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Advancements in single-cell sequencing research have revolutionized our
understanding of cellular heterogeneity and functional diversity through the
analysis of single-cell transcriptomes and genomes. A crucial step in single-cell
RNA sequencing (scRNA-seq) analysis is identifying cell types. However, scRNA-
seq data are often high dimensional and sparse, andmanual cell type identification
can be time-consuming, subjective, and lack reproducibility. Consequently,
analyzing scRNA-seq data remains a computational challenge. With the
increasing availability of well-annotated scRNA-seq datasets, advanced
methods are emerging to aid in cell type identification by leveraging this
information. Deep learning neural networks have great potential for analyzing
single-cell data. This paper proposes MulCNN, a multi-level convolutional neural
network that uses a unique cell type-specific gene expression feature extraction
method. This method extracts critical features through multi-scale convolution
while filtering noise. Extensive testing using datasets from various species and
comparisons with popular classification methods show that MulCNN has
outstanding performance and offers a new and scalable direction for scRNA-
seq analysis.
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1 Introduction

Single-cell transcriptomics technologies hold significant potential for advancing our
understanding of cellular heterogeneity in complex tissues (Luecken and Theis, 2019; Longo
et al., 2021). Among these technologies, single-cell RNA sequencing (scRNA-seq) has
become a central tool for identifying and characterizing cell types, states, and lineages in
diverse biological contexts (Andrews and Martin, 2018; Zhang et al., 2021a; Xu et al., 2023).
It enables analysis of the transcriptome of individual cells, thereby transforming biological
research and enabling the classification of cell types across multiple species, tissues, and
contexts (Zhang et al., 2021b; Karlsson et al., 2021). However, scRNA-seq experiments often
generate vast amounts of data, and large projects like the Human Cell Atlas may involve
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thousands to millions of cells (Adlung and Amit, 2018). Thus, fast
and efficient computational methods are essential for scRNA-seq
analysis.

Clustering and cell type identification are crucial steps in single-
cell RNA sequencing analysis, with the identification of cell types
being particularly important for revealing cellular heterogeneity in
different tissues, developmental stages, and organisms (Kiselev et al.,
2010; Philpott et al., 2021). This knowledge can enhance our
understanding of cellular and genetic functions in both health
and disease contexts (Cohen et al., 2021). However, despite the
advanced capabilities of scRNA-seq, its high dimensionality,
sparsity, and technical noise pose significant challenges to cell
type identification (Yuan and Kelley, 2022). Furthermore,
identifying cell populations in large datasets presents even greater
difficulties, as many existing scRNA-seq clustering methods are
unable to handle such datasets at scale.

Popular unsupervised clustering methods for inferring cell types
from scRNA-seq data typically involve two steps. First, an unsupervised
algorithm is used to cluster cells based on their gene expression profiles.
Second, marker genes that are uniquely and highly expressed within
each cluster are used to assign cell types (Petegrosso et al., 2020).
However, using canonical markers for cell type annotation requires
extensive background knowledge and may not always be reliable. Some
new cell types may lack knownmarkers, while some canonical markers
may be expressed by multiple cell types. Moreover, several sources of
variation can influence cluster formation, including those that are not
directly related to cell type (Kiselev et al., 2010). Consequently, setting
appropriate clustering parameters and assigning identities to cells in
each cluster are critical steps. The popular unsupervised scRNA-seq
clustering methods, such as Louvain (Blondel et al., 2008), DESC (Li
et al., 2020), and SAVER-X (Wang et al., 2019), arewidely used, but they
have limitations. For instance, these methods do not take advantage of
cell type-specific gene expression information and perform poorly in
datasets containing batch processing.

