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Combined QTL mapping on
bi-parental immortalized
heterozygous populations to
detect the genetic architecture
on heterosis

Xuexue Huo1, Jiankang Wang1,2* and Luyan Zhang1*

1National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop
Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China, 2National Nanfan
Research Institute (Sanya), Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
From bi-parental pure-inbred lines (PIL), immortalized backcross (i.e., IB1 and IB2,

representing the two directions of backcrossing) and F2 (i.e., IF2) populations can

be developed. These populations are suitable for genetic studies on heterosis,

due to the present of both homozygous and heterozygous genotypes, and in the

meantime allow repeated phenotyping trials across multiple locations and years.

In this study, we developed a combined approach of quantitative trait locus (QTL)

mapping, when some or all of the four immortalized populations (i.e., PIL, IB1, IB2,

and IF2) are available. To estimate the additive and dominant effects

simultaneously and accurately, suitable transformations are made on

phenotypic values from different populations. When IB1 and IB2 are present,

summation and subtraction are used. When IF2 and PIL are available, mid-

parental values and mid-parental heterosis are used. One-dimensional

genomic scanning is performed to detect the additive and dominant QTLs,

based on the algorithm of inclusive composite interval mapping (ICIM). The

proposed approach was applied to one IF2 population together with PIL in maize,

and identified ten QTLs on ear length, showing varied degrees of dominance.

Simulation studies indicated the proposed approach is similar to or better than

individual population mapping by QTL detection power, false discovery rate

(FDR), and estimated QTL position and effects.

KEYWORDS

immortalized population, pure-line population, QTL mapping, combined
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Introduction

Heterosis, also known as hybrid vigor, is a phenomenon that the

performance of hybrids outperforms their parents for one or more

traits. Over the past 100 years, hybrid breeding has been proved to be

highly successful in exploiting the heterosis in a number of crop species,

and has made great contributions to agricultural production (Whitford

et al., 2013; Labroo et al., 2021). The rapid development of molecular

technology is expected to deepen our understanding on heterosis.

Conventional bi-parental populations, such as backcross (BC), F2 and

F2:3, can be used to study the dominance-related genetic effects

included in heterosis. However, these populations cannot be

phenotyped in multi-environmental trials, and thus the analysis for

QTL stability and QTL by environment interaction are not possible

(Wang et al., 2020). To avoid the problems in conventional

heterozygous populations, the concept of immortalized heterozygous

populations has been proposed.

Immortalized heterozygous populations are derived from a

population of bi-parental pure-inbred lines (PIL population).

Immortalized BC (IBC) is generated by the hybridization between

PIL with the two original inbred parents, similar to backcrossing the

F1 hybrid. The backcrossing of the pure lines with the first parent is

denoted by IB1, and backcrossing of the pure lines with the second

parent is denoted by IB2. Pure lines in PIL can be derived either by

doubled haploids (DH) technology or repeated selfing, since the F1
hybrid derived from two homozygous parents. Pure inbred lines

generated by repeated selfing are called recombination inbred lines

(RIL). Immortalized F2 (IF2) is generated by the hybridization

between two lines in PIL, similar to selfing the F1 hybrid. As each

line in PIL can be maintained by selfing, IB1, IB2 and IF2 can be

repeatedly produced whenever needed just like any typical F1
hybrids, which is the reason to be called ‘immortalized’. Due to

their repeatability, populations IBC and IF2 can be evaluated in

multi-environmental trials with replications. In the sense of selfing

maintenance, PIL can be called ‘immortalized’ as well. If IB1, IB2
and IF2 are called the immortalized heterozygous populations, PIL

may be called the immortalized homozygous population. Therefore,

in this study, PIL is occasionally called the immortalized

homozygous population, and IB1, IB2 and IF2 are occasionally

called the immortalized heterozygous populations, so as to reflect

the genetic constitutions of these populations. Genotypes of pure

lines are only needed in PIL; those of hybrids in IB1, IB2 and IF2 can

be inferred from their respective parents in PIL and the two

original parents.

Over the past decades, a number of immortalized heterozygous

populations have been developed in several crop species, and used

for genetic analysis on quantitative traits and the study on the

genetic mechanism of heterosis, such as rice (Hua et al., 2002; Mei

et al., 2005; Zhou et al., 2012), maize (Guo et al., 2014; Yi et al.,

2019), wheat (Yuan et al., 2012), cotton (Liu et al., 2014; Wang et al.,

2016; Li et al., 2018a; Ma et al., 2019), Brassica juncea (Aakanksha

et al., 2021), and rapeseed (Liu et al., 2017). Conventional QTL
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interval mapping (IM; Lander and Botstein, 1989), composite

interval mapping (CIM; Zeng, 1994), and inclusive composite

interval mapping (ICIM; Li et al., 2007; Zhang et al., 2008; Wang,

2009). As examples, Mei et al. (2005) developed two-directional IBC

populations from bi-parental RILs and applied IM to investigate the

gene action types on seven quantitative traits in rice, including

heading date, plant height, and panicle length and so on. Li et al.

