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Actuator fault poses a challenge to the attitude control of spacecraft. 
Fault-tolerant control (active or passive) is often used to overcome this 
challenge. Active methods have better performance than passive methods 
and can manage a broader range of faults. However, their implementation 
is more difficult. One reason for this difficulty is the critical reaction time. 
The system may become unrecoverable if the actual reaction time becomes 
larger than the critical reaction time. This paper proposes using a 
feedforward neural network to reduce the actual reaction time in the active 
fault-tolerant control of spacecraft. Besides this improvement, using a 
feedforward neural network can increase the success percentage. Success 
percentage is the ratio of successful simulations to the total number of 
simulations. Simulation results show that for 200 simulations with random 
faults and initial conditions, the actual reaction time decreases by 73%, 
and the success percentage increases by 25%. Based on these results, the 
proposed controller is a good candidate for practical applications.    
 
Keywords: Attitude Control; Spacecraft; Fault-Tolerant Control; Neural 
Network. 

 
 

1. INTRODUCTION  
 

Research into the conditions and preparation for a space 
flight to Mars has been especially actualized and inten–
sified in recent years [1-3]. Successful spacecraft atti–
tude control is crucial to the growth of this field. For 
instance, for Mars orbiters to effectively complete their 
missions, their attitude needs to be appropriately 
adjusted. The subsystem responsible for attitude adjus–
tment is called ACS [4].  

Despite taking measures to prevent faults, there are 
always possibilities of fault occurrence in ACS [4]. If 
not handled properly, the fault occurrence can lead to 
performance degradation and even mission failure. For 
these reasons, the literature studied spacecraft FTC ex–
tensively [5-14]. 

According to [4], the actuator fault is the most im–
portant reason for ACS failure. The partial loss of actu–
ator effectiveness [15] is considered the fault model. 
Actuator saturation is considered in the controller design. 

FTC is divided into two categories: active and 
passive. PFTCs have a fixed controller structure and 
need neither FDD nor RM. Therefore, their imple–
mentation is easier. However, they are too conservative 
(from a performance point of view) and can deal with a 
limited range of faults/failures. AFTCs have FDD and 
RM. They are less conservative and can handle many 
faults/failures. On the other hand, their implementation 
is more difficult [16-19].  

 According to the literature, several papers have 
considered the AFTC of rigid spacecraft [9-11]. These 

papers have considered sliding mode and backstepping 
methods and have proposed novel ideas for the 
spacecraft AFTC problem.  

Due to constraints in the problem, e.g., actuator 
saturation and final time interval, FTC may not tolerate 
severe faults. Therefore, a quantitative measure should 
be defined for the efficiency of RM. SP is used for this 
purpose and is defined as the ratio of the number of 
successful simulations to the total number of 
simulations for various faults and initial conditions [20]. 
SP should be as large as possible. 

When a fault occurs, there will be limited time to 
reconfigure the controller before the system becomes 
unrecoverable. This time is called CRT. The time 
required for FDD to detect and diagnose the fault, 
besides the time required for RM to reconfigure the 
controller, is ART. Therefore, ART should be as small 
as possible. If ART becomes larger than CRT, the 
system may enter an unrecoverable state [17,18].   

As stated previously, hard implementation is a chal–
lenge in AFTC design. Large ART is one factor that 
leads to this challenge. As ART becomes larger, imple–
mentation becomes more difficult. Therefore, reducing 
ART will make the AFTC implementation easier.   

To the author’s knowledge, previous works have not 
considered ART and SP in the spacecraft AFTC design 
process. The main contribution is to consider these 
important parameters explicitly in the AFTC design of 
spacecraft and propose using feedforward NN [21] to 
increase SP and decrease ART to a large extent. This 
will make the proposed AFTC a suitable candidate for 
applications, e.g., Ultraviolet Spectroscopic Explorer 
Satellite accident, where the actuators malfunctioned 
during the mission [6]. 

The rest of the paper comprises the following 
sections: Section two describes the spacecraft attitude 
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dynamics and base controller structure. Section three 
presents the CLS, RM, and stability analysis. Section 
four explains the fault scenario. Section five defines SP 
and ART. Section six presents simulations to show the 
advantages of the proposed method. Finally, section 
seven ends the paper with a conclusion. 