Automated cell type identification methods aim to identify
commonalities between scRNA-seq datasets and address the
inherent noise and variability of the data (Tang et al., 2009). In
fact, scRNA-seq datasets are affected by several confounding factors,
including the sequencing platform, sequencing depth, and sample
preparation process. The multidimensional nature of scRNA-seq
data and the presence of noise make machine learning methods
highly useful for various tasks in the analytics pipeline, such as
dimensionality reduction (Becht et al., 2019). Supervised cell
classification using labeled reference data is gaining popularity
over unsupervised clustering algorithms as more scRNA-seq data
becomes available. This approach, which involves using machine
learning techniques for supervised classification, represents a classic
example of supervised classification in machine learning (Amodio
et al., 2019).

Current automatic cell classification methods fall into three
categories. The first relies on information from publicly available
databases and ontologies describing cell type-specific markers. The
second approach uses labeled scRNA-seq datasets as input for cell
type identification to find the best correlation between reference and
query datasets, such as scmap and Seurat 3.0 (Kiselev et al., 2017;
Stuart and Satija, 2019; Pasquini et al., 2021). The third and
currently popular approach is supervised learning, which involves
training a classifier with a labeled reference dataset (Eraslan et al.,

2019). Popular supervised learning algorithms include those based
on the support vector machine (SVM) method, such as Moana and
scPred (Wagner and Yanai, 2018; Alquicira-Hernandez et al., 2019).
ItClust is a machine learning method based on supervised pre-
trained transfer learning (Hu et al., 2020), while ACTINN and scVI
are supervised classification methods based on neural networks
(Romain et al., 2018; Ma and Pellegrini, 2020). Neural networks
are popular in the biomedical field due to their powerful ability to
resolve non-linear relationships between categories and features, as
well as recent advances in computational speed (Wainberg et al.,
2018). However, existing supervised methods rely heavily on the
quality of the training data and often have poor accuracy in
classifying cell types that are not present in the training data.
Recent studies have shown that deep learning has good
performance when applied to image and text datasets (Xie et al.,
2016; Guo et al., 2017). Additionally, traditional clustering methods
perform poorly in high dimensions due to the “curse of
dimensionality,” while deep learning methods can convert high-
dimensional raw scRNA-seq data into low-dimensional
representations (Lin et al., 2017; Li et al., 2020).

Therefore, we propose a deep learning method for cell
classification called MulCNN. This method is based on a multi-
level convolutional neural network that utilizes a multi-scale
convolutional pooling operation, incorporating principal
component analysis to extract multidimensional features to train
the model to predict cell types. Extensive evaluation using data from
different species and tissues generated by various scRNA-seq
schemes demonstrates that MulCNN considerably enhances the
accuracy of cell type classification compared to popular
unsupervised clustering and supervised cell type classification
algorithms.

2 Materials and methods

2.1 Dataset

This paper presents an analysis of four publicly available
scRNA-seq datasets generated using InDrop [Baron et al. (2016)
data], SmartSeq2 [Segerstolpe et al. (2016) data], Fluidigm
C1 [Lawlor et al. (2017) data], and SMARTer [Xin et al. (2016)
data]. The dataset details are summarized in Table 1.

To normalize the data, we applied a uniform processing pipeline to
all datasets. Specifically, we discarded genes with less than 200 non-zero
values. We then performed cell-level normalization, where the UMI
count for each gene in each cell was divided by the total number of
UMIs in the cell, multiplied by 10,000, and transformed using the
natural log function. Finally, we randomly split the data into training
(70%), validation (15%), and test (15%) sets.

Our approach ensures that the datasets are pre-processed
consistently, which allows for a fair comparison of performance
between the different algorithms.

2.2 Model architecture

The model consists of three main components: data processing,
feature extraction, and predictive classification. Figure 1 shows the
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overall architecture of the model. The gene expression matrix data
are first normalized by counts per million (CPM) and then subjected
to multi-scale convolutional pooling and principal component
analysis (PCA) to extract cell-type-specific gene expression
features. Prior to convolutional pooling, each gene expression
data line is transformed into a two-dimensional matrix
representation. Finally, a multilayer perceptron layer is applied
for predictive classification.

