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Programmed cell death (PCD) refers to cell death in a manner that depends on

specific genes encoding signals or activities. PCD includes apoptosis, pyroptosis,

autophagy and necrosis (programmed necrosis). Among these mechanisms,

pyroptosis is mediated by the gasdermin family and is accompanied by

inflammatory and immune responses. When pathogens or other danger signals

are detected, cytokine action and inflammasomes (cytoplasmic multiprotein

complexes) lead to pyroptosis. The relationship between pyroptosis and cancer

is complex and the effect of pyroptosis on cancer varies in different tissue and

genetic backgrounds. On the one hand, pyroptosis can inhibit tumorigenesis and

progression; on the other hand, pyroptosis, as a pro-inflammatory death, can

promote tumor growth by creating a microenvironment suitable for tumor cell

growth. Indeed, the NLRP3 inflammasome is known to mediate pyroptosis in

digestive system tumors, such as gastric cancer, pancreatic ductal

adenocarcinoma, gallbladder cancer, oral squamous cell carcinoma, esophageal

squamous cell carcinoma, in which a pyroptosis-induced cellular inflammatory

response inhibits tumor development. The same process occurs in hepatocellular

carcinoma and some colorectal cancers. The current review summarizes

mechanisms and pathways of pyroptosis, outlining the involvement of NLRP3

inflammasome-mediated pyroptosis in digestive system tumors.
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1 Introduction

Cancer has become a major cause of mortality in an aging world population,

necessitating clinical and basic research to aid treatment and survival rates. The

programmed cell death (PCD) model of pyroptosis leads to a release of intracellular

pro-inflammatory mediators, causing inflammation and promoting tumor progression, a

process known to involve the NLRP3 inflammasome. The four pathways of pyroptosis and

the role of NLRP3 inflammasome-mediated pyroptosis in digestive system tumors are
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reviewed below with the intention of aiding progress in the

treatment of digestive tract-related tumors. Cells may die as a

result of necrosis or PCD (1–8). PCD refers to spontaneous cell

death in response to the activation of specific genes and includes

apoptosis, pyroptosis, autophagy and necroptosis (1, 9). Pyroptosis

involves the formation of cell membrane pores mediated by

gasdermin proteins causing ion transport, accompanied by

inflammation and an immune response (1). Ion imbalance leads

to cell swelling, lysis and release of pro-inflammatory factors,

including interleukin (IL)-1b, IL-18, adenosine triphosphate

(ATP) and high mobility group box 1 (HMGB1) protein (10).

Pyroptosis is considered to have ambiguous roles in tumorigenesis,

inhibiting the growth of some tumors and stimulating a pro-

inflammatory microenvironment that promotes the growth of

other tumor-types (1, 11–13). The process has attracted attention

for its potential as regards anti-tumor therapy. Four pyroptosis-

inducing pathways have been described: the classical caspase-1-

dependent, the non-canonical caspase-4/5/11-dependent, the

apoptosis-pyroptosis transition involving high expression of

Gasdermin-E (GSDME) and the granzyme-induced pathways (1,

9, 10). Chemotherapeutic drugs which activate caspase-3 to cleave

GSDME, induce a switch from apoptosis to pyroptosis which causes

cell death (14). Moreover, granzyme B induces pyroptosis via

GSDME cleavage (15) and granzyme A activates GSDMB pore-

forming and pyroptosis (16). The most studied remains the classical

pyroptosis pathway (1), involving an initiation and an activation

signal (17), in which the inflammasome plays a key role.
2 Overview of NLRP3 inflammasome

2.1 Composition and properties of the
NLRP3 inflammasome

The cytosolic inflammasome is a multiprotein signaling complex,

comprising pattern recognition receptor (PRR), apoptosis-associated

speck-like protein containing a CARD (ASC) and pro-Caspase-1 (18).

PRRs differ by subcellular localization (19) with Toll-like receptor

(TLR) and C-type lectin (CLR), which recognize extracellular damage-

associated molecular patterns (DAMPs) and pathogen-associated

molecular patterns (PAMPs) that are located in the plasma

membrane and endosome. By contrast, RIG-I-like receptor (RLR),

absent in melanoma 2 (AIM2), AIM2-like receptor (ALR), nucleotide-

binding and oligomerization (NOD), NOD-domain like receptor

(NLR) and cytosolic sensor cyclic GMP-AMP (cGAMP) synthase

(cGAS) influence intracellular compartmentalization, including

retinoic acid-inducible genes (19, 20). The much-studied NLRP3

inflammasome participates in the innate immune system (21) and is

expressed by antigen presenting cells (APC) and inflammation-

activated cells, including macrophages, dendritic cells (dendritic cells,

DC), neutrophils and monocytes (22). The NLRP3 inflammasome

consists of a sensor (NLRP3), an adaptor (ASC) and an effector

(caspase-1). NLRP3 is a tripartite protein that contains an amino-

terminal pyrin domain (PYD), a central NACHT domain and a

carboxy-terminal leucine-rich repeat (LRR) domain. The NACHT
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domain has ATPase activity that is vital for NLRP3 self-association

and function (23), whereas the LRR domain is thought to induce

autoinhibition by folding back onto the NACHT domain. The adaptor

ASC has two protein interaction domains, an N-terminal PYD and a

C-terminal caspase-recruitment domain (CARD). Full-length caspase-

1 has an N-terminal CARD, a central large catalytic domain (p20) and

a C-terminal small catalytic subunit domain (p10). Upon stimulation,

NLRP3 oligomerizes through homotypic interactions between

NACHT domains (Figure 1) (24, 25).
2.2 Activation and regulation of the NLRP3
inflammasome

