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Background: Breast cancer (BC) is the most common malignant disease

worldwide. Although the survival rate is improved in recent years, the prognosis

is still bleak once recurrence and metastasis occur. It is vital to investigate more

e�cient biomarkers for predicting the metastasis and relapse of BC. DYNLT1 has

been reported that participating in the progression of multiple cancers. However,

there is still a lack of study about the correlation between DYNLT1 and BC.

Methods: In this study, we evaluated and validated the expression pattern and

prognostic implication of DYNLT1 in BCwithmultiple public cohorts and BC tumor

microarrays (TMAs) of para�n-embedded tissues collected from the A�liated

Hospital of Jining Medical University. The response biomarkers for immune

therapy, such as tumor mutational burden (TMB), between di�erent DYNLT1

expression level BC samples were investigated using data from the TCGA-BRCA

cohort utilizing public online tools. In addition, colony formation and transwell

assay were conducted to verify the e�ects of DYNLT1 in BC cell line proliferation

and invasion.

Results: The results demonstrated that DYNLT1 overexpressed in BC and

predicted poor relapse-free survival in our own BC TMA cohort. In addition,

DYNLT1 induced BC development by promoting MDA-MB-231 cell proliferation

migration, and metastasis.

Conclusion: Altogether, our findings proposed that DYNLT1 could be a diagnostic

and prognostic indicator in BC.
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1. Introduction

Breast carcinoma (BC) is the most common cancer in women

and ranks the second leading cause of tumor-related death in

women in the United States and in China (1, 2). According to

the molecular pathological types, there are various therapeutic

strategies for BC, such as surgical therapy, radiation therapy,

chemotherapy, endocrine therapy, and targeted therapy (3). The

response to treatment and prognosis of BC relies on molecular

characteristics that have been well established, and the molecular

type based on estrogen receptor (ER), progesterone receptor (PR),

and human epidermal growth factor receptor-2 (HER-2) status

shows excellent performance for guiding clinicians to select the

optimal treatment for BC patients in the past few decades (4,

5). In addition, with the development of modern genomic and

transcriptomic technologies, numerous gene markers are identified

for predicting the response to treatment and prognosis of cancer

(6, 7). The prognosis of BC is improved in the past few decades;

however, there are still numerous women dying from BC, especially

triple-negative breast cancer (TNBC), in the world. As a result, it

is urgent to explore a more specific molecular target to direct the

diagnosis and treatment of BC.

In this study, we identified that dynein light chain tctex type

1 (DYNLT1), a component of the cytoplasmic dynein 1 complex,

may predict the prognosis of BC. DYNLT1 is responsible for

the intracellular retrograde motility of vesicles and organelles

along microtubules, binding to transport cargo, and is involved

in apical cargo transport. It is reported that DYNLT1 plays

an important role in many biological functions and diseases,

such as Huntington’s disease (8), fertilizing potential of human

spermatozoa (9), migration of epidermal cells in hypoxia (10),

autophagy lysosomal degradation (11), and several types of cancer.

DYNLT1 has been reported to promote glioblastoma progression

and is associated with tumor-node-metastasis (TNM) grade (12).

In gastric cancer (GC), DYNLT1 takes part in the miR-15b-

3p/Caspase-3/Caspase-9 signaling pathway to promote malignant

transformation (13). However, it is still unclear whether DYNLT1

is related to BC.

In this study, we evaluated the mRNA expression of DYNLT1

between BC and normal breast tissues from multiple public

cohorts and validated the results at the protein level by

immunohistochemistry (IHC) staining for DYNLT1 in 68 BC

samples along with paired 55 adjacent normal breast specimens

collected from the Affiliated Hospital of Jining Medical University.

In addition, we observed that DYNLT1 affected the migratory and

colony-forming abilities of BC cells in vitro. Furthermore, in vivo

experiment was conducted to verify that DYNLT1 knockdown

suppressed tumor growth and abolished distant metastasis.

Therefore, we proposed that DYNLT1 may have the potential to

become a promising diagnostic indicator and prognostic predictor

of BC patients.

2. Methods and materials

2.1. Data acquisition

A total of four Gene Expression Omnibus (GEO) cohorts

(GSE15852, GSE9309, GSE109169, and GSE53752) (14–17) were

downloaded from the GEO website (https://www.ncbi.nlm.nih.

gov/geo) for evaluating the mRNA expression of DYNLT1 between

BC and normal breast tissues.