2.3 Convolutional pooling layer

To avoid overfitting, the number of convolutional pooling layers
in the neural network is limited to three (Szegedy et al., 2015). The
topology of this module is illustrated in Figure 2. The formula for
convolution is expressed as follows:

S i, j( ) � IpW( ) i, j( ) � ∑
m

∑
n

I i +m, j + n( )W m, n( ).

Where I is the two-dimensional input,W is the convolution kernel,
and the result S(i, j) is the feature mapping.

As the activation function, we use ReLU, defined as follows:

ReLU x( ) � max 0, x( ).
Where x is the linear operations returned by the current layer.

2.4 Principal component analysis layer

The Principal Component Analysis (PCA) layer uses PCA
dimensionality reduction as its primary algorithm. PCA is a widely-
used linear dimensionality reduction method that aims to map high-

TABLE 1 Datasets analyzed in this paper.

Dateset Species Number of
genes

Number of
cells

Number of types Platform

Baron_Human
[22]

Human 20,125 8,569 acinar(958); activated_stellate(284); alpha(2,326); beta(2,525); delta(601);
ductal(1,077); endothelial(252); epsilon(18); gamma(255); macrophage(55);

mast(25); quiescent_stellate(173); schwann(13); t_cell(7)

InDrop

Baron_Mouse
[22]

Mouse 14,878 1886 activated_stellate(14); alpha(191); B_cell(10); beta(894); delta(218); ductal(275);
endothelial(139); gamma(41); immune_other(8); macrophage(36);

quiescent_stellate(47); schwann(6); T_cell(7)

InDrop

Segerstolpe [23] Human 26,178 2068 acinar(185); alpha(886); beta(270); delta(114); ductal(386); endothelial(16);
epsilon(7); gamma(197); mast(7)

SMART-
Seq2

Lawlor [24] Human 26,616 617 Acinar(24); Alpha(239); Beta(264); Delta(25); Ductal(28); Gamma/PP(18);
Stellate(19)

Fluidigm
C1

Xin [25] Human 39,851 1,600 alpha(946); beta(503); delta(58); PP(93) SMARTer

FIGURE 1
The overall architecture of MulCNN.
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dimensional data into a lower-dimensional space using linear projection,
while retaining the maximum variance (i.e., most information) of the
data in the projected dimensions. By reducing the number of dimensions
in the data, PCA enables the use of fewer dimensions while preserving
most of the original data points’ characteristics.

Due to the high dimensionality and sparsity of scRNA-seq data,
we downscaled the gene expression data to minimize the loss of
information when extracting effective cell-type-specific features.
Specifically, we projected the original features onto the dimension
with the most projected information. After dimensionality
reduction, projecting the original features onto these dimensions
results in less information loss, allowing us to extract cell-type-
specific gene expression features that are more beneficial to our
model.

2.5 Multilayer perceptron layer

The cell type-specific gene expression features extracted from
the convolutional pooling layer are combined with the features
extracted from the principal component analysis layer and fed to the
multilayer perceptron layer. This neural network consists of one
input layer, three hidden layers, and one output layer. The number
of nodes in the input layer is the same as the number of features
extracted using the convolutional pooling and PCA. The hidden
layers have 128, 128, and 64 nodes, respectively. The number of
nodes in the output layer is equal to the number of cell types in the
dataset.

Forward propagation is implemented as follows:

x i[ ] � g W i[ ]x i−1[ ] + b i[ ]( ).
Where x[i] is the output of the i th layer (x[0] indicates the input
layer), b[i] is the bias of the i th layer,W[i] is the weight matrix of the i
th layer and g is the activation function.

FIGURE 2
The overall structure of the convolutional pooling layer. The figure shows the segerstolpe dataset as an example.

TABLE 2 The values of parameters used in our model.