NLRP3 is activated by a sequence of two signals (Figure 2). 1)

Inflammatory stimuli produced by TLR ligands or endogenous

molecules induce NF-kB expression (19) and reactive oxygen

species (ROS), hypoxia, metabolites, oxidized low density

lipoprotein (oxLDL), amyloid and complement may all be activated

during non-pathogen responsive sterile inflammatory diseases (24,

26). 2) PAMPs and DAMPs trigger potassium (K+) efflux, increased

calcium (Ca2+) flux, lysosomal damage or ROS production (26). The

activated NLRP3 undergoes a conformational change to expose the

NACHT domain and promote oligomerization (19) which allows the

binding of the PYD domain to ASC (PYCARD) (17). Pro-caspase-1 is

recruited and cleaved by the NLRP3-ASC complex in a CARD-

CARD homotypic interaction, resulting in the activated NLRP3

inflammasome, consisting of a NLRP3-ASC-Caspase-1 complex

(19). The NLRP3 inflammasome then mediates pyroptosis by

cleaving gasdermin proteins (6), including GSDMA, GSDMB,

GSDMC, GSDMD and GSDME/DFNA5 (18), which differ in their

mechanisms of pyroptosis induction. GSDMD is the main substrate

of NLRP3 inflammasome-induced pyroptosis, although GSDME

regulates the granzyme pathway or Caspase-3 (6). Other

gasdermins have been linked to pyroptosis but little is known

about NLRP3 interactions. GSDMD has an N-terminal pore-

forming domain and a C-terminal auto-inhibitory domain (27). On

activation by caspase-1, cleavage separates the N- and C-terminal

domains disabling auto-inhibition and activating pore-formation (28,

29). Caspase-1 also cleaves and activates pro-IL-1b and pro-IL-18

which may be released through the GSDMD-N-terminal domain

channel, triggering an inflammatory response (29).
2.3 NLRP3 activation in the tumor
microenvironment

TME is closely related to tumorigenesis, and inflammation and

persistent infection may lead to various human malignancies.

Studies have demonstrated that NLRP3 inflammasome

polymorphisms are associated with different malignancies such as

colon cancer and melanoma (30). NLRP3 inflammasome can be

activated by microbial cell wall components and toxins (31). In

addition, NLRP3 inflammasomes are also proficient in sensing

stress or endogenous danger signals, including extracellular ATP

(32), extracellular glucose (33), crystalloids, reactive oxidants (ROS)
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and amyloid b fibrils (34). Cellular phagocytosis of amyloid b fibrils

causes destabilization of the lysosome, causing release of contents

(histone protease) and ROS, which initiates activation of NLRP3

(35). Recent studies have found that b2m accumulated in multiple

myeloma (MM) is taken up by macrophages, leading to the

aggregation of b-fibers in lysosomes, causing lysosomal rupture

and activation of the NLRP3 inflammasome (36).
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3 NLRP3 inflammasome and digestive
system tumors
Extracellular inflammatory responses induced by pyroptosis

lead to the removal of dead or damaged cells but may also

aggravate the pre-existing disease. Both of these effects influence
FIGURE 1

NLRP3 inflammasome complex. The NLRP3 inflammasome complex has a central NACHT domain flanked by a C-terminal leucine-rich repeat (LRR)
and an N-terminal pyrin domain (PYD). NLRP3 activation allows interaction with ASC. ASC further interacts with pro-caspase-1.
FIGURE 2

Simplified mechanisms for the canonical NLRP3- inflammasome activation. The formation of inflammasome requires two key steps: NLRP3 initiation
signal and activation signal. The initiation signal is triggered by Toll-like receptors (TLRs) and cytokine recognition receptors that recognize PAMPs/
DAMPs and cytokines (including IL1, TNF). These signals induce the transcription of NLRP3, pro-IL-1b, pro-IL-18 and pro-Caspase1 through NF-kB.
Secondary signals are triggered by a wide range of stimuli, including K+ efflux, Ca2+ influx, phagocytosis of microbial and particulate matter (leading
to destabilization/rupture and release of lysosomal cathepsins and reactive oxygen species (ROS)), and Mitochondrial dysfunction. Then, a multi-
protein complex composed of NOD-like receptor protein, ASC and pro-caspase-1 is activated to activate the NLRP3 inflammasome, triggering the
release of IL-1b and IL-18 and cell pyroptosis.
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the impact of NLRP3 inflammasome-induced pyroptosis

