulated and observed NH4-N concentration in the soil during the flooded rice stage in rice-pasture, rice-soybean and continuous

rice in 2019–2020 and 2020–2021 growing seasons. Observed data are means ± standard errors (n = 3).

the soil. We assessed the sensitivity of simulated volatilization to

the main model parameters affecting it varied by ±30% of the

measured field values (Figure 5). Simulated volatilization and rice

yield were moderately sensitive to all the soil parameters tested

over this range, and the effects were consistent with expectations.

Volatilization increased by 25% with N addition on average across

the rotations, by 13% with soil organic C content and by 7% with

soil pH. The effect of pH was greater during periods when the

soil was drained (around 35 days from rice seeding to the soil

being flooded), increasing by 29% with higher soil pH values.

Conversely, volatilization decreased by 10% with a 30% increase

in soil clay content. The effects of crop parameters on NH3

volatilization ranged from−6 to +8%. In all rotations, rice yields

increased slightly with N addition and soil organic C content

and decreased with soil clay content and pH. Crop parameters

also had small effects on rice yield. In summary, the sensitivity

of NH3 volatilization to variations in soil parameters was greater

than for crop parameters, and rice yield was little affected by

any of the tested parameters. We conclude that the model is well

corroborated by the observed crop and pasture growth and N

dynamics, and therefore suitable for predicting unmeasured N

loss components.

Frontiers in Sustainable FoodSystems 08 frontiersin.org

https://doi.org/10.3389/fsufs.2023.1103118
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Castillo et al. 10.3389/fsufs.2023.1103118

FIGURE 5

Sensitivity of modeled NH3 volatilization and rice grain yield to variations in the N fertilization rate and soil organic C content, clay content, and pH.

The parameter values were varied individually by the indicated values. The horizontal lines are the results with the standard parameter values. Letters

next to bars indicate di�erences (Fisher 5%) associated with percentage variation of each indicated soil parameter.

Nitrous oxide emission

Measured N2O-N emissions were small in the flooded and

dry soil stages (0.54 ± 2.6 and 0.37 ± 2.8 g N2O-N ha−1 day−1,

respectively). During the pasture phase of the RI-PAST and for

rice in RI-CONT rotation, measured and simulated N2O-N values

were zero in both growing seasons. Simulated N2O emissions

underestimated measured records during the first rice of the RI-

PAST rotation (0.54 and 0.13 g N2O-N ha−1 day−1 for 2019–2020

and 2020–2021 respectively) and overestimated for soybean in the

RI-SOY rotation (0.5 g N2O-N ha−1 day−1). According to the

calculated model accuracy indices values, predicted N2O emissions

showed low to intermediate similarity to the observed values

(Supplementary Table S4). On average, the range of predicted and

measured N2O-N emission values was very narrow, and the values

were low (0.45 and 0.48 g ha−1 day−1, respectively). There were

no significant differences between predicted and observed values

assessed by t-tests in all rotations.
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FIGURE 6

Composition of N inputs and outputs and average N amounts for rice-pasture, rice-soybean and continuous rice in 2019–2020 and 2020–2021

growing seasons. Letters next to bars indicate di�erences (Fisher 5%) between the rotations for each indicated component.

TABLE 3 Calculated N balance, N surplus and % N use e�ciency (defined

in Equations 4–6) for the three rotations from 2012 to 2020.

Rotation N balance N surplus NUE

kg N ha−1 yr−1 %

RI-PAST −6 13 53

RI-SOY −23 25 84

RI-CONT 45 115 48

LSDa 22 16 18

aLeast significant difference.

Nitrogen balance, surplus and
use-e�ciency

Total N inputs accounted for 209, 139 and 51 kg N ha−1 yr−1 in

RI-CONT, RI-SOY and RI-PAST respectively. The main N source

was fertilizer for RI-CONT (70%) but biological N fixation (BNF)

for RI-SOY (66%). In RI-CONT BNF (57 kg N ha−1 yr−1) was due

to the Egyptian clover used as cover pasture crop, and in RI-SOY

it was due to soybean (136 kg N ha−1 yr−1) and Egyptian clover

(47 kg N ha−1 yr−1). The RI-PAST rotation had both the smallest

inputs of N fertilizer (26 kg N ha−1 yr−1) and the least BNF (17 kg

N ha−1 yr−1). Although N fertilizer rates for RI-SOY (42 kg N ha−1

yr−1) and RI-PAST were small, the average amounts applied to the

rice per season over the study period were 84 kg N ha−1 in RI-SOY

(4.5 rice crops) and 71 kg N ha−1 in RI-PAST (3.3 rice crops).