2.2. GEPIA 2.0 database

The GEPIA 2.0 (http://gepia2.cancer-pku.cn/#index) database

(18) was utilized to evaluate the mRNA expression of DYNLT1 in

pan cancers using data from The Cancer Genome Atlas (TCGA).

In addition, GEPIA 2.0 was also utilized to evaluate the prognostic

implication of DYNLT1 in pan cancers.

2.3. Breast cancer gene-expression miner
database

The Breast Cancer Gene-Expression Miner (http://bcgenex.

centregauducheau.fr/BC-GEM/GEM-Accueil.php?js=1) database

(19) was utilized to evaluate the mRNA expression of DYNLT1

in subgroups of BC samples stratified based on multiple clinic-

pathological features.

2.4. PrognoScan database

The PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/

index.html) database (20) was utilized to evaluate the prognostic

implication of DYNLT1 in cancer.

2.5. Protein–protein interaction analysis

DYNLT1 was inputted into the String (https://www.string-db.

org/) database (21), and a PPI network was successfully outputted.

2.6. GO and KEGG analyses

DYNLT1 and its potential interacting proteins were utilized to

perform gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses by R software with the “clusterProfiler”

package (22). Terms with a false discovery rate (FDR) of <0.05

were illustrated.

2.7. CAMOIP database

The CAMOIP (http://camoip.net/) database (23) was utilized

to perform GSEA analysis, immune infiltration analysis, and

immunogenicity analysis with data from TCGA-BRCA. Tumor

mutational burden (TMB), neoantigen load, TGF-beta response

score, tumor-infiltrating lymphocytes (TILs) regional fraction, and

immune cells’ infiltration ratio calculated by CIBERSORT were

compared between DYNLT1 high and DYNLT1 low BC samples.
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2.8. ciBorPortal database

The ciBorPortal (http://www.cbioportal.org/) database (24, 25)

was utilized to perform mutational analysis with data from TCGA-

BRCA (Firehose Legacy). Core DNA damage repair (DDR)-related

genes and their corresponding pathways were extracted from a

previous study (26), such as base excision repair (BER), nucleotide

excision repair (NER), mismatch repair (MMR), Fanconi anemia

(FA), homologous recombination (HR), non-homologous end

joining (NHEJ), direct repair (DR), translesion synthesis (TLS), and

damage sensor. A sample with pathway mutation means that at

least one DDR-related gene in the pathway is mutated.

2.9. CancerSEA database

The CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/

home.jsp) database was utilized to evaluate the correlation of

DYNLT1 expression with 14 functional states of single BC cells (27)

using data from the GSE75367 cohort (28).

2.10. Human BC specimens

A total of 68 BC samples paired with 55 normal breast tissues

collected from the Affiliated Hospital of Jining Medical University

were approved by the Ethics Committee of the Affiliated Hospital

of JiningMedical University (approval number: 2021-08-C015). All

participants provided written informed consent.

2.11. Cell culture

MDA-MB-231 andHEK 293T cells were cultured in the DMEM

medium (Gibco) with 10% fetal bovine serum (FBS) (Gibco) and

1% penicillin–streptomycin (Gibco) at 37◦C with 5% CO2.

FIGURE 1

DYNLT1 mRNA expression was higher in BC tissues compared to normal breast tissues. (A) DYNLT1 mRNA expression across 33 cancer types (TCGA).

(B) DYNLT1 mRNA expression between BC tissues and normal breast tissues in the TCGA-BRCA cohort. (C) DYNLT1 mRNA expression between BC

tissues and normal breast tissues in the GSE15852 cohort. (D) DYNLT1 mRNA expression between BC tissues and normal breast tissues in the

GSE9309 cohort. (E) DYNLT1 mRNA expression between BC tissues and normal breast tissues in the GSE109169 cohort. (F) DYNLT1 mRNA

expression between BC tissues and normal breast tissues in the GSE53752 cohort. TCGA, The Cancer Genome Atlas; *P < 0.05, ***P < 0.001, and

****P < 0.0001.
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2.12. Western blotting

Cells were lysed by denatured buffer and quantified by the

Pierce BCA protein assay (Thermo Scientific). The whole cell

lysate protein was separated by SDS-PAGE, transferred to NC

membranes (Millipore), blocked by no-fat milk, and then detected

by primary antibody DYNLT1 (Proteintech, 11954-1-AP, 1:2000)

and HRP-conjugated secondary antibody (Sigma), followed by

being exposed to enhanced chemiluminescence (Vazyme). β-actin

(Abclonal, AC026, 1:10000) was used as a loading control.