 
2. SPACECRAFT ATTITUDE DYNAMICS AND 

CONTROLLER STRUCTURE 
 

The rotational dynamic of rigid spacecraft in the 
principal coordinate system is described by (1-7) [22]: 

( )0 1 1 2 2 3 30.5 ω ω ω= − − −q q q q   (1)  

( )1 1 0 3 2 2 30.5 ω ω ω= + −q q q q   (2) 

( )2 2 0 3 1 1 30.5 ω ω ω= − +q q q q   (3) 

( )3 3 0 2 1 1 20.5 ω ω ω= + −q q q q   (4) 

2 3
1 2 3 1

1
ω ω ω

⎛ ⎞−
′= +⎜ ⎟

⎝ ⎠

I I
u

I
  (5) 

3 1
2 1 3 2

2
ω ω ω

⎛ ⎞−
′= +⎜ ⎟

⎝ ⎠

I I
u

I
  (6) 

1 2
3 1 2 3

3
ω ω ω

⎛ ⎞− ′= +⎜ ⎟
⎝ ⎠

I I
u

I
  (7) 

Equations (8-10) show the relation between  
(u1,u2,u3) and ( 1 2 3, ,u u u′ ′ ′ ): 

1 1 1′ =u u I    (8) 

2 2 2′ =u u I    (9) 

3 3 3′ =u u I    (10) 

The following saturation function represents the 
range of the control inputs: 

( )
max max

max max

max max

if
sat if

if

− ≤ ≤⎧
⎪= >⎨
⎪ − < −⎩

i i

i i

i

u u u u
u u u u

u u u
  (11) 

According to [22], the following equation is present 
among the quaternions: 

2 2 2 2
0 1 2 3 1+ + + =q q q q    (12) 

Considering constraint (12), knowing q1,q2,q3, the 
other elements of the quaternion vector (q0) will be 
determined. Considering this fact, the output vector is 
selected as: 

[ ]1 2 3= Tq q qy    (13) 

In this case, the controller design will be easier 
because the number of controlled outputs (three) is 
equal to the number of inputs (three) [23].  

The control inputs will appear in the second time 
derivative of y. Consequently, the total relative degree 
(six) and the number of states ([q1,q2,q3,ω1,ω2,ω3]) will be 

equal. Therefore, internal dynamic does not exist, and it is 
possible to use input-output linearization easily [23]. 

Taking the second time derivative of y results in the 
following equations: 

( )1 1 0 1 3 2 2 3
1
2

χ ′ ′ ′= + − +q q u q u q u   (14) 

( )2 2 3 1 0 2 1 3
1
2

χ ′ ′ ′= + + −q q u q u q u   (15) 

( )3 3 2 1 1 2 0 3
1
2

χ ′ ′ ′= + − + +q q u q u q u   (16) 

where 

( )

3
2

1 1
1

1 0 2 3 2 3 1 3 3 2 1 2

1
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1
2

χ ω

ω ω ω ω ω ω

=
= −

+ − +
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i

q
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χ ω
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And 

( )1 2 3 1= −G I I I    (20) 

( )2 3 1 2= −G I I I    (21) 

( )3 1 2 3= −G I I I    (22) 

Using feedback linearization, these equations will be 
transformed into the following LTI form: 

1 1′′=q u    (23) 

2 2′′=q u    (24) 

3 3′′=q u    (25) 

Asymptotic stability of CLS will be guaranteed if 
the components of ′′u  are [24]: 

( ) ( )
1 11 1, 1 1, 1 1,′′ = − − − −d q d q du q k q q k q q   (26) 

( ) ( )
2 22 2, 2 2, 2 2,′′ = − − − −d q d q du q k q q k q q   (27) 

( ) ( )
3 33 3, 3 3, 3 3,′′ = − − − −d q d q du q k q q k q q   (28) 

Consequently, the state-feedback control laws will be: 

1
1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

−′ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u q q q f
u q q q f
u q q q f

  (29) 
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where 

( )1 1 12 χ′′= −f u    (30) 

( )2 2 22 χ′′= −f u    (31) 

( )3 3 32 χ′′= −f u    (32) 

Euler angles and quaternions are related based on 
the following equations [22]: 

0

cos cos cos sin sin sin
2 2 2 2 2 2
ψ θ φ ψ θ φ

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

q
 (33) 