Parameters Range

Conv2d_1 Number of filters 256

Kernel size (2,2)

Dropout 0.25

Activation ReLU

Conv2d_2 Number of filters 128

Kernel size (5,5)

Dropout 0.25

Activation ReLU

max_pooling2d_1 (2,2)

max_pooling2d_2 (2,2)

max_pooling2d_3 (3,3)

Optimizer SGD

Learning rate 0.0001

Epoch 300

Batch size 32
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The ReLU function is used as the activation function for the
input and hidden layers. The softmax function was used for the
output layer, which is defined as:

softmax x j[ ]( ) �
exp x j[ ]( )
∑k

j�1 exp xj( )
Where x[j] is the j th element of the input vector for the output layer,
which has k elements, representing a total of k cell types in the
training set.

2.6 Loss function and parameters setting

The cross-entropy function is used as the loss function in our
model, which is defined as:

J W, b( ) � −1
n
∑n
i

yilogŷi + 1 − yi( )log 1 − ŷi( )[ ].
Where vector yi is the true label for the cell, vector ŷi is the predicted
label for the cell, i is the sample and n is the total number of samples.

The learning rate is set to 0.0001, and we use the SGD
optimization model with the model parameters shown in Table 2.

The neural network model is implemented using TensorFlow
2.4.0 and written in Python 3.6. The model uses the
CategoricalCrossentropy loss function and is initialized with a
seed to ensure reproducibility. The learning rate is set to 0.0001,
and the network is trained for 300 epochs with a batch size of
32 samples per global step. Dropout regularization with a parameter
of 0.25 is also employed to prevent overfitting.

3 Results

3.1 Evaluation metrics

In order to showcase the scalability and advantages of MulCNN,
we conducted analyses on several single-cell RNA sequencing
datasets from different species, generated using various platforms.
Table 3 displays the evaluation metrics we employed.

3.2 Comparison with other cell type
identification methods

3.2.1 Comparison with unsupervised clustering
methods

To compare the effectiveness of MulCNN, we evaluated its
performance against three unsupervised clustering methods and
six supervised classification methods. Specifically, we compared

TABLE 3 The metrics used in the evaluation of model.

Actual positive Actual negative

Predicted Positive TP FP

Predicted Negative FN TN

True Positive Rate (TPR) TP/(TP + FN)

False Positive Rate (FPR) FP/(FP + TN)

Precision TP/(TP + FP)

Recall TP/(TP + FN)

Accuracy (TP + TN)/(TP + FP + FN + TN)

AUC AUC � 1
2∑m−1

i−1 (xi+1 − xi)
(yi + yi+1)(x: FPR, y: TPR)

F1-score F1−score � 2 × Precision × Recall
Precision+Recall

FIGURE 3
ARI analysis of MulCNN compared with other clustering algorithms.
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MulCNN against three unsupervised methods: Louvain, DESC, and
SAVER-X + Louvain. Louvain is a clustering method proposed by
Blondel et al. (2008) that relies on the degree of community module
metric. Li et al. (2020) proposed DESC, an unsupervised deep
embedding method that iteratively improves a clustering
objective function to cluster scRNA-seq data. Additionally, Wang
et al. (2019) presented SAVER-X, a neural network-based transfer
learning algorithm originally designed to denoise gene expression.
SAVER-X collects gene expression characteristics from a source
dataset, then denoises the target data’s unique molecular identifier
counts using previously learned gene expression information. As
these methods are unsupervised clustering techniques, they do not
use any labeling information from the dataset to identify cell types.

We conducted experiments on the Lawlor and Segerstolpe
datasets obtained from Fluidigm C1 and SMART-Seq2,
respectively. We first evaluated the performance of MulCNN on

each dataset individually, and then combined the two datasets to test
its ability to classify the data in the presence of batch effects.
Although both Lawlor and Segerstolpe are derived from the
human pancreas, the fact that they were processed and measured
on different platforms introduces technical biases that do not
correlate with the biological state. This makes cell classification
challenging. To integrate the two datasets, we used an expression
value matrix that preserves the intersection of gene features.