2.13. Plasmids and Lentivirus production

Annealing and ligation of the DYNLT1-knockdown shRNA

were performed and inserted into the enzyme cut pLKO.1. The

shDYNLT1 plasmids were then transinfected into HEK293T

cells along with psPAX and pMD2.0G. Next, Lentivirus was

collected to infect MDA-MB-231 cells. The primer sequences are

shown as follows: DYNLT1-sh1-F: CCGGGAGGCTATAGAAA

GCGCAATTCTCGAGAATTGCGCTTTCTATAGCCTCTTTTTG,

DYNLT1-sh1-R: AATTCAAAAAGAGGCTATAGAAAGCGCAAT

TCTCGAGAATTGCGCTTTCTATAGCCTC; DYNLT1-sh2-F: CC

GGCCACAAATGTAGTAGAACAAACTCGAGTTTGTTCTACT

ACATTTGTGGTTTTTTG, DYNLT1-sh2-R: AATTCAAAAAA

CCACAAATGTAGTAGAACAAACTCGAGTTTGTTCTACTACA

TTTGTGG.

2.14. IHC assay

Immunohistochemistry (IHC) staining for DYNLT1

(Proteintech, 11954-1-AP, 1:500) was operated by the standard

IHC protocol as described earlier (29). The IHC score (values 0–12)

was determined by multiplying the score for staining intensity with

the score for the frequency of positive staining cells of DYNLT1.

Staining intensity was defined as follows: (0) negative; (1) weak;

(2) moderate; and (3) strong. The frequency of positive cells was

defined as follows: <5%, 0; 5%−25%, 1; 26%−50%, 2; 51%−75%,

3; and more than 75%, 4 (30).

2.15. Colony-forming assay

MDA-MB-231 cells were seeded at a density of 200 cells per well

in six-well plates. Single cells were cultured in DMEM with 10%

FBS at 37◦C with 5% CO2 for 3 weeks. Colonies were fixed with

10% formalin and then stained with 0.1% crystal violet.

FIGURE 2

Subtype analysis of DYNLT1 mRNA expression based on clinic-pathological features of BC tissues. (A) Subtype analysis of DYNLT1 mRNA expression

based on HER2 status. (B) Subtype analysis of DYNLT1 mRNA expression based on PAM50 subtype. (C) Subtype analysis of DYNLT1 mRNA expression

based on SBR grade. (D) Subtype analysis of DYNLT1 mRNA expression based on NPI. (E) Subtype analysis of DYNLT1 mRNA expression based on

age. (F) Subtype analysis of DYNLT1 mRNA expression based on TP53 mutant status. HER-2, human epidermal growth factor receptor-2; SBR,

Scar�-Bloom-Richardson; NPI, Nottingham prognostic index.
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2.16. Cell growth assay

Lentivirus-infected stable cells were seeded into 96-

well plates and cultured in 10% FBS DMEM (2,000 cells

per well, five parallel wells). Then, the cells were collected

at different points in time, and the cell number in each

well was counted by the CCK-8 reagent. The absorbance

at 450 nm was employed to determine the number of

viable cells.

2.17. Transwell assay

The migration assays and invasion assays were performed

using a transwell chamber (Corning). A total of 2 × 104 cells

per well were seeded into the upper chamber for the migration

assays, while 5 × 104 cells per well were seeded into the upper

chamber after matrigel was coagulated at 37◦C for the invasion

assays with serum-free medium, and the bottom of the chamber

contained the DMEM medium with 10% FBS. Cells were fixed by

10% formalin and stained by 0.1% crystal violet after migration

for 24 h. Migrated BC cells’ pictures were captured by an inverted

light microscope at ×100 magnification, and three random fields

were counted.

2.18. Tumor models

Female SCID mice (6 weeks old) were purchased from the

Shanghai Model organism. SCID mice were injected in the right

lower breast fat pad with MDA-MB-231 cells knockdown DYNLT1

or vector shRNA control (1× 106 cells per mouse). Tumor volume

was measured every 7 days and calculated according to the formula

as follows: volume = 0.5 × tumor length × width × width. Mice

were generally sacrificed when tumors became necrotic or their

volume reached 1,500 mm3, recorded as death for the survival

curve. The lung and the liver of dead mice were excised and

fixed in formalin. Paraffin-embedded lungs were systematically

sectioned and stained with hematoxylin and eosin (H&E) staining,

and images were captured by Leica Aperio CS2.