1

cos cos sin sin sin cos
2 2 2 2 2 2
ψ θ φ ψ θ φ

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

q
 (34) 
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cos sin cos sin cos sin
2 2 2 2 2 2
ψ θ φ ψ θ φ
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

q
 (35) 

3

sin cos cos cos sin sin
2 2 2 2 2 2

q
ψ θ φ ψ θ φ

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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( ) ( )2 3 0 1
2 2 2 2
0 1 2 3

2
tan φ

+
=

− − +

q q q q

q q q q
  (37) 

( ) ( )1 3 0 2sin 2θ = − −q q q q    (38) 

( ) ( )1 2 0 3
2 2 2 2
0 1 2 3

2
tan ψ

+
=

+ − −

q q q q

q q q q
  (39) 

3. AFTC MECHANISM 
 

3.1  CLS 
 

Fig. 1 shows the CLS. As shown in this figure, the 
controller inputs are the quaternion error (and its 
derivative), and angular velocity vectors (according to 
(29)). FDD uses the plant input and output to detect the 
fault.  

RM receives FDD data and produces dq and its 
derivatives via the procedure shown in Fig. 2.  

 
Figure 1.  AFTC structure. 

 
Figure 2.  RM structure. 
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3.2  RM structure 
 

Fig. 2 shows the RM structure. According to Fig. 2, RM 
works as follows: 

The process begins with an “initial solution”. The 
numerical solver uses this “initial solution” to produce 
the continuous open-loop control commands via the 
cubic splines. Then, based on FDD data, an actuator 
model is constructed, and finally, based on the response 
of the spacecraft model, final time constraints are 
evaluated. One loop execution (LE) starts at 0t =  and 
ends at t = tf. For example, in Fig. 2, one LE starts at t = 
0 and ends at t = 10s. After the completion of one loop, 
the other loop begins. This procedure continues until the 
stopping criteria are satisfied. This process is equivalent 
to one simulation. Therefore, one simulation comprises 
several LEs. 

Then, based on obtained open-loop control 
commands ( u ), and therefore ( 'u ) and state trajectories 
(ω,q,q ), RM produces desired quaternions and their 
derivatives ( d d dq ,q ,q ) according to the following 
equations: 

( ) ( )
( )
1 11, 1 1, 1 1,

1 0 1 3 2 2 3
1
2

χ

= − + −

′ ′ ′+ + − +

d q d q dq k q q k q q

q u q u q u
  (40) 

( ) ( )
( )

2 22, 2 2, 2 2,

2 3 1 0 2 1 3
1
2

χ

= − + −

′ ′ ′+ + + −

d q d q dq k q q k q q

q u q u q u
  (41) 

( ) ( )
( )

3 33, 3 3, 3 3,

3 2 1 1 2 0 3
1
2

χ

= − + −

′ ′ ′+ + − + +

d q d q dq k q q k q q

q u q u q u
  (42) 

The value of each node and the value of the final 
time (tf) are the unknowns of this problem. The interval 
(upper and lower values) of tf is determined by the 
mission requirements (58). Equations (50) and (51) are 
used to determine the maximum and minimum values of 
the nodes. 

According to this discussion, the initial solution has 
a direct influence on RM (and equivalently AFTC) 
performance. Using a mechanism to obtain an initial 
solution close to the final solution will increase the 
performance of AFTC. 

Stopping criteria consist of two parts: 1-Nonlinear 
inequality constraints (48), (49), and 2-Maximum allo–
wable NLE per simulation. Satisfaction of the stopping 
criteria shows that either inequality constraints are 
satisfied or NLE in a simulation exceeds the maximum 
allowable NLE per simulation. 

Some points about cubic splines: The main reason to 
use cubic splines instead of other functions, such as 
polynomials, is that the coefficients of splines (nodes in 
Fig. 2) can be set within the upper and lower limits of 
the control commands. The accuracy of cubic spline 
interpolation is dependent on the number of nodes. The 
more nodes considered, the better will be the accuracy 
of splines. However, increasing the number of nodes 

will increase the number of variables and increase the 
complexity of the problem.  

 
3.3  Stability analysis 

 
If the following constraint equations are satisfied, 

= =
ft tu 0    (43) 

=ω =
ft t 0    (44) 

[ ]1 0 0 0= =
ft tq    (45) 

Then, based on (1-10), the following equalities will 
be satisfied: 

=ω =
ft t 0    (46) 

= =
ft tq 0    (47) 

Therefore, angular velocity and quaternion vectors 
will reach the origin and remain there forever after t = tf. 