The RI-PAST rotation had the smallest N outputs (Figure 6).

Nitrogen retained in grain crops accounted for 72, 58 and

51% of total N outputs for RI-SOY, RI-CONT and RI-PAST,

respectively, while gaseous N losses represented 30, 42 and 34% of

N outputs, respectively. For the three rotations, NH3 volatilization

was the main N loss process (39 kg NH3-N ha−1 yr−1). Both

N2O emission (4 kg N ha−1 yr−1) and N leaching (2 kg N ha−1

yr−1) were negligible by comparison. Volatilization of NH3 was

mainly associated with the rice phase of each rotation (93%

on average). Cumulative NH3 volatilization losses were different

among rotations being 62, 41 and 17 kg NH3-N ha−1 yr−1 for RI-

CONT, RI-SOY and RI-PAST, respectively. The greatest amount

of N volatilized was found during the rice phase in the RI-SOY

rotation (74 kg NH3-N ha−1) followed by RI-CONT and RI-PAST

(61 and 44 kg NH3-N ha−1, respectively), all statistically different.

In the absence of N fertilizer addition, simulated volatilization was

on average 18, 9 and 15 kg N-NH3 ha
−1 for the same rotations.

Differences betweenN inputs and outputs generated differences

in N balances, N surpluses and NUE (Table 3). NBAL ranged from

+45 kg N ha−1 yr−1 in RI-CONT to−23 kg N ha−1 yr−1 in RI-SOY,

with RI-PAST having an intermediate value (−6 kg N ha−1 yr−1).

Because of the high fertilizer N input in RI-CONT, which is similar

to the total output of this rotation, the positive NBAL values are

close to the BNF and atmospheric deposition inputs (Table 3). In

contrast, NBAL was negative in RI-SOY even though one of the

rotation components fixed N. The amount of N derived from the

atmosphere to the soybeanwas defined in 75% of the total N uptake,

explaining partly that negative N balance. The RI-PAST rotation

reached a very tight N balance of −6 kg N ha−1 yr−1. In the RI-

CONT rotation, the amount of N not retained in grain from all the

N inputs (NSURP) was 115 kg N ha−1 yr−1. This value represented

around 79% of the N added as fertilizer. Both, RI-SOY and RI-

PAST showed low NSURP values (Table 3). The NUE % was higher

in RI-SOY (84%) compared with RI-CONT (48%). The NUE % in

RI-PAST was 53%, similar to RI-SOY. Higher NUE% values were

associated with less positive NBAL.

Discussion

Simulation of crop yields and N dynamics

In general, the agreement between observed and simulated

rice yield, N uptake and soil N concentration in the different

rotations was very good. Given the complexity of the model and

the diverse processes simulated, this is good evidence that the

important processes are satisfactorily simulated and that the model

gives a reliable description of the system.
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Yields were somewhat under-predicted (by 9%) in the second

rice of the RI-PAST rotation. This was evidently linked to over-

prediction of N immobilization in the decomposition of crop

residues at the start of the rice season, leading to under-prediction

of N uptake. This was reflected in the simulated dissolved

organic carbon (DOC) production, heterotrophic respiration

and N assimilation by microbes (data not presented). The

use of herbicides in the “chemical” fallow of the RI-PAST

rotation improves N availability for the subsequent crop through

mineralization of residues. Our simulation of this was evidently

effective for a legume pasture cover crop or mixed pastures (legume

+ graminea), but not for Ryegrass, especially when the window

between the cover crop and the rice crop was narrow.

Yield of the non-rice crops were slightly underestimated, and

pasture production overestimated. This could be explained by the

selective grazing of more palatable forage by lambs, tending to

degrade the pasture, which is not accounted for in the model

(Rutter, 2006; Cuchillo-Hilario et al., 2017).

Observed and predicted N uptake data followed the same

trend as the yields. Thus, when observed rice yields showed

some degree of deviation from the predicted values, the same

occurred for N uptake. However, only the N uptake in the RI-

SOY rotation showed a slight underestimation in the predicted

N uptake values, and in all cases predicted values followed the

observed trend.