The performance of the Louvain and DESC algorithms depends
on the resolution, a hyperparameter that determines the number of
clusters and must be provided by the user. We chose a resolution
range of 0.2–2, in steps of 0.2. To compare the performance of
different clustering techniques, we used the Adjusted Rand Index
(ARI). The ARI measures the degree of similarity between clustering
labels generated by a clustering method and reference cluster labels.
The formula for calculating ARI is shown below:

FIGURE 4
t-SNE visual analysis of the Lawlor + Segerstolpe dataset. (A) Distribution of real cell types; (B) Distribution of different batches of cells; (C)
Distribution of cell types predicted by MulCNN; (D) Distribution of cell types predicted by Louvain.
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FIGURE 5
Performance comparison of MulCNN and other supervised algorithms. (A) Accuracy comparison on the datasets Lawlor, Segerstolpe,Combined. (B)
F1-score comparison on the datasets Lawlor, Segerstolpe,Combined.

FIGURE 6
The MulCNN’s precision recall curves for each cell type on different datasets. (A) Precision recall curves on the segerstolpe dataset. (B) Precision
recall curves on the lawlor dataset. (C) Precision recall curves on the combined dataset.
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ARI �

∑jj′
njj′

2
⎛⎝ ⎞⎠ −

∑j

aj

2
⎛⎝ ⎞⎠∑j′

bj′

2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

njj′

2
⎛⎝ ⎞⎠

1
2

∑
j

aj

2
⎛⎝ ⎞⎠ +∑

j′

bj′

2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ −

∑j

aj

2
⎛⎝ ⎞⎠∑j

bj′

2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

njj′

2
⎛⎝ ⎞⎠

(1)

Where njj′ denotes the number of cells assigned to cluster j based on
reference cluster labels and cluster j′ based on clustering labels
obtained from a clustering algorithm, aj denotes the number of cells
assigned to cluster j in the reference set, and bj′ denotes the number
of cells assigned to cluster j′ by the clustering algorithm.

As shown in Figure 3 [part of the experimental results were
obtained from Jian Hu et al. (Alquicira-Hernandez et al., 2019)], the
ARI values of Louvain, DESC, and SAVER-X + Louvain vary
significantly on the two separate datasets as the resolution parameter

changes. In contrast, MulCNN does not require parameter settings, and
its ARI is fixed. The results demonstrate that MulCNN consistently
outperforms Louvain, DESC, and SAVER-X + Louvain, even when
compared to the best resolutions used by these methods.

Figure 4 visualizes the cell type distribution of the integrated
data using t-SNE, in the order of the real cell type distribution of the
integrated dataset, the cell distribution from different batches, the
cell types distribution predicted by MulCNN, and the cell types
distribution predicted by Louvain. As shown in Figure 3, the ARI
values for Louvain, DESC, and SAVER-X + Louvain are low,
indicating that they tend to cluster cells of the same type but
from different datasets into different clusters. With higher
resolution, Louvain, DESC, and SAVER-X tend to group major
cell types into multiple clusters. In contrast, MulCNN still maintains
a high ARI value, outperforming other methods because it can utilize
cell type-specific gene expression information in the dataset.
MulCNN extracts features for each cell type, avoids extracting
features for batch information, and overcomes scRNAseq noise
and batch effects generated by different sequencing techniques,
thus possessing excellent classification capability. Although

FIGURE 7
ROC curve of different models. (A) Comparison of ROC curves of algorithms on seger-stolpe dataset; (B) Comparison of ROC curves of models on
Lawlor dataset; (C) Comparison of ROC curves of models on combined dataset.
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SAVER-X denoised the data, it did not make use of the cell type label
information in the dataset and therefore was not effective.