on tumors.
3.1 Oral squamous cell carcinoma

Oral squamous cell carcinoma (OSCC) accounts for over 90%

of oral cancers (37) and has a poor prognosis (38, 39). Tumor-

associated chronic inflammation has been described as the 7th

biological feature of malignancy (40). Chronic inflammation

influences tumorigenesis, development, migration and invasion

through the NF-kB-IL-6-STAT pathway but also recruits immune

and inflammatory cells into tumor tissues. With tumor progression,

immune and inflammatory cells switch from immune surveillance

and tumor suppression to tumor promotion (41). Abnormal

activation of the NLRP3 inflammasome has been associated with

various chronic inflammation (19) and is known to be

overexpressed in OSCC cells and tissues, allowing it to be

associated with tumor stage and lymph node metastasis (42, 43).

Indeed, NLRP3 knockdown inhibited OSCC proliferation,

migration and invasion (44). IL-6 is a multifunctional immune

and inflammatory molecule (45) which is overexpressed in cancer.

IL-6 activates NLRP3, causing secretion of IL-1b/IL-18 and

promoting OSCC cell proliferation, migration and invasion.

Indeed, NLRP3 silencing prevented the IL-6-mediated

proliferation and NLRP3 inflammasome activation in OSCC cells.

In addition, the NLRP3 pathway can participate in the IL-6-

mediated OSCC process as a downstream target of Sox4 (46).
3.2 Esophageal squamous cell carcinoma

Esophageal cancer (EC) has a high incidence with distinct

geographical demarcation (47) which makes esophageal

squamous cel l carc inoma (ESCC) the most common

pathological form of EC in China and other parts of Asia (48).

Epidemiological studies have linked the environmental

carcinogens, nitrosamines, to EC and gastric cancer (49, 50).

Nitrosamines trigger an inflammatory response and participate

in the malignant transformation of cells. Nitrosamine exposure of

esophageal epithelial Het-1A cells caused ROS-production to

trigger pyroptosis and the inflammatory response via the

NLRP3/caspase-1/GSDMD canonical pathway (51). NLRP3

inflammasome levels have been shown to be higher in ESCC

tumor tissues than in noncancerous tissues and to correlate

positively with the Ki-67 proliferation index (52). NLRP3

protein expression was also shown to correlate with tumor node

metastasis (TNM) and T stage but not with lymph node or

metastasis status, gender or age. Patients with higher NLRP3

expression were suggested to have a more malignant clinical

phenotype. In addition, knockdown or overexpression of NLRP3

in ESCC cell lines had the respective effects of abrogation or

promotion of cell migration and invasion. Thus, NLRP3

inflammasome activity appears to contribute to ESCC

development and progression (52).
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3.3 Gastric cancer

Gastric cancer is a high-incidence malignant tumor (53) related

to factors such as Helicobacter pylori, smoking and drinking.

Chronic inflammation may be a cause of gastric cancer (54),

through microenvironmental and metabolic changes which

promote proliferation, invasion and migration of tumor cells (55).

Helicobacter pylori (Hp) has been implicated in many digestive

system diseases, such as chronic and atrophic gastritis and gastric

ulcer (56), and is a susceptibility factor for gastric cancer (57, 58).

HP infection is considered the strongest single risk factor for gastric

cancer and NLRP3 may be involved via the production of IL-1b
(59). The pro-inflammatory IL-1b has been shown to be involved in

gastric mucosal atrophy, intestinal metaplasia, dysplasia and other

pathological changes of gastric mucosa (60) and induces gastric

mucosal atrophy by interfering with the Sonic hedgehog (SHH)

pathway in parietal cells (61). Rats with the high gastric mucosal

expression of IL-1b had a greater incidence of gastric mucosal

dysplasia and inflammatory cell infiltration, even in the absence of

HP infection than those with low expression (62). In HP-induced

gastric cancer, NOD1 protein and its inflammatory effects were

significantly increased (63). The NLRP3 inflammasome regulates

cyclin-D1, inducing IL-1b production to enhance differentiation of

gastric cancer cells. The IL-1b-dependent activation of NF-kB
stimulated the c-Jun N-terminal kinase (JNK) signaling pathway,

leading to tumor proliferation, invasion and progression (11). Thus,

the NLRP3 inflammasome promotes gastric cancer and its

downregulation by the activity of the aryl hydrocarbon receptor

(AhR), dopamine receptor D1 (DRD1) and G protein-coupled bile

acid receptor 1, (GPBAR1) may limit the occurrence of pyroptosis,

thereby affecting cancer progression (19).
3.4 Liver cancer

Primary liver cancer (PLC) refers to cancer that occurs

in hepatocytes or in trahepat i c cholang iocarc inoma,

including hepatocellular carcinoma (HCC), intrahepatic

cholangiocarcinoma (ICC), and mixed types of both (64, 65).