FIGURE 3

High DYNLT1 expression predicted poor survival in BC. (A) High expression predicted poor prognosis in BC, LGG, and LIHC in the GEPIA database. (B)

High DYNLT1 expression predicted poor overall survival (OS) of BC patients in the TCGA-BRCA cohort. (C, D) High DYNLT1 expression predicted

poor disease-specific survival (DSS) of BC patients in the GSE1456 cohort (C) and GSE3494 cohort (D). (E–H) High DYNLT1 expression predicted

poor relapse-free survival (RFS) of BC patients in the GSE1379 cohort (E), GSE1456 cohort (F), GSE2990 cohort (G), and GSE6532 cohort (H). (I) High

DYNLT1 expression predicted poor distant metastasis-free survival (DMFS) of BC patients in the GSE12093 cohort.
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2.19. Statistical analysis

Student’s t-test and chi-square test were utilized to analyze

the difference between the two groups. A P-value of <0.05 was

considered statistically significant.

3. Results

3.1. DYNLT1 expression was higher in BC
compared to normal breast tissues

First, we evaluated the mRNA expression of DYNLT1 across

33 cancer types and paired normal samples with data from

TCGA by the GEPIA database. Our results demonstrated

that the mRNA expression of DYNLT1 was higher in

most types of cancer tissues compared with paired normal

samples, such as BC, GBM, LGG, and PAAD (Figures 1A,

B). Next, four GEO cohorts were utilized to validate the

result that the mRNA expression of DYNLT1 was higher

in BC tissues compared to paired normal breast samples

(Figures 1C–F). In addition, subgroup analysis of multiple clinic

pathological features of BC samples in the Breast Cancer

Gene-Expression Miner database showed that DYNLT1

expression is related to HER-2 status, PAM50-based intrinsic

subtype, Scarff-Bloom-Richardson (SBR) grade, Nottingham

prognostic index (NPI), and age and mutation status of TP53

(Figures 2A–F).

FIGURE 4

Validated the protein expression pattern and prognostic implication of DYNLT1 in BC. (A) Protein expression of DYNLT1 was higher in BC compared

to normal breast tissues. (B) Scatter plot of TMED IHC score between BC and normal breast tissues. (C) Scatter plot of TMED IHC score between

TNM stage I BC and TNM stage II+III BC tissues. (D) Kaplan–Meier analysis was utilized to compare the relapse-free survival between high DYNLT1

expression BC patients and low DYNLT1 expression BC patients. IHC, immunohistochemistry. ***P < 0.001 and ****P < 0.0001.
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FIGURE 5

PPI network and functional annotation of DYNLT1. (A) PPI network based on DYNLT1. (B, C) Gene ontology enrichment analysis: biological process

(B) and molecular function (C). (D) KEGG pathway enrichment analysis. PPI, protein–protein network; GO, gene ontology; KEGG, kyoto encyclopedia

of genes and genomes.

3.2. High expression of DYNLT1 predicting
poor overall relapse and distant
metastasis-free survival of BC

First, we evaluated the prognostic implications of DYNLT1 in

33 cancer types using data from TCGA by the GEPIA database. Our

results demonstrated that DYNLT1 was a significant (P < 0.05) risk

factor for the prognosis of BC, MESO, and LIHC (Figures 3A, B).

Furthermore, we validated the prognostic implication of DYNLT1

in BC by the PrgnoScan database. Our results identified that high

expression of DYNLT1 predicted poor disease-specific survival

(Figures 3C, D), relapse-free survival (Figures 3E–H), and distant

metastasis-free survival (Figure 3I) in BC.

3.3. Validated the expression pattern and
prognostic implication of BC by TMA

To explore the correlation of DYNLT1 and the characteristic

of BC patients at the protein level, a BC TMA, containing

68 cancer tissues were used for IHC staining for DYNLT1.

The results validated that DYNLT1 expressed significantly

higher in BC tissues than in adjacent normal breast samples

(Figures 4A, B). High expression of DYNLT1 was positively

correlated with higher TNM stage (Figure 4C) and predicted poor

relapse-free survival (RFS) with a log-rank P-value of <0.015

(Figure 4D).