3.2.2 Comparison with supervised cell type
classification methods

MulCNN was compared to several currently popular supervised
methods. However, during actual applications of the model to
scRNA data analysis, the labels of the target dataset are often
missing. The dataset for which cell types need to be predicted is
referred to as the target dataset. In such cases, it is not practical to
train the model with most of the target dataset, but there are often
many similar and well-labeled datasets that can be used. To better
evaluate the performance of MulCNN for practical applications, we
pre-trained MulCNN using the Baronhuman dataset, fine-tuned the
model with a small portion of the target data, and then used the
model to predict the cell types of the target dataset.

We compared MulCNN with several classification algorithms,
including scmap, Seurat 3.0, Moana, ItClust, ACTINN, and scVI.
Scmap, proposed by Kiselev V Y et al., is a method for annotating
cell categories using correlation. It associates each cell in a query
dataset with a reference set of cell types or clusters with annotations,
using a projection method to identify the best matching cell type or
individual cell in the reference dataset (Pasquini et al., 2021). Seurat
3.0 finds anchor cell pairings between well-labeled source datasets
and unlabeled target datasets to classify cells in target data (Luecken
and Theis, 2019). Wagner F et al. introduced Moana, a hierarchical
machine learning framework for constructing robust cell type
classifiers from diverse scRNA-Seq datasets. Moana uses a kNN
smoothing step to reduce unnecessary noise instead of picking
features (Stuart and Satija, 2019). Hu et al. (2020) presented It-
Clust, a transfer learning algorithm that incorporates principles
from supervised cell type classification methods but additionally

FIGURE 8
Results of experiments to identify pseudo cell types. (A) Per-centage of each cell type in the Segerstolpe dataset; (B) Accuracy of MulCNN and other
super-vised algorithms in the case of missing categories in the segerstolp dataset.
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uses target data information to ensure sensitivity in classifying cells
that are only present in the target data. The ACTINN model uses a
neural network with three hidden layers to train the model on a
dataset containing specified cell kinds to predict the cell types (Ma
and Pellegrini, 2020). Based on hierarchical Bayesian and deep
learning, Lopez R et al. suggested scVI as a scalable multitasking
tool for learning low-dimensional representations and evaluating
scRNA-seq data (Romain et al., 2018).

As shown in Figure 5, MulCNN consistently achieves the highest
cell type classification accuracy (ACC) across different datasets, and
the F1-score also performs well in general. The formula for the ACC
can be expressed as:

ACC � TP + TN
TP + FP + FN + TN

(2)

Where TP is the number of positive instances that were correctly
identified by the model as positive, FP is the number of negative
instances that were incorrectly identified by the model as positive,
FN is the number of positive instances that were incorrectly
identified by the model as negative and TN is the number of
negative instances that were correctly identified by the model as
negative.

The formula for calculating the F1-score is expressed as:

F1−score � 2 ×
Precision × Recall
Precision + Recall

(3)

Where Precision is the proportion of correctly predicted positive
instances out of all instances predicted as positive, Recall is the
proportion of correctly predicted positive instances out of all actual
positive instances.

As the single-cell transcriptome dataset is usually unbalanced,
we plotted the PRC curves on different datasets in order to

investigate the classification performance of MulCNN on each
cell type, as shown in Figure 6. It can be seen that MulCNN
performs particularly well on each cell type in the Segerstolpe
and Lawlor datasets. However, on the Combined dataset, the
classification performance of Epsilon cell type is poor. By
exploring the reasons for this, we found that there were only
7 cell samples of Epsilon type in the dataset. The lack of training
samples caused MulCNN to not learn enough and failed to extract
effective features, resulting in poor classification results. We will
address this issue by collecting more comprehensive and high-
quality cell samples.

To better evaluate the model’s performance, we plotted the ROC
curves of different models in each dataset, as shown in Figure 7. The
ROC curve is a composite indicator that reflects the sensitivity and
specificity of continuous variables and reveals the interrelationship
between sensitivity and specificity. It calculates a series of
sensitivities and specificities by setting out several different
critical values for the continuous variables. The area under the
ROC curve is the AUC value, and the larger the area, the better the
accuracy and the higher the performance. It can be observed that the
curve of MulCNN is always above the other models in different
datasets. These results demonstrate that the performance of our
MulCNN is superior.