Usually, HCC develops through three processes, hepatitis,

cirrhosis and primary liver cancer (66–70). Pyroptosis can be

involved in precancerous and malignant development of primary

liver cancer. Hepatic fibrosis and cirrhosis are the initiating factors

for the development of HCC, and to some extent, cirrhosis is the

precancerous stage of PLC. Liver cells are mainly composed of

hepatocytes, hepatic stellate cells (HSC), bile duct epithelial cells,

natural killer cells, and Kupffer cells (71). HSC are the main type of

hepatic fibrotic cells, and HSC proliferation and activation are the

key steps in liver fibrosis. Research shows that when HSC are

stimulated by mediators released from blast cells or inflammatory

cells, inflammasome induce pyroptosis by activating caspase-1 and

releasing pro-inflammatory factors IL-1b and IL-18, which in turn

drive the progression of liver fibrosis (72). NLRP3 inflammasome

may play a direct role in HSC activation and liver fibrosis. In NLRP3

overexpressing HCC mice, it was found that the mice had shorter
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survival time, poor growth, neutrophil infiltration and hepatic

stellate cell activation, severe hepatitis response, and significant

liver fibrosis (73). In vitro experiments have shown that

extracellular ATP can activate HSC NLRP3 via the purinoceptor

P2X ligand-gated cation channel 7 (P2X7) and promote the release

of fibrotic markers such as a-SMA and type I collagen leading to

liver fibrosis. P2X7R-mediated NLRP3 activation involved in IL-1b
production by hepatic stellate cells may be associated with

extracellular matrix deposition, suggesting that blocking the

P2X7R-NLRP3 axis may be a potential therapeutic target for liver

fibrosis (74). Transforming growth factor-b1 (TGF-b1) is a key

mediator of tissue fibrosis and dysregulation of the TGF-b1
pathway is an important pathogenic mechanism of liver fibrosis

(75). Activation of HSC leads to TGF-b1 production, which in turn

binds to transforming growth factor b (TGFb), leading to TGFb
pathway activation and HSC activation, thus promoting the process

of liver fibrosis (76, 77). Aldosterone can induce HSC activation and

liver fibrosis in mice by promoting NLRP3 assembly and expression

(78). The above studies suggest that pyroptosis-mediated

inflammation can induce HSC activation and promote liver fibrosis.

In addition, it has been shown that angiotensin Ang II induces

caspase-1-mediated hepatocyte pyroptosis by upregulating the

levels of reactive oxygen species and NOX4 protein in

hepatocytes and promoting the expression of NLRP3

inflammasome secretion axis-related proteins (NLRP3, ASC,

Caspase-1, IL-1b). This suggests that hepatocyte activation by

NLRP3 leads to a significant increase in cysteinase activity, which

in turn induces hepatocyte pyroptosis. Therefore, caspase inhibitors

can be used to inhibit hepatocyte pyroptosis to suppress the

progression of l iver fibrosis (73, 79). In addition to

inflammasome, IL-1b and gasdermin proteins are also important

molecules that cause cirrhosis and liver fibrosis. IL-1b can induce

the conversion of microvascular endothelial cells into

myofibroblasts, leading to the proliferation of collagenous tissue.

It can also directly activate hepatic stellate cells, promote the

expression of inflammatory factors such as TNF-a and stimulate

the inflammatory cascade response, gradually developing liver

fibrosis and even cirrhosis. TGF-b1 is one of the important

pathways that contribute to liver fibrosis (75). It was found that

TGF-b1 can inhibit caspase-1 expression and suppress IL-1b
release, but this pathway has no significant effect on IL-18. The

above data suggest that during the progression of PLC, pyroptosis

induces fibrosis in the liver tissue, which leads to the development

of PLC.

The function of pyroptosis is different in different stages of

cancer development and progression. In the precancerous stage of

liver fibrosis and cirrhosis, the accumulation of inflammasome and

inflammatory factors will intensify the transformation of cirrhosis

to PLC; while in the tumor stage, when cancer cells are formed,

pyroptosis is inhibited, forming an intrinsic malignant

microenvironment that blocks cancer cell death and accelerates

the progression of PLC to the malignant level. The expression of

estrogen receptor b (ERb) and NLRP3 were reported to be

significantly downregulated in liver tissues of patients with HCC,

and their expression levels were positively correlated; estrogen can

inhibit HCC cell proliferation and metastasis by activating NLRP3
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through the ERb/mitogen-activated protein kinase (MAPK)

pathway (80, 81). Lin et al. (82) found that the levels of

interferon-inducible nucleoprotein 16 (IFI16) were lower in HCC

tissues than in normal tissues. Overexpression of IFI16 reduced cell

viability, which led to significant inhibition of tumor growth and

reduction of tumor size in HCC cells. Meanwhile, overexpression of

IFI16 could activate inflammasome through caspase-1 and thus

increase the levels of IL-1b and IL-18. Caspase-1 inhibitor (Ac-

YVAD-CMK) could effectively inhibit the tumor suppressive effect

of IFI16, thus it can be speculated that the tumor suppressive effect

of IFI16 may be closely related to caspase-1-mediated pyroptosis.