(2018a) developed IBC and IF2 populations in upland cotton, and

applied CIM to detect heterotic loci related to fiber quality traits. Yi

et al. (2019) conducted QTL mapping for yield-related traits in

maize IF2 and RIL populations based on ICIM algorithm. Previous

studies showed that the genetic basis of heterosis is more likely to be

a combination of various genetic effects, such as additive, partial

dominant, over-dominant, and epistatic effects (Zhan et al., 2016;

Liu et al., 2020; Ouyang et al., 2022), indicating highly complicated

nature of the heterosis phenomenon in biology.

Originated from the same two original parents, immortalized

heterozygous populations are highly related. In previous studies,

they were treated as conventional bi-parental populations, and

analyzed individually without considering their close relationship.

The combined analysis with pure lines and their derived

immortalized heterozygous populations takes into consideration

more correlated genetic information simultaneously, and therefore

improves mapping accuracy. Our objectives in this study were: (1)

to present the algorithm of combined QTL mapping approach; (2)

to apply the proposed approach in an actual maize population; (3)

to demonstrate its efficiency by comparison with the individual

population mapping through simulation studies.
Materials and methods

Immortalized heterozygous populations
used for QTL mapping

The combined mapping approach depends on multiple

immortalized populations, which can be some or all of four

populations, i.e., PIL, IB1, IB2, and IF2. Relationship between the four

populations is shown in Figure 1 (see also Zhang et al., 2022b). In one-

directional IBC population, only genotypes of the recurrent parent and

hybrid F1 are present. Additive and dominant effects cannot be

estimated simultaneously, unless the two-directional IBC populations

are considered together. Genotypic composition and segregation ratio

in IF2 are similar to conventional F2 at individual genetic loci. As far as

two linked loci are considered, Supplementary Tables 1 and 2 give the

genotypes and their frequencies in two types of PIL. If estimated in

the DH-derived IBC or IF2, recombination frequency would be exactly

the same as that estimated in conventional BC or F2 populations.

However, if estimated in the RIL-derived IBC or IF2, recombination

frequency would represent the accumulated crossing-over rate during

the repeated selfing (Wang et al., 2017).
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One-locus genetic model and effects in
the four immortalized populations

Assume the mean values of three genotypes (i.e., AA, Aa and aa) at

one bi-allelic locus are represented bym+a,m+d andm-a, respectively,

where m, a, and d are the mid-parental value, additive and dominant

effects at the locus. When no segregation distortion is considered, two

genotypes AA and aa have equal frequency at 0.5 in PIL, allowing the

estimation of additive effect between two homozygous genotypes

(Table 1). Genotypes AA and Aa have equal frequency at 0.5 in IB1,

with a difference equal to a-d in genotypic values. GenotypesAa and aa

have equal frequency at 0.5 in IB2, with a difference equal to a+d

(Table 1). Therefore, additive and dominant effects cannot be separated

in either population, which can also be seen from the genetic variance

given in Table 1. However, genotype AA in IB1 and genotype Aa in IB2
are both derived from genotype AA in PIL, and half of the summation
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of the two genotypic values is equal to m + 1
2 (a + d). Genotype Aa in

IB1 and genotype aa in IB2 are both derived from genotype aa in PIL,

and half of the summation of the two genotypic values is equal to m +
1
2 (d − a). Denote the summation transformation as

S =
1
2
(IB1 + IB2) (1)

Difference between the two values from transformation S is

equal to a, i.e., (m + 1
2 (a + d)) − (m + 1

2 (d − a)) = a. Similarly,

denote the subtraction transformation as

T =
1
2
(IB1 − IB2) (2)

Difference between the two values from transformation T can be

found to be equal to -d, i.e., 1
2 (a − d) − 1

2 (a + d) = −d. Therefore,

when IB1 and IB2 are both available, the summation and subtraction
TABLE 1 Genotypes, genotypic values and genetic variances at one locus in populations PIL, IB1 and IB2, where m, a, and d are mid-parental value,
additive and dominant effects, respectively.

Parameters

Immortalized populations Transformations

PIL IB1 IB2 1
2
(IB1 + IB2)

1
2
(IB1 − IB2)

Two genotypes and genotypic values

AA, m + a AA, m + a Aa, m + d m +
1
2
(a + d)

1
2
(a − d)

aa, m − a Aa, m + d aa, m − a m +
1
2
(d − a)

1
2
(a + d)

Difference between the two genotypes 2a a − d a + d a − d

Genetic variance a2 1
4
(a − d)2

1
4
(a + d)2

1
4
a2

1
4
d2
No segregation distortion is considered.
FIGURE 1

Diagram of the development procedure of immortalized backcross and immortalized F2 populations.
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transformations can separate additive and dominant effects

included in the one-locus genetic model (Table 1).

When no segregation distortion is considered, three genotypes

AA, Aa and aa have frequencies at 0.25, 0.5 and 0.25 in IF2, allowing

the estimation of mid-parental value, additive and dominant effects

simultaneously (Table 2). When PIL is available, mid-parent value

can be calculated, and denoted as

M =
1
2
(PIL1 + PIL2) (3)

Genotype AA in IF2 is generated by the cross between genotype

AA in PIL1 and genotype AA in PIL2; Aa in IF2 is generated by the

cross between AA (or aa) in PIL1 and aa (or AA) in PIL2; and aa in

IF2 is generated by the cross between aa in PIL1 and aa in PIL2.