Fortunately, satisfying the constraint (43) is 
straightforward. It is sufficient to set the upper and 
lower bounds of the nodes at ft t= to zero. To satisfy 
the other two constraints (44) and (45), the following 
final time non-equality constraints are defined: 

( )1 2 3max , , TOLω ω ω ω=
≤

ft t   (48) 

( )max , , TOLφ θ ψ
=

≤
f

Attitudet t   (49) 

Mission requirements specify angular velocity and 
attitude tolerances ((59) and (60)). 

 
4. FAULT SCENARIO 

 
As the fault model, it is assumed that the actuators have 
lost their effectiveness partially [15]:  

( )
max,n max,n

max,n max,n

max,n max,n

if
sat if

if

− ≤ ≤⎧
⎪= >⎨
⎪ − < −⎩

i i

n i i

i

u u u u
u u u u

u u u
  (50) 

max,nu  is the post-fault actuator operating region and 
given by (51): 

max, max=nu au    (51) 

a is a random number. More details about this parameter 
will be given in the simulation section. 
 
5. SUCCESS PERCENTAGE AND ACTUAL 

RECONFIGURATION TIME 
 

Two crucial parameters are introduced before analyzing 
the simulation results: SP and ART. 

SP is the number of successful simulations per total 
number of simulations (for different faults and initial 
conditions) multiplied by 100: 

Number of successful simulationsSP 100
Total number of simulations

= ×   (52) 
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Successful simulation is a simulation where the 
nonlinear inequality constraints (48), and (49) are satis–
fied. As previously stated, each simulation consists of 
several LEs. A high value of SP shows a high proba–
bility of success for RM. 

NLE directly affects ART, i.e., as the NLE becomes 
larger, ART will become larger. Therefore, to make the 
AFTC easier to implement, NLE should be reduced.  

In the simulation section, it will be shown that using 
the feedforward NN to approximate the initial solution 
will increase SP and decrease NLE to a large extent. 

 
6. SIMULATION 

 
The considered spacecraft has the following moments of 
inertia [25]: 

2
1 2 3449.5, 264.6, 312.5 kg.m= = =I I I   (53) 

The controller coefficients are selected as follows: 

1 2 3
0.5= = =q q qk k k    (54) 

1 2 3
1= = =q q qk k k    (55) 

According to the appendix, these coefficients will 
make the tracking error converge to zero as time goes to 
infinity. Besides, based on the simulation results, these 
controller coefficients will lead to an acceptable system 
response.  

Equation (56) gives the maximum torque that the 
healthy actuators can generate: 

max 10 N.m=u    (56) 

According to the mission specifications, final time 
interval, angular velocity, and attitude tolerances are: 

[ ]20 50 sec∈ft    (57) 

TOL 0.1deg/ secω =    (58) 
TOL 1deg=Attitude    (59) 

The maximum allowable NLE per simulation is 200. 
The spacecraft is assumed to be initially at rest i.e. 
( )0 0=ω . The initial conditions of desired quaternions 

(to integrate (40-42)) are:  

( ) [ ] ( ) [ ]0 1 0 0 0 , 0 0 0 0 0= =T T
d dq q   

Equations (61) and (62) show the actuator effecti-
veness coefficients and initial conditions considered for 
simulation: 

1 2 30.11, 0.78, 0.29= = =a a a   (60) 

0 0 010.88 deg, 2.29 deg, 3.43 degφ θ ψ= − = − = −   (61) 

Note 1: 200 simulations with random faults and 
initial conditions are used to train the NN. Therefore, 
the efficiency of the proposed method is evaluated for 
200 simulations and not merely the values presented in 
(60) and (61).  

First, the controller performance is demonstrated 
without adjusting the desired quaternions. Therefore, the 
desired quaternion vector is: [ ]1 0 0 0=dq . Based 

on (37-39), this is equivalent to 0d d dφ θ ψ= = = . The 
controller's response, in terms of Euler angles, angular 
velocities, and control moments, is illustrated in Figs. 3-
5: 

As shown in Figs. 3 and 4, when 0d d dφ θ ψ= = = , 
the controller is not able to satisfy the mission 
requirements (48) and (49). The reason is as follows: As 
seen in Fig. 5, u2 and u3 converge to the origin in a short 
time, while 1u  saturates all the time. Therefore, the 
controller will not be able to exploit u1,u2,u3 to satisfy 
the mission requirements. 