3.4. PPI network and functional annotation
of DYNLT1

We constructed a PPI network combining DYNLT1

and its potential interacting proteins by the String

database. The result indicated that DYNLT1 may be

capable of interacting with BMPR2, DYNC1H1, DYNC1I1,

DYNC1I2, DYNC1LI1, DYNC1LI2, DYNLL1, DYNLL2,

DYNLRB1, and WDR34 (Figure 5A). The gene ontology

and pathway functional enrichment analyses of genes in

this network demonstrated that these genes may involve
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FIGURE 6

DYNLT1 may predict well overcome in immune checkpoint blocked therapy for patients with BC. (A) GSEA analysis showed that the DNA replication

pathway was enriched in DYNLT1 High BC samples. (B) DTNLT1 mRNA expression was positively related to DNA damage, DNA repair, apoptosis,

hypoxia, TILs, and invasion at the single BC cell level. (C) The DDR pathways’ mutational ratio between DYNLT1 High and DYNLT1 Low BC samples.

(D) The regional fraction between DYNLT1 High and DYNLT1 Low BC samples. (E) The TGF-beta response score between DYNLT1 High and DYNLT1

Low BC samples. (F) The neoantigen loads between DYNLT1 High and DYNLT1 Low BC samples. (G) The TMB between DYNLT1 High and DYNLT1

Low BC samples. (H) The infiltration ratio of immune cells between DYNLT1 High and DYNLT1 Low BC samples. TMB, tumor mutational burden;

DDR, DNA damage repair; TILs, tumor-infiltrating lymphocytes; BER, base excision repair; NER, nucleotide excision repair; MMR, mismatch repair; FA,

Fanconi anemia; HR, homologous recombination; NHEJ, non-homologous end joining; DR, direct repair; TLS, translesion synthesis; *P < 0.05; **P <

0.01; ***P < 0.001; and ****P < 0.0001.

in cell cycle, cell division, immune system process, vesicle-

mediated transport, motor activity, protein binding,

phagosome, adaptive immune system, and apoptosis

(Figures 5B–D).

3.5. DYNLT1 as a predictive biomarker for
immune checkpoint blocking therapy in
patients with BC

Generally, a high DNA damage repair (DDR) mutational

ratio, a high proportion of TMB, high neoantigen loads, high

TILs regional fraction, and low TGF-beta response predict well

overcome in ICB therapy for patients with cancer (31, 32). In

our study, the results of GSEA analysis based on data from

TCGA-BRCA showed that DNA replication (Figure 6A) pathways

were enriched in DYNLT1 high BC samples. In addition, we

found that DTNLT1 expression was positively related to DNA

damage and DNA repair (Pearson’s correlation > 0.3, P <

0.05) at the single cell level of BC by the CancerSEA database

(Figure 6B). We found that BC patients in the DYNLT1 high

group had higher levels of DDR mutational ratio (Figure 6C),

TILs regional fraction (Figure 6D), and lower TGF-beta response

(Figure 6E) compared to those in the DYNLT1 low group.

Moreover, a high proportion of neoantigen loads (Figure 6F) and

TMB (Figure 6G) was shown in the DYNLT1 high group, and the

CIBERSORT analysis showed that BC samples in the DYNLT1
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FIGURE 7

DYNLT1 knockdown inhibited MDA-MB-231 cells’ colony formation and migration. (A) Knockdown expression of DYNLT1 in MDA-MB-231 cells. (B)

DYNLT1 knockdown inhibited cell colony formation and histogram of colony numbers between the DYNLT1 knockdown group and control group.

(C) CCK-8 assay of the DYNLT1 knockdown group and control group. (D) DYNLT1 knockdown inhibited cell migration and histogram of cell counts

between the DYNLT1 knockdown group and control group. (E) DYNLT1 knockdown inhibited cell invasion and histogram of cell counts between the

DYNLT1 knockdown group and the control group. Scale bar = 100µm, ***P < 0.001, **P < 0.01.

high group had a higher infiltration ratio of CD8+ T cells and

follicular helper T cells than those in the DYNLT1 low group

(Figure 6H).

3.6. DYNLT1 knockdown suppressed the
colony-forming, proliferation, migratory,
and invasion abilities of BC cells

To explore the functional role of DYNLT1 in BC cells, in vitro

experiments were conducted. First, MDA-MB-231-shDYNLT1 and

MDA-MB-231-sh scramble (NC) stable cell lines were constructed

successfully by lentiviral transduction (Figure 7A). Next, the results

of the colony-forming assay and CCK-8 assays demonstrated that

knockdown expression of DYNLT1 inhibited the colony formation

and proliferation abilities in MDA-MB-231 cells (Figures 7B, C).