Therefore, the mid-parental values are equal tom+a,m, andm-a for

the three genotypes AA, Aa and aa in IF2, respectively. When PIL

and IF2 are both available, mid-parental heterosis of any F1 hybrid

in IF2 can be defined as well, i.e., the difference of F1 hybrid from the

mean of its parents in PIL, and denoted as

H = IF2 −
1
2
(PIL1 + PIL2) (4)

Mid-parental heterosis can be found to be equal to 0, d and 0 for

the three genotypes AA, Aa and aa in IF2, respectively. Therefore,
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additive and dominant effects can be separated by the mid-parental

value and mid-parental heterosis, which can also be seen from the

genetic variance given in Table 2.
Combined QTL mapping approach with
immortalized populations

The combined mapping using populations IB1 and IB2 is named

IBC; using populations IF2 and PIL is named IFL; using populations

IB1, IB2, and PIL is named IBL; using populations IB1, IB2, and IF2 is

named IBF; using populations IB1, IB2, IF2, and PIL is named BFL

(Table 3). When populations IBC and PIL are available, IBC and

IBL can be conducted; when populations IF2 and PIL are available,

IFL can be conducted; when all the four populations are available,

IBF and BFL can be conducted. Populations IB1, IB2, and IF2 can

also be analyzed independently, and these individual population

mappings are named IB1, IB2 and IF2, respectively (Table 3). Both

independent and combined mapping approaches are based on the

ICIM algorithm. To separate additive and dominant effects,

summation and subtraction transformations (Eqs. 1 and 2) are

used in combined mappings IBC, IBL, IBF and BFL. Mid-parental

value and mid-parental heterosis are used in combined mappings

IFL and BFL (Eqs. 3 and 4; Table 3).
TABLE 3 Naming and properties of individual and combined QTL mappings, depending on available populations.

Category of mapping Naming Population(s) needed Transformations Effects to be
estimated

Individual mapping IB1 IB1 None a − d

IB2 IB2 None a + d

IF2 IF2 None a   and   d

Combined mapping IBC IB1 and IB2 Summation and subtraction a   and   d

IFL IF2 and PIL Mid-parental value and mid-parental heterosis a   and   d

IBL IB1, IB2 and PIL Summation and subtraction a   and   d

IBF IB1, IB2 and IF2 Summation and subtraction a   and   d

BFL IB1, IB2, IF2 and PIL Summation, subtraction, mid-parental value and mid-parental heterosis a   and   d
TABLE 2 Genotypes, genotypic values and genetic variances at one locus in population IF2, where m, a, and d are mid-parental value, additive and
dominant effects, respectively.

PIL1 PIL2 Frequency IF2

Transformations

1
2
(PIL1 + PIL2) IF2 −

1
2
(IB1 + IB2)

AA, m + a AA, m + a 1
4

AA, m + a m + a 0

AA, m + a aa, m − a 1
2

Aa, m + d m d

aa, m − a aa, m − a 1
4

aa, m − a m − a 0

Genetic variance 1
2
a2 +

1
4
d2

1
2
a2

1
4
d2
No segregation distortion is considered.
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Algorithm of the combined QTL
mapping approach

Compared with the other existing mapping methods, ICIM

simplifies the genetic background control and improves the

efficiency of QTL detection, which has been widely used in bi-

parental populations (Li et al., 2007; Zhang et al., 2008; Wang, 2009;

Meng et al., 2015), hybrid F1 from two heterozygous parents (Zhang

et al., 2015a; Zhang et al., 2015b), and multi-parental populations

(Zhang et al., 2017; Shi et al., 2019; Zhang et al., 2019). Mapping

algorithm on individual populations has been covered in previous

publications. As an example, IBC is used here to illustrate the

combined mapping approach. First, a linear regression model is

built in each population, similar to the algorithm implemented in

software package QTL IciMapping (Li et al., 2007; Zhang et al.,

2008; Meng et al., 2015), i.e.,

yih = b0h +om+1
j=1 bjhxij + ϵih ; (5)

where yih is the phenotypic value of the i
th individual in the hth

population (h=1, 2 in IBC); b0h is the overall mean of the linear

model, and bjh is the partial regression coefficient of phenotype on

the jth marker in the hth population (h=1, 2); xij is the indicator of

the jth marker genotype for the ith individual in PIL, valued at 1 and

-1 for the two parental types; ϵih is the residual random error,

following a normal distribution with a mean of zero. Then, stepwise

regression is performed on the phenotypes of each population to

identify significant markers in Eq. (5).