 
Figure 3.  Euler angles for 0d d dφ θ ψ= = = . 

 
Figure 4.  Angular velocities for 0d d dφ θ ψ= = = . 

 
Figure 5.  Control moments for 0d d dφ θ ψ= = = .   
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In the second stage, RM (Fig. 2) is implemented. 
Five nodes in equal time intervals are considered in 
each axis between t = 0 and t = tf. Since the value of 
nodes at t = tf should be zero (section 3-3), there will be 
12 unknowns. The final time (tf) is another unknown. 
Therefore, there will be 13 unknowns in this problem. 

Euler angles, angular velocities, and control 
moments are illustrated in Figs. 6-8: 

 
Figure 6.  Corrected actual and desired Euler angles. 

 
Figure 7.  Corrected angular velocities. 

According to Figs. 6-7, the proposed method can 
satisfy the mission constraints (48) and (49). Fig. 8 
shows the control moments. Compared to Fig. 5, no 
saturation occurs, so the actuators operate normally. 

  
Figure 8.  Corrected control moments. 

The following will show the effect of using 
feedforward NN to increase the SP and decrease ART. 

Note 2: R2020a neural network toolbox [21] is used 
to model and train the neural network.   

Faults and initial conditions are considered to be 
normally distributed, with the following means and 
standard deviations: 

For a1,a2,a3: Mean = 0.5  and standard deviation = 
0.1. 

For initial Euler angles: Mean = 0 and standard 
deviation = 0.1 rad. 

Note 3: The normal distribution assumption for faul–
ts is considered in [26] and used in this paper. 

 
6.1 Fault scenario (initial solution not adjusted) 

 
In this scenario, the initial solution is: [01×12, 20s]T. The 
numerical solver uses this initial solution to obtain the 
desired quaternions (equivalently Euler angles) via the 
procedure shown in Fig. 2. After 200 simulations, SP 
and the average value of NLE per simulation will be 
77% and 140, respectively. These data indicate that RM 
succeeded in 77% of the simulations. 

After performing these 200 simulations, the set of 
inputs ([a1 a2 a3 �0 θ0 ψ0]T) and outputs (12 nodes and 
the final time) are used to train the feedforward NN. 
Training algorithm is Levenberg-Marquardt. This algo–
rithm usually requires more memory and less time [21]. 

 NN structure is shown in Fig. 9. As shown in this 
figure; there are 6 inputs, 1 hidden layer with 10 nodes, 
and 13 outputs.  

 
Figure 9.  Structure of the trained feedforward NN 

 
Figure 10.  Neural network training regression 

To evaluate NN performance, training regression is 
presented in Fig. 10. As shown in this figure; regression 
is near 1. NN training performance is also shown in Fig. 
11. As shown in this figure; validation performance is 
best at epoch 11. 
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 Figure 11.  NN training performance 

6.2 Second Scenario (NN Used to Adjust the Initial 
Solution) 

 
The faults and initial conditions are identical to those in 
the previous scenario. However, trained feedforward NN 
is used in this scenario to determine the initial solu–tion. 
Based on the simulations, SP and the average value of 
NLE per simulation are 96.5% and 36.97, respectively. 

Comparing the results of these scenarios, it is 
concluded that using the feedforward NN to approxi–
mate the initial solution increases SP and decreases the 
average value of NLE per simulation by about 25% and 
73%, respectively. 

These improvements in SP and the average value of 
NLE (equivalently ART) per simulation are desirable 
from a practical point of view. 

As stated in the introduction, the proposed method 
can be utilized in cases similar to Ultraviolet Spectro–
scopic Explorer Satellite accidents where actuators 
malfunctioned. 