Gaseous N losses

The main gaseous N loss was via NH3 volatilization. The

DNDC model was mainly developed to estimate GHG emissions,

and has been widely used to simulated N2O and CH4 emissions

from rice systems but less so for NH3 (Li, 2000; Zhao et al., 2020).

In our study, the average rate of volatilization simulated during

the rice phase was comparable to measured rates in well-fertilized

high-yielding rice systems (Liu et al., 2015). Simulated volatilization

in the RI-PAST rotation was comparable to that measured by

Shang et al. (2014) in a rice-legume pasture system with a similar

N fertilizer dose. On average, the simulated volatilization rate

for all the rotations in the absence of N fertilizer addition was

15 kg N ha−1, which is in the range of several studies (Shang

et al., 2014; Liu et al., 2015, 2018). The good match between our

predicted and published gaseous N losses, and the good agreement

between observed and simulated N uptake and soil NH4-N

concentrations, gives us confidence that the model satisfactorily

describes volatilization.

We found that NH3 volatilization was sensitive to N fertilizer

additions and the soil organic C content and, to lesser extents,

to soil clay content and pH. Volatilization losses increased in the

order RI-SOY > RI-CONT > RI-PAST, matching the increase

in soil NH4-N concentration at the beginning of each rice crop

with N fertilizer additions and legume BNF. Likewise simulated

losses increased with soil organic C content and associated organic

N mineralization.

The observed decrease in volatilization with soil clay content is

explained by greater NH+
4 retention on soil surfaces, lowering the

concentrations in the soil solution and gaseous NH3 in equilibrium

with it (Sommer et al., 2001).

The relatively modest effect of the initial soil pH on NH3

volatilization is explained as follows. The main NH3 losses occur

when the soil is flooded. The effects of the initial soil pH are small

then because of (a) the moderating effect of the biogeochemical

changes following soil flooding, which cause the pH of acid and

alkali soils to converge on near neutral, and (b) the dominant

effect of the alkalinity released in urea hydrolysis in the floodwater

[CO(NH2)2 + 3H2O = 2NH+
4 + HCO−

3 + OH−], the floodwater

pH being only weakly buffered, independent of the soil pH.

Hence the floodwater pH increased from near neutral to pH 9.5

immediately after the third N fertilization.

We found no or only small N2O emissions. There was no

significant emission during the pasture phases, but there were

small emissions in the first rice of the RI-PAST rotation and in

the soybean crop of the RI-SOY rotation with a reasonable match

between observed and simulated values given the low rates. Other

studies in rice in Uruguay have found similarly low N2O emissions

(Tarlera et al., 2006; Irisarri et al., 2012; Illarze et al., 2018). Greater

N2O losses are expected in dry-seeded rice at the beginning of

the flooding period, at field drainage (around harvest), and after

heavy rains during the dry crop phase. Recent report of very high

N2O emissions from flooded rice (Kritee et al., 2018) cannot be

generalized for all forms of water management (Wassmann et al.,

2019).

Nitrogen balance, surplus and
use-e�ciency

The RI-PAST system had near neutral N balance (−6 kg N ha−1

yr−1), as it did in our earlier evaluation of the rice-livestock system

in Uruguay at the national level (+2 kg N ha−1 yr−1; Castillo et al.,

2021). The slightly negative balance was explained by greater N

removal in animal tissues with higher stocking rates than at the

national scale. The forage base of the experiment was sown pastures

whereas at the national scale it is almost 100% natural pastures.

Although there were differences in N inputs and outputs between

the studies, the relations between the main inputs and outputs were

similar. Comparing the two studies, ratios of rice grain N/fertilizer

N were 1.19 vs. 1.23 and gaseous N losses/total N inputs were 0.30

vs. 0.21.