For a testing position in marker interval [k, k+1], phenotypic

value of the ith individual in the hth population is adjusted by Eq. 6,

i.e.,

Dyih = yih −oj≠k,k+1b̂ jhxij, h = 1, 2 (6)

where b̂ jh is the estimate of bjh for significant markers identified

by stepwise regression in linear model Eq. 5. Summation and

subtraction transformations (Eqs. 1 and 2) are conducted on

adjusted phenotypic values, i.e., Si =
1
2 (Dyi1 + Dyi2), Ti =

1
2 (Dyi1 �

Dyi2). QTL position and effect information in the current interval is

contained in the transformed phenotypic values Si and Ti, which are

not changed until the testing position moves to the next marker

interval. Finally, conventional interval mapping is conducted on Si
and Ti to detect additive and dominant QTLs, respectively.

The following null and alternative hypotheses are used to test

the existence of QTL at the current scanning position, i.e.,

H0: m1h = m2h (h=1, 2);

H1: non-H0, i.e., in at least one transformation, m1h ≠ m2h; where

m1h and m2h are the average genotypic values of two genotypes at the

tested position in the hth transformation. The likelihood ratio of

hypotheses H1 versus H0 is denoted by LODS and LODT for

phenotypic values Si and Ti, respectively. The existence of QTL

can be tested by a weighted average of the two LOD scores, where

the weights are determined by the least square method. Relationship

between LOD scores is given in Supplementary Table 3 for each

combined mapping. Detection of QTL depends on total LOD score

which is equal to the sum of LOD scores indicating the significance

of additive and dominant effects, i.e., LODA and LODD. LOD scores
Frontiers in Plant Science 05
from individual populations IB1, IB2, and IF2 are calculated directly,

the same as those in Li et al. (2007) and Zhang et al. (2008).
Actual PIL and immortalized F2
populations in maize

The PIL population in maize consists of 166 RILs, which were

derived from an elite hybrid variety Yuyu22 showing significant

heterosis. Two inbred parents of Yuyu22 were Zong3 and 87-1,

coming from two heterotic groups. The maize IF2 population with a

size of 157 was constructed by hybridization between the 166 RILs

(Guo et al., 2014). The RILs were sequenced by a maize SNP50

genotyping chip. A total of 3184 bins were treated as markers to

construct the genetic linkage map after merging 18840 SNPs (Guo

et al., 2014). Ear length (EL) in the two populations was measured in

four environments, i.e., Beijing and Xunxian, China, in 2003 and

2004 (denoted as 2003BJ, 2004BJ, 2003XX, and 2004XX). Analysis

of variance (ANOVA) was conducted in each environment by the

VHP functionality in software package GAHP (Zhang et al., 2022b).

Best linear unbiased predictions (BLUPs) were obtained across

environments using Eq. 7 by R package lme4 for PIL and IF2,

respectively.

yijk = m + Gi + Ej + Rk(j) + GEij + eijk ; (7)

where yijk represented the phenotypic value; m was the overall

mean; Gi was the effect of genotype i; Ej was the effect of the

location-year combination (i.e., environment) j; Rk(j) was the effect

of replication k nested in environment j; GEij was the G×E

interaction between genotype i and environment j; and eijk was

the residual effect associated with genotype i in environment j and

replication k.

BLUPs of EL were used in QTL detection by two mapping

approaches, i.e., IF2 and IFL (Table 3). Scanning step and the

probability for entering variables in stepwise regression were set to 1

cM and 0.001, respectively. Threshold LOD score was set at 3.00 for

IF2, and 5.00 for IFL. QTLs identified by different mapping

approaches were regarded as co-located, if their genetic distance

was smaller than 5 cM. The detected QTLs were compared with the

reported QTLs in database MaizeGDB (https://www.maizegdb.org/

), according to the physical positions of flanking markers. If a

detected QTL was located at the physical interval determined by

flanking markers in the database, they were treated to be the

same QTL.
QTL distribution models in detection
power simulation

Two simulation experiments were conducted to illustrate the

efficiency of combined approach in mapping QTLs related to

heterosis. Ten chromosomes were considered in simulation I,

each of which was 100 cM in length. Twenty-one markers were

evenly distributed on each chromosome, and the average distance

between any two adjacent markers was 5 cM. One QTL was located
frontiersin.org
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at 22.5 cM on each of the first nine chromosomes, and their genetic

effects and variances were given in Table 4. One thousand

populations each of IB1, IB2 and IF2, derived from the PIL of

DHs, were generated by genetic breeding simulation platform Blib,

each with a size of 200 (Zhang et al., 2022a). The random error

variance was set to 1. Additional one thousand populations each of

IB1, IB2 and IF2 with a size of 200 were simulated under the null

QTL model to estimate the empirical distribution of test statistic,

and obtain the threshold LOD score. 1000 highest LOD scores from

the 1000 simulated runs were sorted, and then the threshold LOD

score was estimated by the 95% quantile, so as to control the

genome-wide type I error below 0.05.

Chromosome and marker information in simulation II was the

same as the actual maize populations PIL and IF2. QTLs affecting EL

detected by mapping approach IF2 were used as the pre-defined

QTLs, and their genetic effects and variances were given in

Supplementary Table 4. One thousand populations each of IB1
and IB2 with a size of 166 (same as the actual PIL), and one

thousand populations of IF2 with a size of 157 (same as the actual

IF2) were generated from the PIL of RILs. Random error variance

was set to 1. Additional one thousand populations each of IB1 and

IB2 with a size of 166, and one thousand populations of IF2 with a

size of 157 were simulated under the null QTL model to obtain the

threshold LOD score.