FUN14 structural domain protein 1 (FUNDC1) is a characteristic

mitogenic receptor in most human HCC, and knockdown of

FUNDC1 activates NLRP3 inflammasome to promote

hepatocarcinogenesis during diethylnitrosamine (DEN)-induced

hepatocarcinoma in mice (83). High mobility group protein 1

(HMGB1), a nuclear damage-associated molecule released under

hypoxic stress, activates caspase-1 to promote HCC cell invasion

and metastasis (84). Hepatitis C virus (HCV) also affects HCC

scorching through its effect on NLRP3 inflammasome (85). In

conclusion, the activation of NLRP3, a key molecule in

pyroptosis, is closely related to the pathogenesis of HCC, and

may provide a new stra tegy for HCC treatment by

regulating pyroptosis.
3.5 Gallbladder cancer

Gallbladder cancer (GBC) is a highly malignant tumor, usually

an adenocarcinoma, of the biliary system with a median survival

time of only 6 months (86–88). Golgi phosphoprotein 3 (GOLPH3)

has been shown to promote tumor progression in a variety of

gastrointestinal malignancies. GOLPH3 and NLRP3 were shown to

be highly upregulated in clinical GBC samples and levels of each

were positively correlated with one another and with Ki-67

expression (89). GOLPH3 may be the upstream factor of NLRP3.

Excessive activation of GOLPH3 leads to Golgi fragmentation,

which is closely related to NLRP3 activation (85, 90, 91). In

addition, PtdIns4p is required when NLRP3 is activated, of

which, the free amount of PtdIns4p is associated with GOLPH3

(85, 92, 93). Moreover, there is evidence that mTOR can affect the

activation of NLRP3 inflammasomes by regulating reactive oxygen

species, and the activation of mTOR is also largely regulated by

GOLPH3 (94, 95). Additionally, GOLPH3 and NLRP3 have been

reported to both be regulated by the same upstream protein PD2

(95, 96). Further studies confirmed that GOLPH3 enhanced GBC

cell proliferation was associated with the promotion of NLRP3,

Caspase-1 p10, IL-1b expression and pyroptosis, suggesting that

GOLPH3 expression could play a role in promoting the further

development of GBC by promoting cellular pyroptosis (89). In

addition, it was found that the NLRP3 inflammasome could

enhance phosphorylation of Akt, ERK1/2, and CREB to promote

adenocarcinoma proliferation by activating caspase-1 and

producing mature IL-1b and IL18. It is suggested that NLRP3

inflammasome-induced cellular pyroptosis may play a role in

promoting adenocarcinoma growth (97).
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3.6 Pancreatic ductal adenocarcinoma

Pancreatic ductal adenocarcinoma (PDA) is one of the most

common and aggressive malignancies worldwide (98). PDA

morbidity and mortality currently show a rapid upward trend due

to changes in dietary and other lifestyle factors (99). Surgery is the

only treatment option for localized PDA (100) but ~80% of patients

have inoperable cancers due to metastasis at the usually advanced

stage on diagnosis (101). The incidence of complications following

radical resection is high (102, 103) but few alternative treatments

are effective due to resistance (104). In addition, conventional

therapy may suppress immune function and activate

inflammation (105–108) in patients who already exhibit an

aggressive inflammatory and immunosuppressive state (109).

PDA lung metastasis was found to be influenced by the tumor

microenvironment (TME) (110) and production of cytokines,

chemokines and growth factors by tumor-associated macrophages

(TAMs) resulting in an immunosuppressive TME which promoted

tumor progression and metastasis (111–113). Upregulation of

NLRP3 in PDA macrophages regulated TAM polarization and

immunogenic or tolerogenic CD4+ T cell differentiation and

CD8+ T cell activation. CD4+Th1 cells mediated a tumor

protective effect in a mouse PDA model and were strongly

associated with prolonged survival of human PDA patients (114).

By contrast, CD4+ Th2 cells promoted mouse PDA progression and

Th2 cell infiltration was strongly associated with reduced survival of

human PDA patients (114–116). CD4+CD25+Foxp3+ regulatory T

cells (T reg cells) similarly promoted tumor immune escape and

CD4+ Th17 cells promoted PDA epithelial cell proliferation (117,

118). Deletion of ASC or caspase-1 or pharmacological NLRP3

inhibition reversed the tolerogenic effects of NLRP3+/+ TAMs but

did not enhance the immunogenic function of NLRP3-/- TAMs.

Thus, NLRP3 promoted PDA development (119).

NLRP3-stimulated IL1-b-production has been shown to

influence PDA development and progression in human patients

and in a mouse model. Elevated IL-1b has been associated with

pancreatitis, a recognized risk factor for PDA (120) and high

intratumoral and serum IL-1b has been associated with poorer

overall survival and increased chemoresistance in PDA patients

(121–123). Adipocyte-secreted IL-1b promoted obesity-induced

pancreatic carcinogenesis and drug resistance by recruiting

tumor-associated neutrophils in a mouse PDA model (124). IL-1b
production by PDA-associated myeloid cells may also support

tumor progression by promoting immune tolerance (116, 119).