 
7. CONCLUSION 
 
Active fault-tolerant attitude stabilization of spacecraft 
was considered in this paper. In comparison to PFTCs, 
AFTCs are less conservative and can deal with a 
broader range of faults. However, AFTCs are harder to 
implement. To solve this challenge, ART and SP were 
explicitly considered in the AFTC design, and 
FEEDFORWARD NN was used to decrease the former 
and increase the latter. This contribution makes the 
proposed controller suitable for applications.  
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NOMENCLATURE  

[ ]0 1 2 3, , ,q q q q  Quaternion vector 

1, 2, 3,, ,d d dq q q⎡ ⎤⎣ ⎦  Desired quaternion vector 

[ ]1 2 3, ,ω ω ω  Angular velocity vector 

1 2 3, ,I I I  Principal moments of inertia 

[ ]1 2 3, ,u u u  Control moment vector 

[ ]1 2 3, ,u u u′ ′ ′  Control input vector 

Sat Saturation function 

1 2 3

1 2 3

, ,

, ,

+

+

⎡ ⎤∈⎣ ⎦
⎡ ⎤∈⎣ ⎦

q q q

q q q

k k k R

k k k R
 Controller coefficients 

, ,φ θ ψ  Euler angles (roll, pitch, yaw) 

ft  Final time 

a  Actuator effectiveness 
 Coefficient 

Subscripts 

d  Desired 
f  Final 

Acronyms  

ACS: Attitude Control System 
AFTC: Active Fault Tolerant Control 
ART: Actual Reaction Time 
CLS: Closed-loop system 
CRT: Critical Reaction Time 
FDD: Fault Detection and Diagnosis 
FTC: Fault Tolerant Control 
LE: Loop Execution  
LTI: Linear Time Invariant 
NLE: Number of Loop Executions 
NN: Neural Network 
PFTC: Passive Fault Tolerant Control 
RM: Reconfiguration mechanism 
SP: Success Percentage 

APPENDIX  

Considering (23-25) and (26-28): 

( ) ( )
1 11 1, 1 1, 1 1,= − − − −d q d q dq q k q q k q q   (62) 

( ) ( )
2 22 2, 2 2, 2 2,= − − − −d q d q dq q k q q k q q   (63) 

( ) ( )
3 33 3, 3 3, 3 3,= − − − −d q d q dq q k q q k q q   (64) 

The tracking error is defined as follows: 

, , 1, 2,3= − =i i i de q q i   (65) 

Considering (65), (62-64) can be rewritten as: 

0, 1,2,3+ + = =
i ii q i q ie k e k e i   (66) 
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The subscript i will be dropped for simplicity. 
Taking the Laplace transform of this equation: 

2

(0) (0) (0)
( )

+ +
=

+ +
q

q q

se e k e
E s

s k s k
  (67) 

Considering the proposed controller coefficients,  
sE(s) will have no pole with zero or positive real part. 

Therefore, according to the final value theorem [27]: 

0lim ( ) lim ( ) 0→∞ →= =t se t sE s   (68) 

and the tracking error will converge to zero as time goes 
to infinity. 

 
 
ПОВЕЋАЊЕ ПЕРФОРМАНСИ АКТИВНЕ 
КОНТРОЛЕ ОТПОРНЕ НА ГРЕШКЕ У 

СВЕМИРСКОЈ ЛЕТЕЛИЦИ КОРИШЋЕЊЕМ 
НЕУРОНСКИХ МРЕЖА 

 
Р. Моради 

 

Квар актуатора представља изазов за контролу 
положаја свемирске летелице. Контрола отпорна на 
грешке (активна или пасивна) се често користи за 
превазилажење овог изазова. Активне методе имају 
боље перформансе од пасивних метода и могу 
управљати ширим спектром грешака. Међутим, 
њихово спровођење је теже. Један од разлога за ову 
потешкоћу је критично време реакције. Систем 
може постати непоправљив ако стварно време 
реакције постане веће од критичног времена 
реакције. Овај рад предлаже коришћење неуронске 
мреже унапред да би се смањило стварно време 
реакције у активној контроли свемирских летелица 
која је толерантна на грешке. Поред овог 
побољшања, коришћење неуронске мреже унапред 
може повећати проценат успеха. Проценат 
успешности је однос успешних симулација према 
укупном броју симулација. Резултати симулације 
показују да се за 200 симулација са случајним 
грешкама и почетним условима, стварно време 
реакције смањује за 73%, а проценат успешности 
расте за 25%. На основу ових резултата, предложени 
контролер је добар кандидат за практичну примену. 

 
 

  
  
   

 
 
 
 

 
 

 