In both simulation experiments, scanning step, the probability

for entering variables in stepwise regression, and length of the

support interval were set to 1 cM, 0.001 and 10 cM, respectively. If a

peak higher than threshold was observed within the support

interval around the position of one pre-defined QTL, the peak is

treated as a true positive. If the detected peaks are out of any support

interval, they are considered to be false positives. When more than

one peak occurred within the same interval, only the one with the

highest LOD score is counted. Power of each pre-defined QTL is the

ratio of true positives to 1000 simulation runs (Li et al., 2010). False

discovery rate (FDR) is defined as the proportion of false positives to

the total number of true and false positives (Benjamini and

Hochberg, 1995).
Frontiers in Plant Science 06
Results

Results of the combined ANOVA from the
maize PIL and IF2 populations

For EL in each environment, additive and dominant variances

as well as the narrow-sense and broad-sense heritabilities calculated

from ANOVA were shown in Supplementary Table 5. Additive

variance varied from 1.67 to 1.91, which was the smallest in 2004XX

and the largest in 2003XX. Dominant variance varied from 0.68 to

1.61, which was the smallest in 2004XX and the largest in 2003XX.

Additive variance was higher than dominant variance in each of the

four environments. Heritability in the narrow sense ranged from

0.43 to 0.51, which was the smallest in 2003XX and largest in

2004XX. Heritability in the broad sense ranged from 0.69 to 0.78,

which was the smallest in 2003BJ and largest in 2003XX.
QTLs identified from the maize PIL
and IF2 populations

The LOD score profiles from the independent mapping IF2 and

combined mapping IFL were displayed in Supplementary

Figures 1A, B, respectively. Under the threshold LOD score of

3.00, seven QTLs were detected in population IF2, explaining

51.30% of the phenotypic variance in total, two on chromosome

5, and one each on chromosomes 1, 2, 4, 7 and 8. qEL8 had the

largest LOD score at 9.35 and the largest percentage of variance

explained (PVE) at 16.11%. Three QTLs detected in IF2 have been

reported in previous studies, i.e., qEL1.1, qEL2 and qEL5.2, by

alignment with the MaizeGDB database (Table 5).

Under the threshold LOD score of 5.00, ten QTLs were

identified by the combined mapping IFL, explaining 44.09% of

the phenotypic variance in total, four on chromosome 5, two on

chromosome 1, two on chromosome 6, and one each on

chromosomes 7 and 8 (Table 5). qEL5.3 had the largest LOD

score at 26.43 and the largest PVE at 11.04%. Five QTLs detected
TABLE 4 Genetic effects and variances of the pre-defined QTLs in simulation experiment I.

QTL no.
Genetic effects

Degree of dominance (d/a)
Genetic variance

Additive (a) Dominant (d) PIL IB1 IB2 IF2

1 0 0.5 NA 0 0.0625 0.0625 0.0625

2 0 1 NA 0 0.2500 0.2500 0.2500

3 0.5 -1 -2 0.2500 0.5625 0.0625 0.3750

4 0.5 -0.5 -1 0.2500 0.2500 0 0.1875

5 0.5 -0.25 -0.5 0.2500 0.1406 0.0156 0.1406

6 0.5 0 0 0.2500 0.0625 0.0625 0.1250

7 0.5 0.25 0.5 0.2500 0.0156 0.1406 0.1406

8 0.5 0.5 1 0.2500 0 0.2500 0.1875

9 0.5 1 2 0.2500 0.0625 0.5625 0.3750
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TABLE 5 Mapping results for ear length in the actual maize PIL and IF2 populations.

D
)b

PVE
(%)

PVE.A
(%)c

PVE.D
(%)d Add Dom Degree of

dominancee
Co-

localizationf

4.63 -0.43 0.47 D qearl1

4.58 0.45 0.32 PD qearl40

6.93 0.27 0.74 OD

5.95 0.56 0.10 A qearl9

7.60 0.56 -0.01 A

5.50 0.47 0.19 PD

16.11 -0.83 -0.19 PD

55 3.44 1.73 1.71 -0.40 0.43 D qearl37

95 3.12 1.04 2.08 0.31 0.21 PD qearl17

77 3.55 0.95 2.59 0.30 0.43 OD qearl29

28 3.47 1.77 1.70 0.44 0.16 PD qearl9

46 11.04 5.35 5.70 0.67 -0.12 A

15 4.03 1.89 2.14 -0.42 -0.24 PD

17 3.19 2.38 0.81 -0.48 0.03 A qearl25

49 1.91 0.89 1.03 -0.04 0.41 OD

17 4.20 2.03 2.18 0.43 0.36 D

05 6.14 0.08 6.06 -0.03 -0.03 D
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Mapping
approach

QTL
name

Pos.
(cM)

LeftCI
(cM)