Overall, the heterotypic distribution of IL-1b expression in PDA

seems to be involved in disease pathogenesis.
3.7 Colorectal cancer

Colorectal cancer (CRC) is common and has high morbidity

and mortality (125). Genetic predisposition and recurrent

inflammatory bowel disease are two major independent risk

factors and 80% of colon cancers show mutation of the tumor
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suppressor colon adenomatous polyposis coli (APC) gene (47).

Genes encoding tumor necrosis factor-alpha-inducible protein 3

(TNFAIP3), NLRP3 and NF-kB are prognostic markers for CRC

(126). TNFAIP3 is a CRC tumor suppressor but NLRP3 level is

associated with poorer survival in patients with aggressive CRC and

chronic intestinal inflammation, such as IBD, is considered a risk

factor for the development of colorectal cancer (127). Nlrp3-/- mice

developed atypical hyperplasia and tumor formation due to elevated

inflammatory responses and disruption of the intestinal epithelial

barrier in response to CRC induction by (AOM)/dextransodium

sulfate (DSS) and similar results were observed in ASC and caspase-

1 deficient mice. Thus, the NLRP3 inflammasome is considered

instrumental in resistance to colitis-associated tumorigenesis (128,

129). Reduction of intestinal IL-18 levels in NLRP3 and caspase-1-

deficient mice exposed to AOM/DSS showed that recombinant IL-

18 prevented tumor development (129). In addition, AOM/DSS-

treated IL18-/- and IL18R1-/- mice were more prone to development

of intestinal polyps than wild-type mice (12). Therefore, NLRP3-

mediated IL-18 secretion promoted differentiation of intestinal

epithelial cells, maintained intestinal epithelial integrity and

reduced intestinal epithelial cell proliferation during colitis

remission, protecting cells from malignant transformation (130).

The NLRP3 inflammasome may also inhibit CRC metastasis and

proliferation by enhancing the IL-18-induced activity of NK cells

independently of INF-g, in addition to counteracting enterocolitis-

associated intestinal carcinogenesis. NLRP3-/- mice have an

increased risk of developing CRC liver metastases (131) and

caspase-1-deficient mice exhibited more severe tumorigenesis,

decreased STAT1 and IL-1b compared with the NLRP3-/- mouse

model (132).

Most studies suggest an inhibitory effect of NLRP3 on CRC.

However, DSS-induced colitis was attenuated in Nlrp3-/- mice and

ameliorated by caspase-1 inhibition. A local decrease in the

proinflammatory cytokines, IL-1b, TNF-a and IFN-g, may be

responsible (13). The cancer-promoting function of NLRP3 is

also apparent in the interaction of macrophages with tumor cells

which enhances CRC invasion and metastasis (133). The NLRP3

inflammasome has also been reported to be highly expressed in

mesenchymal-like colon cancer cells (134). During the epithelial-

mesenchymal transition (EMT), tumor necrosis factor-a (TNF-a)
and transforming growth factor-b1 (TGF-b1) act on NLRP3,

although ASC and cleaved caspase-1 do not seem to be involved

despite being upregulated in CRC epithelial cell-lines, HCT116 and

HT29, leading to cancer progression. Therefore, a necessary

condition for the EMT seems to be the expression, rather than

the activation, of the NLRP3 inflammasome (134). Overall, the role

of the NLRP3 inflammasome in the occurrence and development of

colorectal tumors remains controversial and further studies

are needed.

RAS mutations are the most common oncogenic mutations in

human cancers. The hallmark KRAS mutated cancers are

pancreatic cancer, colorectal cancer, lung adenocarcinoma and

urogenital tract cancer (135). KRAS is a commonly mutated

oncogene in CRC, occurring in approximately 40% of CRC cases;
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its mutation leads to constitutive activation of KRAS protein, which

acts as a molecular switch to continuously stimulate downstream

signaling pathways, including cell proliferation and survival, leading

to tumorigenesis (136, 137). It was found that in addition to the

direct translational effects generated by RAS/MEK/ERK signaling,

the inflammation-related effects of KRAS play an important role in

tumorigenesis. KrasG12D oncogene-driven myeloproliferation is

dependent on NLRP3 inflammasome activation (138). This work

revealed the existence of KRAS/RAC1/ROS/NLRP3/IL-1b pathway

in human myeloid leukemia. krasG12D-induced NLRP3 activation is

dependent on RAC1-mediated accumulation of ROS in myeloid

leukemia cells.
4 NLRP3 and natural killer cell

NK cells are important immune cells, and once activated, NK

cells perform cell lysis functions in different ways. First, they can

release lysis granules containing perforin and granzyme (139).