Furthermore, a transwell assay was conducted to confirm that

migration and invasion abilities were also attenuated with the

DYNLT1 knockdown in MDA-MB-231 cells (Figures 7D, E).

3.7. Knockdown of DYNLT1 suppressed
tumor growth and abolished the lung and
liver metastasis in vivo

To determine the role of DYNLT1 in vivo, MDA-MB-231-

shDYNLT1 and MDA-MB-231-shNC cells were injected into a

mammary fat pad in severe combined immunodeficiency (SCID)

female mice. Knockdown of DYNLT1 led to smaller tumor volume

(Figures 8A, B) and poor survival (Figure 8C). The lung and the

liver samples of sacrificed mice were formalin-fixed and paraffin-

embedded, and HE stain was conducted to evaluate the distant

metastasis. As expected, the knockdown of DYNLT1 prevented

tumor cells frommetastasizing to distant organs including the lung

and the liver, which prolong the survival period of tumor-burden

mice (Figures 8D, E).

4. Discussion

With the development of modern genomic/transcriptomic

technologies and increasing public cancer genomic programs, such
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FIGURE 8

DYNLT1 knockdown suppressed tumor growth and abolished lung and liver metastasis in vivo. (A) DYNLT1 knockdown in MDA-MB-231 cells

suppresses tumor growth in SCID mice. (B) Tumor samples were shown after mice were sacrificed. (C) Survival of SCID mice with

MDA-MB-231-shNC tumor or MDA-MB-231-shDYNLT1#1 tumor. (D) Representative lung and liver HE staining of mice with MDA-MB-231-shNC

tumor or MDA-MB-231-shDYNLT1#1 tumor (scale bar = 5mm). (E) The number of tumor metastatic sites in the lung and the liver (n = 5 biological

replicates). *P < 0.05, **P < 0.01, and ****P < 0.0001.

as TCGA and GEO, numerous biomarkers were identified for

improving our ability to diagnose and treat cancer or utilized

as predictors of prognosis and response to therapies in cancer.

For example, DYNLT1 serving as a prognostic indicator for GBM

patients has been reported (12). However, there is no report on

whether DYNLT1 may act as a biomarker of BC.

In our study, we validated that DYNLT1 expression was higher

in BC than normal breast tissues by integrated bioinformatics

analysis using data from multiple public cohorts and ourselves

BC and adjacent normal breast specimens. In addition, we

demonstrated that high DYNLT1 expression meant a poor

prognosis in BC, and DYNLT1 knockdown suppressed MDA-

MB-231 cell migration and colony formation. Furthermore, in in

vivo experiment, we found that DYNLT1 knockdown suppressed

tumor growth and abolished distant metastasis. Mice with DYNLT1

knockdown tumor cells survived a longer period. However, there

is still a limitation in our study. The molecular mechanism of

how high DYNLT1 expression enhances BC cells’ proliferative and

invasive abilities remains unclear.

Abnormal proliferative and invasive abilities are the leading

causes of progression and poor prognosis in BC. It has

been reported that DYNLT1 promoted migration, invasion, and

proliferation, and inhibited apoptosis of GC via the exo-miR-15b-

3p/DYNLT1/Caspase-3/Caspase-9 pathway (13). Previous studies

also found that DYNLT1 interacted with the tumor suppressor

REIC/Dkk-3 which induced malignant cell death via modification

of the Wnt signaling pathway (33, 34). In addition, Kawasaki

et al. (35) demonstrated that REIC/Dkk-3 overexpression could

induce multidrug-resistant BC cell line MCF-7 apoptosis via

downregulating P-glycoprotein. Hence, a high expression of

DYNLT1 can promote the progression of BC via interacting

with REIC/Dkk-3.

Recent evidence indicates that a high proportion of TMB

and loads of neoantigens predicted a good response for ICB

therapy in many types of cancer (36, 37), and patients with

high TILs and low TGF-beta response in tumor samples

always carry a better prognostic significance in ICB treatment

(38, 39). Our results showed that biomarkers representing an

effective response to ICB treatment were always accompanied by

DYNLT1 high expression in BC samples. Therefore, we inferred

that DYNLT1 may be a response biomarker in ICB therapy

for BC.
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5. Conclusion

Our study first suggested that DYNLT1 may serve as a

biomarker for diagnosing and ICB treating BC or a predictor for

predicting the prognosis of BC.
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