RightCI
(cM) LOD LOD

(A)a
LO
(D

IF2

qEL1.1 24 21.50 26.50 3.28

qEL2 113 112.50 114.50 3.31

qEL4 141 139.50 141.50 4.58

qEL5.2 145 144.50 146.50 3.82

qEL5.3 230 227.50 230.50 4.85

qEL7.1 41 34.50 43.50 3.12

qEL8 199 196.50 201.50 9.35

IFL

qEL1.2 49 48.50 49.50 10.03 7.48 2

qEL1.3 88 84.50 89.50 7.57 4.62 2

qEL5.1 83 82.50 83.50 8.13 4.36 3

qEL5.2 149 148.50 151.50 9.78 7.49 2

qEL5.3 227 226.50 227.50 26.43 18.97 7

qEL5.4 245 242.50 247.50 11.34 8.19 3

qEL6.1 19 18.50 21.50 11.19 10.02 1

qEL6.2 30 28.50 30.50 5.52 4.03 1

qEL7.2 66 63.50 68.50 11.58 8.41 3

qEL8 198 195.50 201.50 8.44 0.39 8

LOD, logarithm of odds; PVE, percentage of phenotypic variance explained by individual QTL.
a LOD score for additive effect. b LOD score for dominant effect. c Phenotypic variation explained by additive effect of the detected
d Phenotypic variation explained by dominant effect of the detected QTL. e A, additive; PD, partial dominant; D, dominant; OD, o
f Co-localize with previously reported QTLs in database MaizeGDB (https://www.maizegdb.org/).
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by IFL have been reported in previous studies, i.e., qEL1.2, qEL1.3,

qEL5.1, qEL5.2 and qEL6.1, by alignment with the MaizeGDB

database (Table 5). Three QTLs were detected by both

independent and combined mapping approaches, i.e., qEL5.2,

qEL5.3 and qEL8.

The degree of dominance is defined as the absolute value of the

ratio of dominant to additive effects (i.e., |d/a|). QTLs can be

classified into four categories according to the estimated degrees

of dominance, i.e., additive (|d/a|<0.2), partial dominant (0.2≤|d/a|

<0.8), dominant (0.8≤|d/a|<1.2), and over-dominant (|d/a|≥1.2)

(Stuber et al., 1987). The mid-parental and higher-parental

heterosis in percentages were ranged from –0.92% to 46.28% and

-15.04% to 45.54%, respectively (Supplementary Figure 2). The

average mid-parental and higher-parental heterosis were 24.40%

and 17.15%, respectively. Among the 10 QTLs detected by

combined mapping, 2 were additive, 3 partial dominant, 3

dominant, and 2 over-dominant. Three of the five dominant and

over-dominant QTLs had positive dominant effects, leading to

moderate heterosis on EL in the IF2 population.
Power analysis and mapping results for
simulation experiment I

Under the null-QTL model, the threshold LOD scores for

different mapping approaches were determined and given in

Supplementary Table 6. Detection power of each pre-defined

QTL was shown in Figure 2, and the average power across all

QTLs was shown in Supplementary Figure 3A. Detection power

depends on the value of a-d in population IB1, and on the value of a

+d in population IB2 (Table 1). Additive effects of QTL1 and QTL2

are equal to 0, and thus a-d and a+d are equal by absolute values;

dominant effect of QTL6 is equal to 0, and thus a-d and a+d have

same value. In other words, genetic variance of QTL1 was the same

in populations IB1 and IB2. So were QTL2 and QTL6. Therefore,

independent mappings IB1 and IB2 achieved similar detection

power for QTL1, QTL2 and QTL6. For QTL3, QTL4 and QTL5,

IB1 achieved much higher detection power than did IB2, as the
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additive and dominant effects were at different directions, making

a-d much larger than a+d, and genetic variance in population IB1
larger than that in IB2. On the contrary, detection power from IB2

was much higher than that from IB1 for QTL7, QTL8 and QTL9, as

the additive and dominant effects were at the same direction,

making a+d much larger than a-d, and genetic variance in

population IB2 larger than that in IB1 (Table 4; Figure 2).

Combined mapping IBL had similar or higher powers and lower

FDR than did IBC, followed by independent mappings IB1 and IB2

(Figure 2). The average detection power from IBL was also higher

than that from IBC, followed by IB1 and IB2 (Supplementary

Figure 3A). Combined mapping IFL had higher powers than did

IF2 for five QTLs, i.e., QTL4, QTL5, QTL6, QTL7 and QTL8. FDR

from IFL was 2.9% lower than that from IF2 (Figure 2). The average

detection power from IFL was 61.4%, which was 6.5% higher than

that from IF2 (Supplementary Figure 3A). Combined mapping IBC

achieved higher detection power and lower FDR than did IFL

except for QTL6 and QTL7 (Figure 2). The average power from

IBC was 76.3%, which was 14.9% higher than that from IFL

(Supplementary Figure 3A).