Then, death receptors such as Fas ligand (FasL) and tumor

necrosis factor-related apoptosis-inducing ligand (TRAIL) are also

contributors to NK cell-mediated cytotoxicity (140). In addition,

NK cells can recognize and induce antibody encapsulation and lysis

of target cells via CD16 (FcgRIIIa), a process known as antibody-

dependent cytotoxicity (ADCC) (141). In addition to direct

cytotoxicity, NK cells can regulate innate and adaptive immunity

by secreting a range of cytokines, growth factors and

chemokines (142).
4.1 Function of NK cells in GI cancers

NK cells can act as effector cells and respond to stimuli within a

few hours without pre-immunization. Currently, activation of NK

cells through the receptor NKG2D is the most well-defined

mechanism in tumor surveillance. The level of NKG2D

expression in gastric cancer was positively correlated with clinical

survival, and in vitro experiments confirmed the cytotoxicity of NK

cells on gastric cancer cell lines (143). In human pancreatic cancer,

NK cells recognize cancer stem cell (CSCs) markers such as CD133

and CD24 in an NKG2D-dependent manner, which is important

for exerting cytotoxic (144). NK cells can induce significant

apoptosis in the HCC cell line Hep3B through TRAIL/TRAIL

(tumor necrosis factor-related apoptosis-inducing ligand) receptor

interactions (145). The same mechanism is involved in the NK cell-

mediated inhibition of liver metastasis from CRC (146).
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In addition to this, NK cells can play an adjuvant function in GI

cancers. NK cells can act on other immune cells, such as dendritic

cells (DCs) (147), neutrophils (148), and T cells (149), by secreting

cytokines, resulting in adaptive immunity.
4.2 Role of NLRP3 on NK cells

Tumor cells, stromal cells and other types of immune cells in

the TME can influence the function of NK cells. ATP has a key role

in the energy metabolism of TME components and influences

cancer immunosurveillance. Increased levels of extracellular ATP

(eATP) trigger activation of the P2X7-NLRP3-inflammasome,

which drives macrophage pyroptosis, enhances maturation and

antigen-presentation of dendritic cells (DCs) and improves

cytotoxic function of NK cells (150). In a mouse CRC-liver

metastasis model, the NLRP3 inflammasome increases IL-18

secretion, promotes maturation of hepatic NK cells, increases

FasL expression, and Fas/FasL interaction can exert cytotoxicity

on tumor cells (131). The deletion of NLRP3 in human

hepatocellular carcinoma can cause upregulation of MICA/B

expression which interacts with the NKG2D receptor in NK-92

cells, resulting in cytotoxicity of NK cells (151). Activation of the

NLRP3 inflammasome can cause elevated IL-1b levels in TME. In

vivo, tumor-associated NLRP3/IL-1 signaling induces the expansion

of myeloid-derived suppressor cells (MDSCs), leading to reduced

NK cell activity (152).
5 Therapeutic targeting of NLRP3

The clinical relevance of the NLRP3 inflammasome in GI

cancers allows it to be an important molecular target. An

important future study is the understanding of the molecular

mechanisms of NLRP3 inflammasome activation and the

identification of effective NLRP3 inhibitors or inhibitory

pathways. Here, we list some inhibitors of NLRP3 that can

influence cancer progression (Table 1).

The diarylsulfonylurea compound MCC950 (originally

reported as CRID3/CP-456773) is the most potent and specific

NLRP3 inhibitor (153). Mechanistically, MCC950 interacts directly

with the Walker B motif within the NLRP3 NACHT structural

domain, thereby blocking ATP hydrolysis (154) and inducing the

transition of NLRP3 to an inactive conformation (155). In cancer

therapy, MCC950 improves T-cell function by reducing the number

of immunosuppressive cells, thereby inhibiting and retarding tumor
TABLE 1 List of NLRP3 inhibitors.

Inhibitor Mechanism Effective GI Cancer Type References

MCC950 Binds Walker B motif, NLRP3 NACHT, ATPase inhibitor DSS-induced experimental colitis in mice (153–157)

Compound 6 Binds NLRP3 NACHT domain, blocking ATPase activity and ASC oligomerization (158)

Fc11a-2 Targets NLRP3 inflammasome, inhibits cytokines release (159)

(Continued)
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growth (156). In addition, MCC950 was shown to effectively inhibit

IL-1b secretion and Caspase-1 activation in ulcerative colitis in

mice (157).

A variety of compounds have been shown to be effective in the

treatment of experimental colitis in mice caused by DSS.

Compound 6, a novel tetrahydroquinoline NLRP3 inhibitor.

Specifically inhibits NLRP3 activation in vivo by binding to the

NLRP3-NACHT structural domain, inhibiting its ATPase activity

and blocking ASC oligomerization (158). Fc11a-2, a synthetic small

molecule compound that inhibits cytokine release by targeting the

NLRP3 inflammasome (159). VI-16 is a ynthetic flavonoid

compound that reduces ROS production and inhibits NLRP3

inflammasome activation by inhibiting the binding of TXNIP to

NLRP3 (160). Fraxinellone (lactone compound) (161), alpinetin

(novel plant flavonoid) (162) and Celastrol (natural triterpene)

(163) both are able to affect NLRP3 inflammasome activation by

inhibiting NF-kappaB signaling.