3.3 Ability to identify pseudo cell types

In many studies, the limited sample size often results in the
inability to cover all cell types. As a result, supervised machine
learning models are constrained by the labeled information and
struggle to generate cell types outside of the training samples. When
unknown cell types appear in the samples to be predicted, they are

FIGURE 9
Effect of adjusting the threshold on the accuracy of MulCNN in predicting different da-tasets. Each curve corresponds to the removal of the primary
or the secondary cell types from dif-fer-ent data sets.
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often misclassified into known cell types, which are referred to as
pseudocell types. Therefore, identifying pseudocell types is crucial,
and our model can avoid misclassification by labeling them as
“unknown.”

To test the ability of our model to identify pseudo-cell types, we
created two new training sets by removing certain cell types from the
segerstolpe dataset. Specifically, we removed endothelial, epsilon,
and mast cell types in one training set, and the main cell type beta in
another. As shown in Figure 8A, these cell types constitute a small
percentage of the segerstolpe dataset. To make the task more
challenging, we evaluated the model on a test set containing all
cell types. We trained the model on the two new training sets and
evaluated its accuracy using a threshold of 0.97. If the model output a
probability below the threshold for each cell type, it was marked as
“unknown”. These experiments allowed us to investigate how the
accuracy of the model for cell type classification changes when
certain cell types are eliminated from the reference data.

The experimental results are presented in Figure 8B. We
observed that MulCNN consistently achieved a high accuracy
rate, outperforming other models, regardless of whether the
primary or secondary cell types were removed from the reference
dataset. Here, primary cell types refer to those with a high percentage
in the dataset, while secondary cell types refer to those with a low
percentage. These findings indicate that MulCNN has the ability to
identify pseudo-cell types.

We also studied the impact of the threshold on the classification
accuracy of MulCNN. To this end, we tested various thresholds
ranging from 0.89 to 0.998 with a step size of 0.002. Figure 9 shows
the results of this analysis. Based on the overall performance of the
model across all datasets, we found that the optimal threshold value
is 0.97.

3.4 Ablation experiments

3.4.1 Performance of models with different
construction methods

To investigate the contributions and effects of different parts of
the model, we conducted ablation experiments, the results of which
are presented in Table 4. In particular, we evaluated the performance
of our model when different parts of the convolutional pooling layer
were removed. The “Without entire convolutional pooling layer”
experiment involved removing the entire convolutional pooling
layer from the feature extraction process and directly inputting
the gene expression matrix and PCA features into the multilayer
perceptron layer. The “Without partial convolutional pooling layer”
experiment involved removing a part of the convolutional pooling
layer (specifically, we removed “convolution and max-pooling_1” in
Figure 1). According to the experimental results, all components of
the model contribute to improved performance.

TABLE 4 Results of Ablation experiments.

Dataset Contrast section ACC F1-score ARI Precision Recall

Baron_human All 0.9907 0.8606 0.9855 0.8413 0.8484

Without entire convolutional pooling layer 0.9743 0.7008 0.9628 0.7596 0.6777

Without the partial convolutional pooling layer 0.9891 0.7684 0.9823 0.7619 0.7768

Without the PCA layer 0.9907 0.8404 0.9855 0.8341 0.8484

Baron_mouse All 0.9717 0.8418 0.9864 0.8836 0.8468

Without the entire convolutional pooling layer 0.8587 0.4304 0.7891 0.4703 0.4203

Without the partial convolutional pooling layer 0.9717 0.7646 0.9867 0.8636 0.7278

Without the PCA layer 0.9647 0.7283 0.9817 0.7124 0.7468

Segerstolpe All 0.9968 0.9949 0.9964 0.9973 0.9429

Without the entire convolutional pooling layer 0.8516 0.5238 0.7418 0.5700 0.5069