Combined mapping BFL had higher powers than did IBF for six

QTLs, i.e., QTL4, QTL5, QTL6, QTL7, QTL8 and QTL9. FDR from

BFL was 0.86% higher than that from IBF (Figure 2). The average

detection power from BFL was 8.2% higher than that from IBF

(Supplementary Figure 3A). Both IBF and BFL performed similarly

or better than did IBC, IFL and IBL for QTL3 and QTL9 (Figure 2).

Average power from IBF was 10.3% higher than that from IFL.

Average power from BFL was 3.7% and 18.5% higher than that from

IBC and IFL (Supplementary Figure 3A).

Deviation between the estimated and predefined true positions,

additive and dominant effects for the nine QTLs was given in

Supplementary Table 7, averaged from the 1000 simulation runs.

IB2 and IBL each achieved the highest accuracy on estimated

positions for two QTLs; and IB1, IF2, IBC, IBF and BFL each

achieved the highest accuracy for one QTL. The average deviation

between the estimated and predefined positions from IB2 was the

smallest, followed by IBL and IBC. Difference between the three

approaches was minor. Additive and dominant effects cannot be

separated by IB1 and IB2. IBC and IBL achieved the lowest

deviations on estimated additive effects for four and three QTLs,

respectively; IF2 and IFL each achieved the lowest bias on estimated

additive effects for one QTL. IF2 and IBC performed the best on

estimated dominant effects for four and three QTLs, respectively;

IBF and BFL each achieved the lowest deviations on estimated

dominant effect for one QTL. Average deviations from IBC on

additive and dominant effects were the smallest among all mapping

approaches (Supplementary Table 7).
Power analysis and mapping results for
simulation experiment II

The threshold LOD scores applied in simulation II were given in

Supplementary Table 6 for different mapping approaches. Seven

QTLs detected in the maize population IF2 (Table 5) were used as

the pre-defined QTLs. Detection powers were shown in Figure 3,
FIGURE 2

QTL detection power from individual and combined mappings in
simulation experiment I.
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and the average power across all QTLs from each mapping

approach was provided in Supplementary Figure 3B. Independent

mapping IB1 achieved much higher detection power than IB2 for

qEL1.1, as qEL1.1 was a dominant QTL and its additive and

dominant effects were at different directions. On the contrary,

detection power from IB2 was much higher than that from IB1

for qEL2, qEL4, qEL7.1 and qEL8, as these QTLs were partial

dominant or over-dominant, and their additive and dominant

effects were at the same direction. Difference of powers between

IB1 and IB2 was smaller for qEL5.2 and qEL5.3 than that for the

other QTLs, both of which were additive QTLs, resulting in similar

values between a+d and a-d (Table 5; Figure 3).

Combined mapping IBL achieved higher power and lower FDR

than IBC. IBC achieved higher power than did IB1 and IB2 for four

QTLs, and the FDR from IBC was similar or lower than that from

IB1 and IB2 (Figure 3). The average power from combined mapping

IBL was also higher than that from IBC, followed by IB1 and IB2

(Supplementary Figure 3B). Detection power from combined

mapping IFL was higher than that from IF2, except for qEL4, and

FDR from IFL was 0.27% lower than that from IF2 (Figure 3).

Average power from IFL was 14.1% higher than that from IF2

(Supplementary Figure 3B). IBC achieved higher power than did

IFL for qEL1.1, qEL2 and qEL4. FDR from IBC was 8.3% lower than

that from IFL (Figure 3). Average power from IBC was 8.7% higher

than that from IFL (Supplementary Figure 3B).

Combined mapping BFL had higher power for six QTLs than

did IBF, but FDR from BFL was 5.12% higher than that from IBF

(Figure 3). Average power from BFL was 17.4% higher than that

from IBF (Supplementary Figure 3B). For each QTL, IBF and BFL

had lower detection power than did IBC, IFL or IBL (Figure 3). But

the average power of BFL was 8.6% and 17.3% higher than that from

IBC and IFL, respectively (Supplementary Figure 3B). When three

genotypes are included in mapping populations, detection powers

of different QTLs can be hardly compared by their additive and

dominant effects. In this case, genetic variance caused by each QTL

is more useful. It has been properly used to quantify the effect of

various segregation distortions on QTL mapping in F2 populations

(Zhang et al., 2010). In Figure 3, different detection powers observed
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from different QTLs and mapping populations can be explained by

genetic variance as well. Taking qEL1.1 as an example, its genetic

variance was the smallest in population IB2, followed by IF2 and IB1.

Its detection power was also the lowest by mapping IB2, followed by

IF2 and IB1 (Supplementary Table 4).

Supplementary Table 8 showed the deviation between the

estimated and pre-defined QTL positions, additive and dominant

effects in simulation II, averaged from the 1000 simulation runs.

Combined mapping IFL had the highest accuracy on estimated

positions for four QTLs; IB1 and IBL each achieved the highest

accuracy for one and two QTLs. Average deviation between the

estimated and predefined positions was the smallest from IBL,

followed by IBC. IBC and IFL each performed the best on

estimated additive effects for two QTLs; IF2, IBF and BFL each

achieved the highest accuracy on estimated additive effect for one

QTL. Average deviation of the estimated additive effect from IBC

was 0.0592, which was the smallest among all mapping approaches.