NEK7 is a member of the family of NIMA-related kinases

(NEKs) and acts as an NLRP3-binding protein capable of regulating

their oligomerization and activation. The omega class glutathione

transferase (GSTO1-1) inhibitor C1-27 promotes NEK7

deglutathionylation to regulate the release of IL-1b and IL-18

(164), thereby promoting CRC formation. Oridonin, an ent-

kaurane diterpenoid, inhibits NLRP3 activation by binding to

NLRP3-NACHT and blocking the interaction of NLRP3 with

NEK7 (165). Thalidomide, a potent anti-inflammatory agent that

inhibits caspase-1 activation (166), has antitumor activity in the

treatment of MM and PCa (167, 168). C172 is an inhibitor of the

cystic fibrosis transmembrane conductance regulator channel

(CFTR), and its analogue CY-09 inhibits the ATPase activity and

oligomerization of NLRP3 by binding to its ATP-bound Walker A

motif (169). Tranilast is a tryptophan metabolite analogue that

blocks NLRP3-NLRP3 interactions and oligomers by binding to the
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NACHT structural domain of NLRP3, but does not affect its

ATPase activity (170). SI-2, an acetylase inhibitor, specifically

inhibits NLRP3 inflammasome activation by disrupting the

interaction between NLRP3 and ASC and blocking ASC spot

formation (171).

Although small molecules and drugs have been shown to

modulate inflammasome activity, IL-1 signaling blockade is

currently being used clinically to treat NLRP3-driven immune

disorders. Three biologics are approved by the U.S. Food and

Drug Administration for the treatment of multiple inflammatory

diseases: Canakinumab, a human anti-IL-1b monoclonal antibody,

has significant antitumor effects in NSCLC (172, 173); Rilonacept, a

decoy receptor that binds IL-1b and IL-1a (176); Anakinra is a

recombinant IL-1 receptor antagonist (IL-1RA) that blocks IL-1a
and IL-1b signaling via IL-1R (174). In addition, the combination of

Anakinra with 5-FU and bevacizumab improved the survival and

overall survival of patients affected by CRC (175).

In summary, targeting the NLRP3 inflammasome or its

downstream pathways as a research target has begun to attract

attention as a potential strategy for the development of novel

anticancer therapies.
6 Conclusions

Evidence suggests that NLRP3 plays a dual role in

tumorigenesis and anticancer immunity (Table 2). However, its

roles in different tumor types, at different stages of tumor

development and mechanisms of action in tumor formation,

development and invasion all remain controversial. Pyroptosis

may induce varied outcomes in different tumors, meriting

unprecedented attention in the field of tumor therapy. Inhibition

or promotion of pyroptosis is a new approach to tumor therapy.
TABLE 1 Continued

Inhibitor Mechanism Effective GI Cancer Type References

VI-16 Inhibits the binding of TXNIP to NLRP3 by reducing NLRP3 activation (160)

Fraxinellone Inhibits NF-kappaB pathway and NLRP3 inflammasome activation (161)

Alpinetin (162)

Celastrol (163)

C1-27 Inhibits NLRP3 activation by reducing ASC speck formation CRC (164)

Oridonin Binds NLRP3 NACHT domain, blocks NEK7-NLRP3 interaction ESCC (165)

Thalidomide inhibits caspase-1 activation / (166–168)

CY-09 Binds ATP-binding motif, NLRP3 NACHT, inhibits ATPase (169)

Tranilast Binds NACHT Inhibits the NLRP3-NLRP3 interaction (170)

SI-2 Disrupts the interaction between NLRP3 (171)

Canakinumab IL-1b inhibitor CRC (172, 173)

Rilonacept Binds IL-1b and IL-1a / (174)

Anakinra IL-1 receptor antagonist CRC (175)
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However, pathways of pyroptosis in tumors and molecular

mechanisms still lack convincing explanations. The NLRP3

inflammasome mediates pyroptosis and a study of its in vivo

impact on the tumor process may allow applications of PCD

targeting in tumor therapy.
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TABLE 2 Role of NLRP3 inflammasome activation or suppression in cancer development.

Type of cancer Source of experimental evidence Effect on tumor References

OSCC -OSCC and adjacent
normal tissue
NLRP3-/- mouse

promoting effect (42–44, 46)

ESCC -ESCC and adjacent
normal tissue
ESCC cell lines Het-1A

promoting effect (51, 52)

GC -GC tissue
-GC cell lines (SGC-7901, BGC-823,
HGC-27 and AGS)
-normal gastric epithelial cell
line (GES-1)

Tumor promoting effect (11, 19, 59, 63)

HCC -HCC and adjacent
normal tissue

suppressor effect (66–70, 81)

GBC -GBC and adjacent
normal tissue

promoting effect (85, 89–97)

PDA ASC-/- mouse
Caspase-1-/- mouse
NLRP3-/- mouse
-PDA and adjacent
normal tissue

promoting effect (116, 119)

CRC -CRC and adjacent
normal tissue
NLRP3-/- mouse
IL-18-/- mouse
IL18R1-/- mouse
Colon cancer epithelial cells HCT116 and HT29

promoting effect
suppressor effect

(12, 128–131, 133, 134).
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