Nitrogen balance in the RI-CONT system was strongly positive

(+45 kg N ha yr−1), despite the high rice yield and high cropping

frequency, and was associated with large N surpluses. This was

due both to more N fertilizer use and more BNF in the legume

cover crop. More positive N balances with smaller N surpluses

could be achieved by using improved legume species in the cover

crop to increase BNF and reduce N fertilizer use. The model

sensitivity analysis showed that less fertilizer N use would reduce

NH3 volatilization losses without reducing rice yield. In the last two

years of the RI-CONT rotation in the experiment, blooms of the

floating macrophyte Lemna minor L. have been observed during

rice phase at high N inputs (Supplementary Image S1). Although

this phenomenon is not common in the Uruguayan rice system, it is

in aquatic environments worldwide with high nutrient load (Goopy

and Murray, 2003; Kiage and Walker, 2009). By sequestering N in

rice field floodwater, it may reduce NH3 volatilization losses (Li

et al., 2009; Sun et al., 2019).
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By contrast, N balance in the RI-SOY rotation was negative.

This was despite inputs from BNF in both the pasture cover crop

and soybean. The N balance of the soybean itself was slightly

positive, so the negative balance of the whole rotation was due to

soil N mining during the rice phase. This is important because

soybean is increasingly important in rice-pasture rotation in

temperate South America (Oficina de Estadísticas Agropecuarias,

2018; Ribas et al., 2021) due to higher economic margins and rice

yields. The latter is associated by farmers with a contribution of

soybean N to the rice. But, as in maize-soybean rotations in the

US, the positive effect on rice yield seems to be more related to less

N immobilization when rice is grown after soybean than after rice

or another crop with high C to N ratio, such as maize (Green and

Blackmer, 1995). Therefore, the negative N balance in our results is

concerning for this rotation type in the long term.

These results agree with previous results obtained from this

experimental platform (Macedo et al., 2021), where 19 % less N was

found in the particulate soil organic matter in RI-SOY compared

with RI-PAST, even at early stages of the long-term experiment. Soil

N depletion due to negative balances has been reported in pure rice-

soybean rotations (Benintende et al., 2008; Nishida et al., 2013; Hall

et al., 2019). In our study,NBAL in RI-SOY was negative even when

the rotation included Egyptian clover as a cover-crop. If that cover

crop was not considered in the rotation, the NBAL would be even

more negative. To avoid this, a better N nutrition from BNF has to

be ensured, particularly by maintaining N fixing pasture species in

the rotation. Results from a 6 year study (Landriscini et al., 2019)

showed that positiveNBALwas achieved in almost all the years and

soybean-cover crops treatments. The explanation for the difference

compared with our results was the N yields of the used cover crops

(118 kgN ha−1), which at least doubled our results. If increasing the

rice yields rely only in the addition of more N fertilizer, our model

sensitivity analysis suggests there would be no improvement in the

negativeNBAL. An increase of around 30 kg N fertilizer ha−1 which

apparently turns the NBAL of this rotation slightly positive (from

−23 to+7 kg ha−1 yr−1), will generate an extra N output of around

7 and 19 kg ha−1 in grain yield andN volatilization, maintaining the

negative NBAL.

A clear trend in our results was that, in all three rotations,

the higher the NBAL and NSURP values were, the lower was the

resulting NUE. A well-managed system should have NUE between

50 and 90% (Oenema et al., 2014). As in Castillo et al. (2021), NUE

of the RI-PAST rotation was in this range. However, the higher

N inputs in RI-CONT caused a lower NUE of 48%. The opposite

was observed in the RI-SOY which reached the highest NUE value,

close to the upper threshold. Efficiency values around or above this

threshold potentially indicate soil Nmining and the negativeNBAL

values observed for this rotation.

Conclusions

1. The DNDC model successfully simulated crop responses and

system N dynamics over the nine years of the rice rotational

systems studied. Given the complexity of the model, this is

good evidence that the important processes are satisfactorily

simulated and that the model gives a reliable description of

the system.

2. Though we lacked measurements of NH3 volatilization, which

was the main N loss process, our modeled values agreed with

literature values for equivalent systems and were sensitive to

relevant variables in expected ways, giving us confidence that the

modeled volatilization was realistic.

3. Nitrogen management must be carefully optimized if rice

rotations are intensified, as exemplified by the RI-CONT

rotation where there were large N surpluses and RI-SOY where

there were negative N balances, compared with the RI-PAST

rotation which had only small N surpluses, neutral N balances

and good N use efficiencies.

4. The DNDC model as parameterized here is suitable for

exploring how to optimize N management in rice-pasture-

livestock systems at regional scales, which is the subject of the

companion paper: Castillo et al. (2023).
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