IBL and IBF each achieved the lowest bias on estimated dominant

effects for two and three QTLs, respectively; IF2 and IBC each

achieved the smallest deviation on estimated dominant effect for

one QTL. Average deviation on estimated dominant effect from IF2

was the smallest, followed by IBL and IBF (Supplementary Table 8).
Discussion

Transformations after the phenotypic
values are adjusted

In combined approaches as shown in this study, transformations

were conducted after the phenotypic values were adjusted. Adjustment

made by Eq. 6 not only assures the background genetic variations out

of the current scanning interval are controlled, but also leaves solely the

one-locus variation in the adjusted phenotypes. As shown in Tables 1

and 2, transformations given in Eqs. 1 to 4 are able to separate additive

and dominant effects efficiently under the one-locus model. However, it

should be noted that the theoretical results given in Tables 1 and 2

cannot be simply extended to two or more QTLs. During our research,
FIGURE 3

QTL detection power from individual and combined mappings in simulation experiment II.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1157778
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huo et al. 10.3389/fpls.2023.1157778
we have conducted the transformations first, and then used the

transformed data as phenotypic values in QTL mapping. Reduced

detection powers were observed, and the estimation of additive and

dominant effects were more biased. In fact, when two QTLs are

considered, additive, dominant and epistatic effects are confounded

in the transformed values in populations IBC and IF2. On the other

aspect, this may indicate that the transformations used to separate

additive and dominant effects may no longer be suitable for mapping

epistatic QTLs. The combined approach and algorithm for epistasis

mapping through the two-dimensional genomic scanning needs

further investigations.
Properties and advantages of the
combined mapping approach

Both simulation experiments indicated that the combined

approaches IBL and IBC had higher detection powers and lower

FDR than did individual population mapping IB1 and IB2.

However, mapping efficiency depends on the populations used in

combined mapping. IBL had higher detection power than did IBC

for all pre-defined QTLs (Figures 2, 3; Supplementary Figure 3).

Compared with IF2, IFL had higher detection power for additive,

partial dominant and dominant QTLs. Detection power from IBC

was significantly higher than that from IFL for QTLs with dominant

or over-dominant effects and QTLs without additive effects, which

are more important in heterosis studies (Figures 2, 3). BFL

performed better than did IBF for additive, partial dominant and

dominant QTLs (Figures 2, 3). IBL and IBC performed better on

estimated additive and dominant effects than did the other methods

(Supplementary Tables 7, 8).

Combined mapping showed greater advantages in IBC

populations than did in IF2, due to the present of fewer

genotypes. More genotypes and genetic effects associated with IF2
may complicate the building of genotype to phenotype model, and

then affect the efficiency of background control in QTL mapping. In

addition, the IBC populations are generated by backcrossing of PIL

with the two original parents. One line in PIL corresponds to exact

one individual in either IB1 or IB2. However, sampling of pure lines

in PIL is needed to generate IF2, which may cause the random drift

in gene frequencies in IF2. For this reason, IBC population may be

considered firstly when using the immortalized heterozygous

populations in genetic study. In addition, to reduce the random

effects in the combined analysis, different populations should be

grown under the same set of environmental conditions.
Simultaneous use of heterozygous and
homozygous populations to enhance our
understanding of heterosis

Investigating the genetic mechanism of heterosis is of great

importance in hybrid breeding and agriculture production. The

detection of heterotic loci and estimation of heterotic effects require

genetic populations containing both heterozygous and homozygous

genotypes. IBC and IF2 are considered as ideal populations for the
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comprehensive dissection of heterosis. Up to now, there are few

complete collections of IBC and IF2 populations which are derived

from the same two homozygous parents. Li et al. (2018a); Li et al.

(2018b) present such an example in cotton using two elite upland

cotton germplasms HS46 and MARCABUCAG8US-1-88.

Simulations in this study indicated that the detection power from

IBF was higher than that from IF2, and the detection power from

BFL was higher than that from IFL (Supplementary Figure 3). In

other words, compared with using IF2 solely, the combined

mapping using populations IBC and IF2 can improve the QTL

detection power. Li et al. (2018a) also indicated that the

combination of IBC and IF2 can cover more heterozygous loci

and identify more QTLs than individual populations.

The combined QTL mapping approach proposed in this study has

been implemented in integrated software package called GAHP (Zhang

et al., 2022b). There are four functionalities in GAHP V1.0, i.e., (1)

MHP: drawing of genetic linkage map; (2) VHP: ANOVA and

estimation of heritability on phenotypic observations; (3) QHP: QTL

mapping with bi-parental immortalized heterozygous populations; (4)

SHP: simulation of bi-parental immortalized populations and power

analysis of QTL detection.With the integrated software package GAHP

(Zhang et al., 2022b), we trust that the mapping approach provided in

this study will facilitate the efficient use of immortalized heterozygous

populations in genetic studies. It will enhance the investigation on the

molecular mechanism of heterosis, and finally contribute to the

improved efficiency of hybrid breeding programs in plants.
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