Without the partial convolutional pooling layer 0.9935 0.9925 0.9876 0.9937 0.9916

Without the PCA layer 0.9968 0.9949 0.9964 0.9973 0.9926

Lawlor All 0.9783 0.9601 0.9593 0.9918 0.9429

Without the entire convolutional pooling layer 0.6196 0.2076 0.2188 0.1983 0.2341

Without the partial convolutional pooling layer 0.9130 0.6765 0.8632 0.6647 0.6939

Without the PCA layer 0.9783 0.9601 0.9593 0.9918 0.9429

Xin All 0.9917 0.9617 0.9839 0.9949 0.9375

Without the entire convolutional pooling layer 0.8792 0.5294 0.7228 0.5693 0.5264

Without the partial convolutional pooling layer 0.9708 0.8599 0.9501 0.9809 0.8125

Without the PCA layer 0.9792 0.8790 0.9676 0.9856 0.8438
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3.4.2 Batchsize adjustment
The effect of parameters on model accuracy needs to be

considered, so we investigated the effect of different Batchsize
values on model performance, as shown in Figure 10. We used
the training set to train the model, the validation set to tune the
hyperparameters of the model, and the test set to evaluate the
model’s generalization capabilities. Through a comprehensive
evaluation of different datasets, we found that the model
achieved the best performance when Batchsize was set to 32.

4 Discussion

Single-cell transcriptomics is a powerful technique that can provide
gene expression profiles of individual cells. However, there are several
challenges associated with downstream analysis of scRNA-seq data, such
as the lack of standardized dataset formats, reference gene expression
profiles, high dimensionality, sparsity, and the presence of noise in the
data. Deep learning techniques have shown great promise in addressing
these challenges by leveraging the unique features of scRNA-seq data.
MulCNN, have shown great promise in overcoming these challenges and
providing accurate cell type identification. MulCNN employs a unique
feature selection method to exclude genes that do not play a role in

identifying cell types, which not only enhances visualization but also
reduces noise and improves computational efficiency. By addressing these
bottlenecks in downstream analysis, MulCNN offers a solution to better
understand the complexity of scRNA-seq data and its potential
implications for disease diagnosis and treatment.

5 Conclusion

In this study, we introduce MulCNN, a deep learning approach
that utilizes multiscale convolutional neural networks to predict cell
classes based on gene expression. We have evaluated MulCNN using
datasets from different species that have been processed using
various techniques and generated using four distinct platforms
(InDrop, SMART-Seq2, Fluidigm C1, SMARTer). We compared
MulCNN with other unsupervised clustering methods and found
that it consistently achieves high Adjusted Rand Index (ARI)
without the need to fine-tune hyperparameters such as
resolution. Additionally, MulCNN outperforms popular
supervised cell type classification methods such as scmap, Seurat
3.0, Moana, ItClust, ACTINN, and scVI in all evaluation scenarios.

MulCNN’s success can be attributed to its unique approach to
feature extraction. The method uses multi-scale convolution to

FIGURE 10
Performance analysis of MulCNN under different Bachsize. (A) Accuracy comparison; (B) F1 score comparison.
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extract cell type-specific gene expression features, which enhances
the features and filters out noise through the convolution operation,
extracting key spatial features that enhance the classification
performance of the model. Through comparison with several
popular methods on publicly available datasets, we have
demonstrated MulCNN’s superior performance in cell
classification. Furthermore, despite the availability of many
neural network-based cell classification tools, MulCNN stands
out for its efficiency, lightweight design, and accuracy. MulCNN
introduces a new extension direction for analysis tools of single-cell
RNA-sequencing data. Its success in accurately identifying cell types
in scRNA-seq data has the potential to significantly advance our
understanding of cell biology and disease progression, ultimately
leading to improved diagnosis and treatment methods.
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